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Abstract: The digital twin is currently recognized as a key technology allowing the digital represen-
tation of a real-world system. In smart manufacturing, the digital twin enables the management and
analysis of physical and digital processes, products, and people in order to foster the sustainability
of their lifecycles. Although past research addressed this topic, fragmented studies, a lack of a
holistic view, and a lack of in-depth knowledge about digital twin concepts and structures are still
evident in the domain of the shop floor digital twin. Manufacturing companies need an integrated
reference framework that fits the main components of both physical and digital space. On the basis
of a systematic literature review, this research aims to investigate the characteristics of the digital
twin for shop floor purposes in the context of smart manufacturing. The “hexadimensional shop
floor digital twin” (HexaSFDT) is proposed as a comprehensive framework that integrates all the
main components and describes their relationships. In this way, manufacturing organizations can
rely on an inclusive framework for supporting their journey in understanding the shop floor digital
twin from a methodological and technological viewpoint. Furthermore, the research strengthens the
reference literature by collecting and integrating relevant contributions in a unique framework.

Keywords: digital twin; smart manufacturing; shop floor; systematic literature review; framework

1. Introduction

The concept of smart manufacturing has existed in literature since 1980, but in
recent years has gained more interest due to the growth of digital technologies and
the integration of information and operational technologies within industrial environ-
ments [1]. Industry 4.0 tends to leverage different enabling technologies for reaching
high levels of productivity by transforming traditional organizations in smart and hyper-
connected business models. Moreover, the increasing competition, the need to reduce
the time to market and to increase innovation require the organization to continuously
adapt and its behavior to respond to this dynamically changing context [2]. The concept
of digital twin was introduced for the first time by Grieves [3], in 2003, with the Informa-
tion Mirror Model for explaining the elements that compose this virtual reflective model.
The author defines the digital twin as “a sensor-enabled digital model of a physical object
that simulates the object in a live setting” [4]. In this context, the digital twin is recognized
as one of the most promising and emerging technologies for supporting and changing a
traditional factory in a smart shop floor, focused on achieving high production efficiency,
low production costs, and high product and process quality. Several other benefits coming
from the adoption of this technology are currently recognized: from the improvement of
operations to the optimization of production quality and costs and the shortening of prod-
uct development, and from the early verification and validation of production processes to
the possibility to develop innovative services [5,6].

The digital twin is considered in literature as a breakthrough technology, acting as a
mirror of a real system (e.g., product, machine, plant, process, factory, people) by building
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a virtual counterpart able to provide a means for simulating physical manufacturing
systems and objects [7]. In these terms, the digital twin technology allows for analyzing,
monitoring, and predicting the behavior of a system, controlling its status in real time,
simulating a desired environment, and supporting in a sustainable way the management
of the product and service lifecycle. Several authors provide different definitions of the
digital twin concept and emphasize some distinctive elements. For instance, Boschert
and Rosen [8] highlight the simulation activity allowed by this technology; Schluse and
Rossmann [9] and Schroeder et al. [10] focus on the virtual representation of physical
objects; Stark, Fresemann, and Lindow [11] consider a broader view of production systems,
including their interoperability; Negri, Fumagalli, and Macchi [12] analyze the physical
side of the model; Kunath et al. [13] pay attention to manufacturing systems and data flows;
Shafto et al. [14] and Kraft [15] construct a multidimensional concept of the technology;
Lee et al. [16] represent the virtual counterpart of a machine; and, finally, Rosen et al. [17]
focus on processes.

However, the development of a shop floor digital twin remains often limited because
of the complex convergence of the physical space with the virtual one, which also includes
some integration issues [18]. The National Aeronautics and Space Administration (NASA)
was the first company that explored and exploited digital twin technology in the aerospace
field mainly for prediction, safety, and diagnosis purposes [19]. It is clear that some critical
aspects have to be considered such as the interoperability and the bidirectional connection
of physical and virtual assets for ensuring a real-time response of the whole system. The In-
ternet of Things (IoT), cyber–physical systems (CPS), information and communication
technologies, including artificial intelligence, big data, and analytics, are only some of
the most important enabling technologies that contribute to design and shape a digital
twin [20]. Furthermore, other important aspects need to be included when applying this
technology, such as solution modularity, modeling consistency and accuracy, simulation im-
provements, integration with immersive technologies, efficient mapping of cyber–physical
data and cloud/edge computing integration [21].

Past research reported potential applications of the digital twin in different contexts,
such as safety [22,23], occupational health [24], environment [25], high-tech machining
sector [26,27], healthcare [28,29], smart city [30], advanced production and robotics [31],
and civil engineering [32]. Research about digital twin is still growing and under continu-
ous development and new directions are emerging for further investigation, such as the
digital twin as a service paradigm, the massive inclusion of unique assets, the involvement
of the human world and unprecedented global challenges [33], the exploitation of different
types of data generated during the various lifecycle phases [34], and the sustainability of
intelligent production systems [35].

