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Abstract: Target detection in offshore unmanned aerial vehicle data is still a challenge due to the
complex characteristics of targets, such as multi-sizes, alterable orientation, and complex backgrounds.
Herein, a YOLO-based detection model (YOLO-D) was proposed for target detection in offshore
unmanned aerial vehicle data. Based on the YOLOvV3 network, the residual module was improved
by establishing dense connections and adding a dual-attention mechanism (CBAM) to enhance the
use of features and global information. Then, the loss function of the YOLO-D model was added
to the weight coefficients to increase detection accuracy for small-size targets. Finally, the feature
pyramid network (FPN) was replaced by the secondary recursive feature pyramid network to reduce
the impacts of a complicated environment. Taking the car, boat, and deposit near the coastline as
the targets, the proposed YOLO-D model was compared against other models, including the faster
R-CNN, SSD, YOLOv3, and YOLOVS5, to evaluate its detection performance. The results showed
that the evaluation metrics of the YOLO-D model, including precision (Pr), recall (Re), average
precision (AP), and the mean of average precision (mAP), had the highest values. The mAP of the
YOLO-D model increased by 37.95%, 39.44%, 28.46%, and 5.08% compared to the faster R-CNN, SSD,
YOLOvV3, and YOLOVS, respectively. The AP of the car, boat, and deposit reached 96.24%, 93.70%,
and 96.79% respectively. Moreover, the YOLO-D model had a higher detection accuracy than other
models, especially in the detection of small-size targets. Collectively, the proposed YOLO-D model is
a suitable model for target detection in offshore unmanned aerial vehicle data.
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1. Introduction

Unmanned aerial vehicle (UAV) imagery shows great potential for offshore monitoring
due to real-time collection of temporal/spatial data [1]. Different targets can be identified
by the detection models in UAV data. However, it is still unavailable for an automatic target
detection model due to the multi-sizes, alterable orientation, and complex backgrounds of
the target objects. Currently, deep learning has been widely used for extracting features
and detecting targets. Deep learning has great potential for improving the accuracy and
efficiency of target detection in offshore unmanned aerial vehicle data.

In general, target detection based on deep learning can be divided into two major
types, a two-stage detection model and a one-stage detection model [2]. In a two-stage
target detection model, different targets are detected based on the series of candidate
boxes [3]. The model based on a region with a CNN feature (RCNN) is a typical two-stage
target detection model, showing great advantage in detection accuracy and positioning
accuracy [4-7]. In a one-stage target detection model, different targets are directly detected,
where target detection is abstracted as a regression problem [8]. Models based on a
you-only-look-once (YOLO) or a single-shot multibox detector (SSD) are typical one-
stage target detection models, showing great advantage in detection efficiency [9-13].
In addition, there are some detection methods deigned based on machine learning, such as
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sparse target detection [14-16], sub-pixel target detection [17,18], and visual saliency target
detection [19,20]. In recent years, there also have been efforts to apply and improve these
target detection models in UAVs for offshore monitoring [21-26]. However, these models
are still not the optimal option for target detection in offshore unmanned aerial vehicle
data, due to the complex characteristics of targets, such as multi-sizes, alterable orientation,
and complex backgrounds.

In this study, we proposed a target detection model for target detection in offshore
unmanned aerial vehicle data based on the improved YOLOv3 (YOLO-D) network.

The residual module was improved to enhance the use of features and global informa-
tion. The loss function of YOLO-D was then improved to enhance the detection accuracy
for small targets. The feature pyramid network (FPN) was finally replaced by the secondary
recursive feature pyramid network to reduce the impacts of a complicated environment.

2. Dataset and Model
2.1. Dataset

UAV data were acquired from 2019 to 2020, which were collected over Jinshan District,
Fengxian District, and Pudong New District in Shanghai (China), and 504 images with a
size of 1920 x 1080 pixels were extracted. The labeling software Labellmg v1.8.5 was used
to label the offshore monitoring targets, including a car, a boat, and a deposit (Figure 1).

Figure 1. Offshore monitoring targets: (a) car, (b) boat, and (c) deposit.