In smart manufacturing, an in-depth knowledge of the digital twin concept, struc-
ture, and development methods is still scarce [7,36,37]. In particular, the need for a more
comprehensive conceptualization of the digital twin technology is more evident in the
context of shop floor and smart manufacturing because of the presence of fragmented
previous studies [38,39]. Companies need to successfully support the use of their knowl-
edge in order to improve organizational learning [40]. Manufacturers need to consider
an inclusive framework for supporting them in the conceptual application of the shop
floor digital twin technology. They require a reference framework that fits all the main
components belonging to the physical and the digital spaces that also explains their rela-
tionships. For these reasons, this research focuses on investigating the connotations of the
digital twin for shop floor purposes in the context of Industry 4.0. The research is based
on a systematic literature review useful to develop a knowledge base of references upon
which to propose an original and comprehensive framework—“hexadimensional shop
floor digital twin” (HexaSFDT)—that includes all the main components of a shop floor
digital twin. The HexaSFDT framework aims to support industries in understanding the
digital twin for the shop floor from a methodological and a technological point of view.
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Moreover, this research strengthens the reference literature by collecting and integrating
relevant contributions in a unique framework.

The paper is structured as follows: the next session describes the research methodology
adopted in this paper; following that, the results of the literature background are presented
and organized in a structured way. On the basis of this knowledge, a comprehensive and
integrated framework for the shop floor digital twin is proposed. The conclusion, Section 5,
discusses final remarks, including implications and limitations.

2. Materials and Methods

This study adopts the systematic literature review (SLR) approach, which is considered
a transparent, scientific, and replicable process that allows researchers to control decisions,
procedures, and conclusions [41], with the aim of investigating frameworks developed
in the context of smart manufacturing for the digital twin of the shop floor. To achieve
this objective, the paper focuses on the following areas of analysis: (1) conceptual models
theoretically describing the digital twin technology; (2) benefits and challenges regarding
the implementation of the digital twin in the shop floor; and (3) frameworks supporting
the digital twin implementation in the shop floor.

A number of different SLR strategies exist in the literature. According to Tranfield et al. [42],
the main steps of the systematic review process include: (i) question specification and
review planning, (ii) review execution, and (iii) reporting and dissemination. On the
other hand, Cerchione et al. [43] propose a literature review organized into main phases
(i.e., paper acquisition and selection, and descriptive and content analysis of the selected
papers), each of which is further divided into two steps (i.e., material search and selection
for the first phase, and descriptive and content analysis for the second phase). Furthermore,
the literature review process carried out by Lezzi et al. [44], based on keywords and
search terms with a replicable and defined search strategy, consists of three main phases:
(1) definition of search criteria, (2) paper selection, and (3) paper assessment. Corallo
et al. [45] instead define a systematic literature review procedure consisting of four main
steps (i.e., review planning, search execution, document analysis, and results reporting)
that are composed of different activities.

Summarizing the above contributions and considering the objective of this research
work, a schematic view of the main steps of our literature review is shown in Figure 1.
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Planning and Execution Phases

The first planning phase consists of defining the research question (RQ) on which
to base the whole research path. The RQ that the paper intends to answer is: “What are
the current frameworks for the shop floor digital twin?”. Thus, the need to undertake a
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systematic literature review in the area of shop floor digital twin stems from the necessity to
define a unified method of modelling the digital twin in the context of smart manufacturing.

Therefore, the search process involved the selection of scientific papers from the two
main electronic scientific indexed databases, namely, Scopus (www.scopus.com) and Web
of Science (www.webofknowledge.com), accessed on 31 March 2021.

The second phase concerning the execution of the review, involves carrying out a com-
prehensive, unbiased search based on keywords and search terms. For this reason, to give
the research question an answer, the keywords “digital twin”, “shop floor”, “smart manu-
facturing” have been inserted, in both portals, to search for the title, abstract, and keywords
(see Figure 2).
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The search in Scopus and Web of Science (WoS) was based on the selected keywords
appearing in the title, abstract, and keywords, identifying 262 and 144 publications, respec-
tively. Thus, we restricted the field to the English language (obtaining 249 results in Scopus
and 143 results in WoS). Moreover, the search was limited to “articles”, “review”, and “con-
ference papers”; this resulted in 226 papers in Scopus and 141 in WoS. However, in order
to achieve the established aims, only documents included in the fields of “Engineering”,
“Computer Science”, and “Business, Management and Accounting” were considered on
Scopus (resulting in 215 relevant publications). For the same reason, only documents in-
cluded in the fields of “Engineering Manufacturing”, “Computer Science Interdisciplinary
Applications”, “Computer Science Theory Methods”, “Computer Science Information
Systems”, “Management”, and “Information Science Library Science” were selected in Wos
(obtaining 89 papers). After this first selection, papers published before 2018 that did not
have at least one citation were not included in the analysis, thus only reducing the sample
of papers found in Scopus to 190. This choice was made in order to include in the analysis

www.scopus.com
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only those contributions with a higher relevance recognized in the scientific community,
considering that the topic has been strongly addressed in recent years.

An overall check of all the documents was carried out in order to avoid the multiple
inclusion of the same document obtained from different sources (a total of 198 documents
were identified). Subsequently, the revision of the title and the abstract was conducted,
obtaining 72 publications from both portals. At this point, the articles were excluded
mainly because they did not focus only on the topic of digital twin applied to: factory,
manufacturing process, production, assembly shop floor, or factory behavior.

After reading the remaining papers, only 41 were accepted as relevant, credible,
insightful, and rigorous enough to be included in the literature review that will be carried
out in the next section.

The whole process of selecting papers from both scientific databases is shown in Figure 3.
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3. Results
3.1. Reporting and Dissemination Phase

The final phase of reporting and dissemination of research results involves making a
descriptive map on the topic, including who the contributors are, where they are located,
and in what period the main research activities on the topic took place.

In order to evaluate the selected papers, a matrix was firstly defined to record authors’
notes about them. This matrix is composed of 11 records, in which the following infor-
mation was collected: title; authors with affiliations; publication year; source; reference;
abstract; keywords; study focus; conceptual models underlying the digital twin technology;
benefits and challenges related to the implementation of the digital twin in the shop floor;
and frameworks guiding the digital twin implementation in the shop floor (an extract of
the matrix with the most relevant information is available in Appendix A).

Therefore, the same categories of information were analyzed in a comparative way
between the different papers and the main results were discussed. In Table 1, the three main
areas of analysis considered in this study are outlined; while, the results of the comparative
review are reported in the following sections.
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Table 1. Areas of analysis.

Topic Focus

1 Digital twin conceptual models
• Conceptual models describing the digital

twin technology

2 Benefits and challenges of the
digital twin

• Benefits and challenges related to the
implementation of the digital twin in the
shop floor

3 Digital twin frameworks • Frameworks that guide the digital twin
implementation in the shop floor

3.1.1. Digital Twin Conceptual Models

In this section, the conceptual models, which theoretically describe digital twin tech-
nology, are collected. These models emerged from the analysis of the 41 papers resulting
from the process of selecting literature resources.

Kuehn [46] presents a Digital Twin approach concept containing an interaction of
six steps. These steps complete a closed loop connection between the physical world and
the virtual model of the digital twin: (i) create—with multiple sensors various inputs
from the physical process and its environment are measured; (ii) communicate—network
communication enables a seamless real-time connectivity between the physical process
and the digital platform; (iii) aggregate—the real-time data have to be sent to a data
repository, processed, and prepared for the analytics; (iv) analyze—the aggregated data
are analyzed by use of advanced analytics technologies in order to analyze that data on an
ongoing basis to identify opportunities for possible improvements; (v) insight—based on
the analyzed data, models for decision making are created; (vi) act—the knowledge and
recommendations from the insights step can be fed back to the physical world in order to
transform the real enterprise.

The conceptual model proposed by Modoni et al. [47] aims at enhancing the under-
standing of the digital twin, putting in evidence the continuous synchronization between
the real factory and its digital counterpart. This synchronization is realized by means of two
streams of data. The first one represents the real-time monitored data flow and includes all
physical variables sensed at the factory shop floor level by ubiquitous sensors attached to
various physical components of the factory and transmitted with a high-frequency towards
the digital space. The second stream involves actions to be performed in real time or near
real time at shop floor level, representing the feedback returned from the digital space to
the real factory.

Moreover, Park, Easwaran, and Andalam [48] propose developing a cyber–physical
production system case study called the IMPACT line, which consists of four linear modules
with parallel conveyors and seven processing stations for manufacturing smart phones,
to illustrate its proposed model and discuss open issues. The proposed model comprised
five main components: a factory; a digital twin and its runtime environment; a factory
interface to extract sensor/actuator data from the physical space; an application interface
that provides application programming interfaces (APIs) to applications that wish to utilize
the digital twin; and the applications themselves.

Finally, Stark, Fresemann, and Lindow [11] explore the dimensions by which the
intended behaviors and the context of digital twin can be described. Thus, a structured
approach for planning the scope and type of digital twin has been developed; this is
called the “digital Twin 8-dimension model”. One side of the 8-dimension model can
distinguish the dimensions with a focus on digital context and environment and the other
side can distinguish the dimensions with a focus on behavior and capability richness.
The area of digital twin environment and context is represented by four dimensions: inte-
gration breadth, connection mode, update frequency, and product life cycle. On the other
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hand, the digital twin behavior and capability richness comprises four other dimensions:
cyber–physical systems intelligence, simulation capabilities, digital model richness, and
human interaction.

3.1.2. Benefits and Challenges of the Digital Twin

Some of the analyzed papers dealt mainly with the review of articles on the theme
of the digital twin, exploring the benefits and challenges of implementing this on the
shop floor.

In particular, according to Negri, Fumagalli, and Macchi [12], the relevance of digital
twin for the manufacturing industry lies in its definition as virtual counterparts of physical
devices. These are digital representations based on semantic data models that allow running
simulations in different disciplines, that support not only a prognostic assessment at design
stage (static perspective), but also a continuous update of the virtual representation of the
object by a real-time synchronization with sensed data. This allows the representation to
reflect the status of the system and to perform real-time optimizations, decision making,
and predictive maintenance according to the sensed conditions. In line with this view,
Kuehn’s [46] study claims that companies embracing digital twins have the opportunity
to better understand and continuously improve products, services, and processes, which
gives them a competitive advantage.

Moreover, Shao et Kibira [49] propose the “digital surrogate” as an alternative to digital
twin and define this as “an integrated model that represents, connects, and synchronizes a
part of or the whole physical manufacturing system or process, enabled by historical and
real-time data from the physical system or process”. The main goal of digital surrogates is to
analyze and optimize a manufacturing system or a process in the cyber space. In particular,
the digital surrogates can monitor the status of production systems or processes, predict
system performance, and prescribe system behavior or control actions without interrupting
production operations in the physical space. By integrating data from both the cyber space
and the physical space, digital surrogates can help evaluate alternative plans and schedules,
schedule maintenance, optimize operations in real-time, and prescribe future operations.
However, the application of relevant standards is needed to improve the interoperability
of data exchange among different applications within the digital surrogate.