The images were preprocessed to balance the ratio of positive and negative samples
and strengthen the learning efficiency of small-size targets. The images were then aug-
mented by rotating, trimming, horizontal flipping, and splicing. The expanded dataset
contained 1010 images, included 12,747 marked cars, 1247 marked boats, and 1431 marked
deposits. According to the standard of the COCO dataset, a target with pixels smaller than
32 x 32 was classified as a small-size target. A target with pixels greater than 96 x 96 was
classified as a large-size target [27]. Here, the number of small-size targets exceeded half of
the total number of targets.

2.2. Model

Figure 2 shows the flowchart of the YOLO-based detection model (YOLO-D), in-
cluding the improved backbone network, the improved feature pyramid network (FPN),
and improved CCR modules.

2.2.1. Backbone Network of the YOLO-D Model

Based on Darknet-53, the backbone network of the YOLO-D model was improved by
establishing dense connections and adding a dual-attention mechanism (CBAM). Figure 3
shows the mechanism of dual attention, including channel and spatial attention, which not
only considered the importance of different feature channels but also considered the
importance of different positions of the same feature channel [28].
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Figure 2. Flowchart of YOLO-D. (A) Backbone network, (B) CCR module, and (C) feature pyramid network (FPN). The dotted
lines with arrows indicate the flow of the FPN’s first output data.
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Figure 3. Attention module schematic: (a) channel attention and (b) spatial attention.

In the YOLO-D model, dual attention (CBAM) was added into the residual module as
the RC module (the main components of the CCR module) to enhance feature extraction
(Figure 4).

Dense connections between CCR modules were established to strengthen the trans-
mission and use of features and improve the use of features (Figure 5).

X; represents the output of the i-th layer. X,, = RC(CBL(CBL([Xy, X1, X5, ..., Xu—1]))),
and [Xy, X1, X, ..., X;;—1] represents the splicing of the output features from layer 0 to
layer n—1. CBL(x) represents the passing x through the CBL module. RC(x) represents the
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passing x through the RC module. The CBL module (Figure 2) includes a convolutional
layer, a regularization layer, and an activation layer. The RC module (Figure 4) is a residual
module that includes two CBL modules and a CBAM module [29].