In the same way, Lu et al. [7] believe that constructing a digital twin smart manu-
facturing needs a standardized information model, high-performance data processing,
and industrial communications to work together. In particular, they state that research on
standards, communication protocols, time-sensitive data processing, and reliability need to
be the priorities for the next stage of the research while focusing on application scenarios
of digital twin. Furthermore, they also highlight the key research issues for advancing
the research of digital-twin-driven smart manufacturing, such as the need to: (i) define an
architecture pattern for a digital twin; (ii) define a communication latency requirement for
a digital twin; (iii) define a data capture mechanism and the standards for digital twin; and
(iv) understand the role of humans in digital twin applications and the functionalities of a
digital twin.

Modoni et al. [47] identify numerous challenges to be addressed in order to make
a fully-synchronized factory twin a viable solution. The major obstacles derive from
the nature of the digital, as it represents a complex system in high-dimensional spaces,
thus requiring integrated multiphysics, multidomain, and multiscale modelling technology
and ultra-high synchronization and fidelity between the virtual and physical space.

Furthermore, Park, Easwaran, and Andalam [48], in their work, highlight some
problems associated with the digital twin, such as the discrepancy between the definition
of a model and the physical system, and the issues associated with the concept of security
and safety. With reference to the latter issues, since digital twins are closely coupled with
the physical environment, an attack on a cyber–physical system can endanger the safety of
people and cause significant economic loss.
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Finally, according to Tao et al. [50], the most popular application area of digital twin
is the prognostics and health management (PHM) area, where the current applications
mainly focus on the high-value equipment. This aspect limits the broader applicability
of digital twins. In general, they believe that digital twins are not only useful for fault
diagnosis and prediction of equipment lifetime, but also for equipment maintenance and
repair. However, a unified modelling framework for digital twins is needed.

Table 2 shows the most significant benefits and challenges associated with the imple-
mentation of digital twin on the shop floor found in the literature.

Table 2. Benefits and challenges of digital twin on the shop floor.

Benefits Challenges

• Decision making [12]
• Real-time optimizations [12,49]
• Predictive maintenance [12,49,50]
• Better understanding and continuous improvement of

products, services, and processes [46]
• Evaluate alternative plans and schedules [49]
• Prescribe future operations [49]
• Fault diagnosis [50]
• Prediction of equipment lifetime [50]

• Definition of an architecture pattern [7]
• Definition of a communication latency requirement [7]
• Definition of a data capture mechanism and standards [7]
• Understanding the role of humans in digital twin

applications and the functionalities of a digital twin [7]
• Need of a standardized information model,

high-performance data processing, and industrial
communications [7]

• Need of integrated multi-physics, multi-domain, multiscale
modelling technology, and ultra-high synchronization and
fidelity between the virtual and physical space [47]

• Discrepancy between the definition of a model and the
physical system [48]

• Security and safety issues [48]
• Improvement of the interoperability of data exchange

among different applications [49]
• Need of a unified modelling framework for digital twins [50]

3.1.3. Digital Twin Frameworks

Most of the 41 analyzed papers provided a framework or an architecture able to act as
a guide for the implementation of the digital twin within a shop floor. The review of the
papers that were of fundamental importance for the definition of the framework proposed
in this work is here discussed.

Zhuang, Liu, and Xiong [1] propose a framework of digital twin-based smart produc-
tion management and control approach for complex product assembly shop floors, such as
a satellite assembly shop floor. It consists of four components: physical assembly shop floor;
assembly shop floor digital twin; assembly shop floor big data storage and management
platform; and digital twin and big data-driven assembly shop floor service/ application
platform. The physical assembly shop floor is the collection of existing physical entities.
The assembly shop floor digital twin in virtual space is the reconstruction and digital map-
ping of the physical assembly shop floor. They exchange data/information/knowledge
through the assembly shop floor big data storage and management platform. On the
other hand, the assembly shop floor service/application platform refers to the collection
of technologies that support the functional and target requirements of smart production
management and control.

Wang, Zhang, and Zhong [51] present a proactive material handling method for a
cyber–physical system enabled shop floor (CPS-PMH) to address the issues of using passive
material handling strategies, which lead to excessively long occupation or idle time of
machines. The overall architecture of the proposed CPS-PMH strategy mainly consists of
three modules: physical shop floor, shop floor digital twin, and proactive material handling.
In particular, the physical shop floor is responsible for constructing a smart shop floor
by adopting CPS technologies. The shop floor digital twin is instead used to construct a
digital twin model for the physical shop floor. Finally, the proactive material handling is
responsible for making material handling decisions based on the prediction of the future
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status of manufacturing systems, including future logistics tasks prediction and trolley
status prediction.

Fang et al. [52] introduce the architecture of DT-based job shop scheduling to deal with
the uncertain events, information asymmetry, and abnormal disturbance, that affect the
actual process of production scheduling, causing the execution deviation and undermining
the efficiency and quality of the planning execution. The proposed architecture consists of
two parts: physical space and virtual space. The two parts communicate with each other
through CPS units. In the virtual space, the scheduling data can be obtained from the
monitored resource in the physical space, such as equipment, workers, task information, etc.
In the physical space, the plan is decomposed into machine execution, operator distribution,
and material transportation, etc.

The conceptual framework developed by Chen et al. [36] for the new paradigm called
smart factory based on CPS applies virtual-real mapping and fusion, digital twin, big data
driven, virtualization, and edge-to-cloud service technology to the manufacturing system.
It consists of a physical domain, a digital twin body, a model body and a service body.
The physical domain is mainly composed of workshop equipment, product production
process, information system and so on. On the other hand, cyber domain is characterized
by a virtual space composed of a digital twin body and a model body.

With the aim to realize the intelligent interconnection and interaction between physical
shop floors and virtual ones, Zhang et al. [53] propose an architecture of digital twin-
driven CPPS (cyber–physical production system). This architecture consists of five layers:
(i) physical layer, which refers to physical entities in the shop floor; (ii) network layer,
that refers to the network infrastructure, which is the bridge between the physical space
and the virtual space; (iii) database layer, that includes the multisource and heterogeneous
data; (iv) application layer, that includes various services of the production system, which
are responses for decision support; and (v) model layer, that is a very important layer to
digital-twin-driven CPPS.

Zhang, Zhang, and Yan [18] aim to provide a practical insight into intelligent man-
ufacturing by introducing a data and knowledge-driven framework for DTMC (digital
twin manufacturing cell). It consists of five dimensional-limited intelligent manufactur-
ing spaces: physical space, digital space, data space, knowledge space, and social space.
Physical space is a container that brings together manufacturing resources involved in
a processing sequence of a product’s natural flow; while, digital space is a container of
virtual digital twin models; it could first simulate, then understand, then predict and finally
optimize the performance. On the other hand, data space is a container of massive real-time
manufacturing data; knowledge space equips DTMC with the capacities of self-thinking
and self-improving and with the capacity of self-decision-making, handle various man-
ufacturing problems in physical space, digital space or social space. Finally, social space
integrates a variety of service systems, such as customer relation management (CRM) and
enterprise resource planning (ERP), which bridges the gap between the supply of DTMC
and demand of customers in service-oriented manufacturing.

Furthermore, Zhang et al. [54] present a digital twin-enabled reconfigurable mod-
elling for smart manufacturing systems (RDTMS) with a five dimensional fusion model,
to build a digital-twin-based manufacturing system with high fidelity, high practicability,
high flexibility, high intelligence, and high capability of reconfiguration. In particular,
they define a digital twin framework for robotics-based smart manufacturing systems that
supports automatic reconfiguration. The framework mainly contains four layers: physical
layer, which consists of manufacturing equipment and which is responsible for executing
actual production tasks based on instructions and strategies and feeding back operating
data in real time; model layer, which contains the five models: geometric model (GM),
physical model (PM), capability model (CM), behavior model (BM) and rule model (RM),
which realistically describe all kinds of entities in the physical layer; service layer, which
is also the human–computer interface, is composed of kinds of services and functions
in RDTMS; and data layer, which includes various databases, data structures and data
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flows, which integrates multi-source heterogeneous real-time data and information from
the above three layers.

Zhang and Zhu [55] propose a novel application framework of a digital-twin-driven
product smart manufacturing system. The framework mainly consists of the follow-
ing content: system layer, information processing layer, physical layer, and model layer.
The physical layer refers to physical entities sets existing objectively, which mainly includes
manufacturing equipment and data acquisition apparatus. Model layer is instead the real
mapping of product manufacturing in cyberspace, including mainly product digital twin
model, machine digital twin model, process digital twin model, and so on. The informa-
tion layer is the information management platform for product manufacturing, including
mainly digital twin data, manufacturing service information, and product service informa-
tion; while the system layer is composed of the manufacturing service platform system
and the digital twin application subsystem.

Finally, Guo et al. [56] introduce a digital-twin-enabled graduation intelligent manu-
facturing system (DT-GiMS) with the aim of reducing complexity and uncertainty in fixed-
position assembly islands by utilizing information visibility and visualization. They define
a unified digitization approach to create the digital representations with appropriate sets
of information at object level, product level, and system level in fixed-position assembly
islands. At object level, the manufacturing status of the object (e.g., ID, attribute, status,
and service) can be captured, mapped, and converged on a real-time basis. The light weight
3D model and manufacturing status of the product assembly process can be synchronously
published on the web on a real-time basis at product level. System level focuses on the
production system, which provides an effective way to achieve real-time synchronization
between the production system and its corresponding digital representation. Therefore,
the proposed overall framework of DT-GiMS presents a physical layer, a digital layer,
and a service layer. Real-time convergence and synchronization among them ensure
that the right resources are allocated and utilized to the right activities at the right time
with enhanced visibility and that the managers and onsite operators could easily make
near-optimal production decisions and efficiently complete their daily tasks with nearly
error-free operations.

4. Discussion
4.1. The Hexadimensional Shop Floor Digital Twin Framework

Starting from the results of the literature review, all the relevant contributions have
been analyzed and combined in a unique integrated framework. Past research identified
different components of the digital twin but presented them in a fragmented view. For in-
stance, while some authors focused on the physical elements [18,56], some others stressed
the virtual ones [53,54]. Moreover, a common approach identified in the literature is based
on the multi-layer construction of a digital twin model that encompasses both physical and
digital issues.