Channel | Spatial ‘
Attention Attention
Input feature CBL CBL Output feature
Figure 4. Schematic diagram of the RC module.
Xo
CcC X1
CCR X2
CCR Xn—3
~~~~~ CCR X2
CCR anl

— "= CCR

Figure 5. Data transfer diagram in dense connections.

2.2.2. Feature Pyramid Network of the YOLO-D Model

A feature pyramid network (FPN) can make use of the feature information about
the bottom layer and the high layer at the same time and construct multi-size feature
images [30]. Here, the FPN of YOLOvV3 was improved by building a secondary recursive
feature pyramid. The first-output features (fJ*!) of the FPN were concatenated with the
first-input features (fi) of the backbone network. Then, the first-output features passed
through the atrous spatial pyramid pooling (ASPP) [31] as the second-input features (f,,)
of the backbone network, (f, = ASPP(concat(fi", f3*))). Finally, the second-output
features of the feature pyramid network were used as the final features and were outputted
to the detection layer. Figure 6 shows the network structure of the YOLO-D model,
including the structure of ASPP (Figure 6A), the second recursive model of the YOLO-D
model (Figure 6B), and the network structure of the YOLO-D model (Figure 6C).
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Figure 6. Network structure of the YOLO-D model. (A) Atrous spatial pyramid pooling, (B) the second recursive model of
YOLO-D, and (C) the network structure of the YOLO-D model. The dotted line is the recursive data flow. The dashed box is
the module that is executed only when recursive data are used.

2.2.3. Loss Function of the YOLO-D Model

The loss function of YOLOV3 is the cross-entropy loss function, which is composed of
center coordinate loss, confidence loss, and classification loss. In the YOLO-D model, the
center coordinate loss function was replaced by the GIOU loss function [32] and the confi-
dence and classification loss functions were improved by adding weight coefficients [33],
which enhanced the learning efficiency of confusing samples and difficult samples.

The YOLO-D loss function is defined as:

Loss = Lgiou + Lconf_fi + Lclass_fi 1

Lgiouy is the GIOU loss function, defined as:

Loioy = 1 — GIOU @)
—(AUB
GIOU = 10u-|C(|C|U)| 3)
|AN B
ou=~_"_! 4
AU B @)

A is the true frame. B is the predicted frame.A U B is the area of the union of A and B.
AN B is the area of the intersection of A and B. C is the area of the smallest bounding box
including A and B.

The focal loss function Ly, is defined as [27]:

_ [ —al-y)logy, y=1
Lfocal = { —(1—a)ylog(1—y"), y=0 ®)
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a € (0,1] and 7y € (0,2] are self-defined constants. ' is the predicted output.y is the
label of the real sample. When « > 1, the network focuses on samples with learning diffi-
culties. Weight coefficients are added to the original confidence loss. The new confidence
loss function Lcg,f_g is defined as:

s> B obi+ A . " .
Leons i = (ly=y/D" < (L X 17 [Glog(C)) + (1 = Clog(1 = C)
i=0j=

(6)

2 B bicai . " .

+Anoobj'20 'ZO IZOO ][Cflog(cb + (1 B C?)log(l - C{)])
i=0j=

If the predicted box contains an object, If].b] =1, Il.r]l.wb] =0, otherwise If].b] =0, IZ.OOb] =1.

C{ is the predicted value. C{ is the true value. If the predicted box is responsible for
predicting an object, Cf =1, otherwise C{ = 0. i is the predicted output. y is the label of
the real sample. We set y = 2. If one sample is difficult to detect, y/ will tend to 0 and the
confidence loss value will increase.

Lciass_p1 is the classification loss function, which is defined as:

Lc1a35f1—|a+y—1x<i)1;bf Y. [pi(c)log(pi(c)) + (1= pi(c)) og(1 — pi(c))]) (7)

clclass

pi(c) is the probability that the anchor is predicted to be class c. p;(c) is the true
value. If the predicted box contains an object and is difficult to be classified, the correct
classification loss will be smaller and the wrong classification loss will be greater.

3. Experiment

To evaluate the detection performance of the YOLO-D model, two comparison ex-
periments were conducted. In the ablative experiments, the improved efficiency of the
backbone network, feature pyramid network, and loss function was analyzed. The de-
tection performance of the YOLO-D model was evaluated by comparing it with other
end-to-end models, including the faster R-CNN [7], SSD [12], YOLOv3 [11], and YOLOV5.

3.1. Experiment Metrics

Five different metrics, that is, average Precision (AP), the mean of average precision
(mAP), precision (Pr), recall (Re), and frame per second (FPS), were calculated to estimate
the target detection performance [34]:

1
AP — / P(r)dr @®)
0
1 N
AP = —%" AP, 9
mAP = )L AR ©)
TP
Pr =T Fp (10)
TP
Re=TpTEN (11)
FPS = % (12)

where the true positive (TP) represents the number of positive samples that are predicted
to be positive, the false positive (FP) represents the number of samples that are predicted
to be positive but are actually negative, and the false negative (FN) represents the number
of samples predicted to be negative but actually positive. FPS represents the number of
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pictures that can be processed per second, and t represents the time required to process
a picture.

The experiment was based on the tensor flow deep learning framework, and we built
a virtual environment of Python 3.6 and TensorFlow-gpu 2.0 on Anaconda. The training
and accuracy tests were carried out on a Ubuntu 16.04.4 system, NVIDIA Tesla P100 16 GB
graphics card, and CUDA 10.0. The intersection over union (IOU) threshold was set as
0.3 and the score threshold as 0.45.

3.2. Results

Figure 7 showed the images and detection results obtained by the YOLO-D model.
Taking Re and Pr as the abscissa and the ordinate axis, respectively, the P-R curve of each
class is shown in Figure 8.

10 10 10
08 0.8 0.8
a =] =}
=] =]
‘@ 06 -g 0.6 ‘506
o 2 B
2 5 2
L 04 L o4 L 04
=% Ay ~
0.2 0.2 0.2
u | ¥ |
%% 02 04 06 08 10 0.070 02 04 Y 08 10 %% 02 04 0.6 08 10
Recall Recall Recall

@) (b) (9)
Figure 8. P-R curve of each class of the YOLO-D model: (a) P-R curve of the boat, (b) P-R curve of the car, and (c) P-R curve
of the deposit.
3.2.1. Ablation Experiment

Table 1 shows the performance comparison between ablation studies, including
YOLOvV3 with an improved backbone, YOLOv3 with an improved FPN, and YOLOv3 with
an improved loss function. Based on Table 1, we can see that all designs of the YOLO-D
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model could prominently enhance the AP and mAP of each class target. In the YOLO-D
model, the AP of the boat, car, and deposit reached 93.7%, 96.24%, and 96.79%, respectively.
Notably, the mAP reached 95.58%, although the speed increase of the YOLO-D model was
not obvious.

Table 1. Comparison of evaluation metrics in ablation studies.

Improved Backbone

Improved Loss

Network Improved FPN Function AP_Boat AP_Car AP_Deposit mAP@0.5 FPS
V4 Vv — 83.39 91.75 91.34 88.83 3
V4 — Vv 91.98 94.10 92.84 92.97 5
— Vv Vv 80.02 94.99 94.52 89.84 45
v Vv V4 93.70 96.24 96.79 95.58 3

3.2.2. Comparison with Other Models

The detection performance of the YOLO-D model was further compared with other
models, including the faster R-CNN, SSD, YOLOv3, and YOLOVS5. As shown in Figure 9
and Table 2, the YOLO-D model had the highest values of Pr, Re, AP, and mAP. The mAP
value of the YOLO-D model increased by 37.95%, 39.44%, 28.46%, and 5.08% compared to
the faster R-CNN, SSD, YOLOv3, and YOLOV5, respectively. Importantly, the AP value
of the car reached 96.24%. Notably, most of car the targets were small-size targets. The
detection speed of YOLO-D was 10 times faster than that of the faster R-CNN and SSD
but was slightly slower than that of YOLOv3 and YOLOvV5. Collectively, the YOLO-D
model reduced the rate of false detection and showed great potential for accurate detection,
especially for the detection of small-size targets.

Original

images

Faster
R-CNN

SSD

YOLOv3

YOLOvV5

Figure 9. Comparison of detection performance using different models.
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Table 2. Comparison of evaluation metrics using different models.

Model Pr Re AP_Boat AP_Car AP_Deposit mAP@0.5 FPS

Faster R-CNN 79.97 39.61 60.81 55.34 56.74 57.63 0.35

SSD 91.44 16.32 68.14 52.11 47.25 55.84 0.38
YOLOvV3 90.70 55.08 60.34 78.67 63.48 67.50 9
YOLOvV5 92.20 87.40 93.10 88.70 89.90 90.50 14
YOLO-D 92.70 92.06 93.70 96.24 96.79 95.58 3

4. Discussion

Unmanned aerial vehicle (UAV) obtains increased real-time datasets for offshore
monitoring. However, the automatic detection of UAV data is still a tricky problem due
to the multi-sizes, alterable orientation, and complex backgrounds of the target objects.
It is particularly difficult to detect small-size targets. In this study, a YOLO-based target
detection model (YOLO-D) was proposed for offshore unmanned aerial vehicle data.

Compared with other detection models, such as the faster R-CNN, SSD, YOLOV3,
and YOLOVS5, the proposed YOLO-D model can significantly enhance detection accuracy.
The evaluation metrics of the YOLO-D model, including precision (Pr), recall (Re), average
precision (AP), and the mean of average precision (mAP), had the highest score. The mAP
value of detection targets increased by 37.95%, 39.44%, 28.46%, and 5.08% compared to the
faster R-CNN, SSD, YOLOv3, and YOLOVS5, respectively. The result suggested that the
YOLO-D model has great potential for accurate detection of offshore UAV data.

In addition, the YOLO-D model can efficiently and accurately detect targets in offshore
UAV data. However, there are still some limitations. The YOLO-D model is designed
based on the spatial information in offshore UAV data. However, it ignores the contextual
information, which is also important for target detection. The YOLO-D model shows great
potential for accurate detection, but the speed is slightly slower than YOLOv3 and YOLOVS5.
In the future, we will further improve the YOLO-D model to enhance the accuracy and
efficiency of target detection in offshore UAV data.

Taken together, this study proposed a YOLO-D model for the detection of offshore
UAV data. In this model, the residual module is improved by establishing dense con-
nections and adding a dual-attention mechanism (CBAM), which can enhance the use of
features and global information. The loss function of YOLO-D is improved by adding
weight coefficients, which can enhance the detection accuracy for small targets. The feature
pyramid network (FPN) is replaced by a secondary recursive feature pyramid network
to reduce the impacts of a complicated environment. The YOLO-D model shows great
potential for accurate detection of offshore UAV data, especially for the detection of small-
size targets.
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