The hexadimensional shop floor digital twin (HexaSFDT) is proposed (Figure 4) as
a comprehensive conceptual framework that integrates all aspects in a unique, holistic,
and integrated view. The multi-layered framework describes the digital twin components
and their relationships in smart manufacturing. The HexaSFDT consists of two main
environments: the physical space and the digital space.
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The physical space is mainly represented by the physical layer containing all the
potential existing physical entities. It refers to objects, processes, and people that exist
in the shop floor such as: machines, tools, robots, workers, parts, materials, resources,
and manufacturing assets. The physical entities can be sensed to dynamically collect data,
monitor their status in real time, and exchange information and instructions.

The digital space represents the virtual counterpart of the physical space and it is
composed of different layers focused on mirroring its behavior. It digitally maps the manu-
facturing system allowing for analyzing its working conditions with different constraints
and requirements and without stopping the operations.

The bidirectional communication and interaction between these two spaces is enabled
by the network layer. The IoT, CPS, and communication technologies enable the synchro-
nization between the physical and digital spaces, ensuring the reflectivity characteristic and
establishing a real-time interaction. In these terms, a closed-loop digital twin is modelled
from the representation of the “sensing” and the “action” arrows [51,54]. The former allows
the connection from the physical to the digital space and it is mainly responsible for collect-
ing and transmitting data sensed from the physical entities. The latter creates a link from
the digital to the physical space in order to communicate the results of the decision-making
process and of the services requested by the users. Therefore, the HexaSFDT works in a
cyclical process with the characteristics of continuous monitoring, dynamic adjustment,
and iterative optimization.

As suggested by the literature, the HexaSFDT has been designed in a multi-layered
approach in order to structure all the contributions that this technology enables in concep-
tualizing a digital twin for the shop floor (see Figure 5).

In the following, a detailed description of each layer of the HexaSFDT framework
is provided.
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4.1.1. Physical Layer

The manufacturing system is characterized by multiple physical entities from which it
is possible to collect heterogeneous, multi-source, and real-time data mainly generated by
sensors, smart devices, and IoT. For example, the temperature, voltage, pressure, and speed
are some of the parameters that can be sensed from a manufacturing machine. Data can be
generated, collected, and transmitted considering all the enabled manufacturing resources
and assets, including industrial robots, equipment, materials, products, people, and the
environment. It is possible to distinguish:

Objects: tools, machines, conveyors, materials, products, parts, components, etc. [18,36,56],
that are equipped with smart devices and technologies, such as RFID, sensors and micropro-
cessors, that allow for the identification, connection, communication, and synchronization
of their status in real time.

Process: operations and workflows needed to manufacture the product [18,52].
People: blue, white, and pink collars that operate in the shop floor and can be sensed

and tracked within it by using enabling devices such as the wearable devices [18,52,56].
Similarly, data can be conceptually divided into object data (e.g., production, logistics,

and equipment data), process data (e.g., data referred to operations and manufacturing
process such as completion data, work-hour data, product quality data), and people data
(e.g., data concerning the behavior of workers). CPS and communication technologies
support the synchronization between physical and virtual environments operating in a
synergic way with the network layer [1,18,51,53,56].

4.1.2. Network Layer

The network layer acts as a broker by creating a bidirectional connection between
the physical space and the virtual space. Data generated by physical entities are collected,
integrated, and transmitted in the virtual counterpart. IoT, CPS [54], and communication
technologies [53,54,56] are some of the most important enablers of the network layer that is
responsible for the real-time synchronization of the manufacturing system. Both hardware
and software are included in this layer such as the industrial Ethernet, Bluetooth, wireless
and mobile gateway, Wi-Fi, RFID, mobile internet, and 4G/5G technologies. Firstly, it is
necessary to identify all the manufacturing resources and then to design the industrial
network, including aspects related to data security and privacy [1,18,36,51,55].
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4.1.3. Data Integration Layer

Multiple data-sources are involved in the physical space and generate heterogeneous
and multi-types of data. The data integration layer allows to integrate the streaming data
coming from the real world with stored data and other information produced by enterprise
systems and applications. In this context, a shop floor digital twin deals with big data
having typical characteristics of high volume (terabytes of records, transaction, tables,
files), high velocity (batch, near time, real time, streams) and high variety (structured,
semi-structured, unstructured). This layer is mainly responsible for data ingestion, pre-
processing, aggregation, integration, and storing [18].

In particular, the data integration layer consists of two sub-components: the en-
terprise applications and the data tank. The enterprise applications include the set of
applications and systems implemented and used in the manufacturing organization such
as the ERP (enterprise resource planning) [1,54,55], MES (manufacturing execution sys-
tems) [1,52,55], PLM (product lifecycle management) [1,55], CRM (customer relationship
management) [54,55], CAX (computer aided tools) [1], service platforms, and HMI (human–
machine interface) technologies [54,55]. The data tank represents the repository of all data
(e.g., production data, material data, equipment data, tooling data). In particular, different
databases store data coming from the physical world, representing the direct interface with
it, data coming from the enterprise applications, and virtual data generated by the digital
counterpart such as model data, simulation data, prediction data, and production plan
data [1,18,52,53,55].

4.1.4. Model Layer

The general objective of the model layer is to structure the virtual counterpart starting
from the real world and adopting abstraction and encapsulation mechanisms. To model the
digital twin, five integrated components are considered with specific variables and abilities
in order to reproduce all the characteristics, properties, and attributes of the manufacturing
system [53,54].

Geometric model: it describes the geometric characteristics of the smart shop floor
entities (e.g., tools, machines, conveyors, materials, products, components) such as: the
shape, size, and location; height, width, and length; and the horizontal/vertical and single-
spindle/multi-spindle of machine tools, in order to build the 3D models of the virtual
visualization. The CAD (computer-aided computer) systems are useful tools for achieving
this goal [18,56].

Physical model: it concerns the non-geometrical attributes of the shop floor describing
their physical nature, rules and property values, such as speed and mass. The digital twin
has the same rules and properties of the physical world in order to accurately mirror the
manufacturing entities. It allows digital entities to simulate the same physical task under
the different environmental conditions [53].

Capability model: in the physical manufacturing system, each entity deals with spe-
cific operations and has different roles and capabilities. The capability model is responsible
for clarifying these capabilities in terms of what an entity can do and what can be done
on it. In these terms, the description of the available capabilities allows for a dynamic
representation of the digital twin [18,53].

Behavioral model: this element describes the mechanisms and the behavioral status
of each manufacturing entity, including activities, movements, reactions, and actions of
workers, objects, and processes. For example, a machine can be in standby, in running,
or out of service; a worker can be available or not; and an operation can include tool setting,
emergency, shutting down, parts loading, cleaning. Common tools used to virtualize
models of personnel actions, equipment operations, and material transportations are
simulation, visualization, and documentation tools [18,51,53].

Rule model: the definition of rules is necessary to ensure a smart digital twin, including
safety and security aspects. The rule model also comprises constraints and requirements,
such as process energy consumption and spatiotemporal information. Finally, it supports
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domain knowledge and manufacturing decisions. Rules need to be modeled with the
possibility to change over time in order to reflect the development of the manufacturing
system. To build the rule model, algorithms for data analysis and for data and knowledge
mining are useful tools [18,51,53–55].

4.1.5. Knowledge Layer

This layer integrates dynamic knowledge with the capabilities of self-decision-making
to manage different issues of the manufacturing system [54]. The knowledge layer in-
teracts with the data integration layer and processes data by adopting methodologies,
techniques, and technologies for data analysis such as algorithms [36,51–55], machine
learning [1,36,53,54], big data analytics [1,18,36,51,54,55], data mining [1,18,36,53,55], sim-
ulation tools [18,53–55], and artificial intelligence (AI) [1,18,54–56]. The retention of data
and the mechanisms to extract their value is essential for the decision-making process.
In this context, it is also possible to autonomously or semi-autonomously support actions
in the physical world.

4.1.6. Application Layer

The application layer refers to the collection of techniques and tools that support
the functionalities of the shop floor digital twin, including solutions for its management,
control, and improvement. Multiple services can be implemented for a rapid analysis
of the manufacturing system such as job scheduling optimization [1,18,36,51–53,55], real-
time monitoring of manufacturing resources [18,56], quality control [1,18,55], tool life
prediction [1,51,53,54], predictive maintenance [1,18], logistic optimization, and material
delivery management [1,36,52,55]. These services are elaborated in the digital space and
are available and accessible by the users in the physical space [1,18,36,53,55].

5. Conclusions

The achievement of a digital–physical synchronization is a driving factor in smart
manufacturing, and the adoption of digital twin solutions is a sustainable strategy for
monitoring, analyzing, and improving the operation performances in real time.

The systematic literature review allows for investigating digital twin frameworks
developed in the context of smart manufacturing and, in particular, for the shop floor.
By structuring the results in three main areas of analysis, it has been possible to build a
knowledge base of reference upon which to consider the most important contributions in
the reference domain. Starting from the awareness of the potential benefits and challenges
related to this technology, this research provides a comprehensive framework to support
organizations in their digital twinning journey. In particular, the HexaSFDT framework
integrates the components and their relationships that shape the shop floor digital twin in
smart manufacturing. On the basis of six main layers, the design of the framework includes
the concept of a closed-loop digital twin for a continuous bidirectional communication
and interaction between the physical and the digital spaces. This is a concept not widely
mentioned in the literature.

Different advantages can be recognized in considering the HexaSFDT framework.
First, it aids the conceptual modelling of a real scenario by reducing its complexity. Second,
by leveraging the availability of data and the adoption of technologies, it allows the defini-
tion of data flows, from the physical to the virtual spaces and vice-versa. Third, it supports
manufacturing companies in understanding the digital twin from the methodological and
technological viewpoint. It stimulates the identification of all the elements in a unique
reference framework.

On the other hand, this research strengthens the relative literature by collecting and
combining relevant contributions in an integrated framework.

However, limitations and future research need to be highlighted. First, the proposed
framework needs to be validated to test its effectiveness. The qualitative research method-
ology does not allow a complete evaluation of the results. The application of the HexaSFDT
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framework in manufacturing scenarios is warmly suggested in order to collect quantita-
tive data. Second, future empirical work should be addressed in complex manufacturing
systems and in specific industrial case studies. Third, the technological application of the
digital twin solution requires advanced and heterogeneous digital competences because
of the integration of different technologies such as IoT, CPS, analytics, and simulation
tools. In this sense, future research could follow this direction. Fourth, despite the research
growth, a commonly recognized methodology, including an implementation roadmap and
standard of reference, seems to be missing in this domain.
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Appendix A

Table A1. Details of the results obtained by the systematic literature review.

ID Authors Title Year Focus
DT

Conceptual
Model

DT
Framework

DT Benefits
and

Challenges
Reference

1 Negri, Fumagalli
and Macchi

A Review of the Roles of Digital Twin
in CPS-based Production Systems 2017

The paper analyzes the definition of the
digital twin concept in the literature,
considering the aerospace and
manufacturing domains.

X [12]

2 Tao and Zhang
Digital Twin Shop-Floor: A New
Shop-Floor Paradigm Towards
Smart Manufacturing

2017

The concept of Digital Twin Shop-Floor
(DTS) is proposed to provide an effective
way to reach the physical–virtual
convergence model.

X [57]

3 Tao et al.
Digital twin-driven product design,
manufacturing and service with big
data

2017

It discusses the digital twin shop floor
(DTS) as a new paradigm for product
manufacturing. DTS is composed of
physical shop floor, virtual shop floor,
shop floor service system, and shop floor
digital twin data.

X X [58]

4 Shao and Kibira
Digital manufacturing: Requirements
and challenges for implementing
digital surrogates

2018

The “digital surrogate” concept is
introduced and explores the relationships
with digital thread, simulation, AI,
and IoT.

X [49]

5 Zhuang, Liu,
and Xiong

Digital twin-based smart production
management and control framework
for the complex product assembly
shop-floor

2018

The paper proposes a framework of
digital twin-based smart production
management and control approach for
predicting complex product assembly
shop floors.

X [1]

6 Nikolakis et al.

The digital twin implementation for
linking the virtual representation of
human-based production tasks to
their physical counterpart in the
factory floor

2018

The study proposes an implementation of
the digital twin approach as part of a
wider cyber–physical system to enable
the optimization of the planning and
commissioning of human-based
production processes using
simulation-based approaches.

X X [59]
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Table A1. Cont.

ID Authors Title Year Focus
DT

Conceptual
Model

DT
Framework

DT Benefits
and

Challenges
Reference

7 Bao et al.
The modelling and operations for the
digital twin in the context
of manufacturing

2018

The paper develops three types of digital
twins (product digital twin, process
digital twin, and operation digital twin) in
the manufacturing context, for simulating
the state and behavior of the physical
object and optimizing production process.

X [38]

8 Ellgass et al. A digital twin concept for
manufacturing systems 2018

The paper develops a framework for a
digital-twin-based manufacturing system,
with its supported real-time simulation
and optimization of shop floor. It includes
four main components: virtual shop,
physical shop, big data storage and
management platform, and service provider.

X [60]

9 Cheng et al.

Cyber–physical integration for
moving digital factories forward
towards smart manufacturing:
a survey

2018

It provides an overview of digital twin
factories. It proposes a systematical
framework of cyber–physical integration
for manufacturing service.

X [20]

10 Leng et al.
Digital twin-driven manufacturing
cyber–physical system for parallel
controlling of smart workshop

2018

The paper presents a digital-twin-driven
manufacturing cyber–physical system
architecture. It also discusses the digital
twin use in optimizing system behavior.

X [61]

11 Kuehn
Digital twins for decision making in
complex production and
logistic enterprises

2018

The paper discusses the digital twin
concept and the interactions of six steps
which complete a closed loop connection
(physical-to-digital-to-virtual-to-
physical) between the physical world and
the virtual model.

X X [46]

12 Modoni et al.
Synchronizing physical and digital
factory: Benefits and
technical challenges

2019

The paper proposes a conceptual model
to understand the digital twin by
highlighting its main entities
and relations.

X X [47]

13 Park, Easwaran
and Andalam

Challenges in digital twin
development for cyber–physical
production systems

2019

The paper reviews current state-of-the-art
technology on tools and developments of
digital twin in manufacturing and then
discusses potential design challenges.

X X [48]
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Table A1. Cont.

ID Authors Title Year Focus
DT

Conceptual
Model

DT
Framework

DT Benefits
and

Challenges
Reference

14 Stark, Fresemann
and Lindow

Development and operation of
Digital Twins for technical systems
and services

2019

The paper proposes two development
support models that are essential for the
design of digital twin solutions: the
“digital Twin 8 dimension model” and
digital twin design elements.

X [11]

15 Lu et al.

Digital Twin-driven smart
manufacturing: Connotation,
reference model, applications and
research issues

2019
The paper provides a literature review
about the concept of digital twins
in manufacturing.

X [7]

16 Tao et al. Digital Twin in Industry:
State-of-the-Art 2019

The paper provides a literature review
about the concept of digital twins
in manufacturing.

X [50]

17 Wang, Zhang
and Zhong

A proactive material handling
method for CPS enabled shop-floor 2019

It presents a shop floor digital twin model
for simulating real-life production in a
virtual environment. It discusses
production KPIs and a proactive material
handling strategy (CPS-PMH).

X [51]

18 Fang et al.
Digital-Twin-Based Job Shop
Scheduling Toward
Smart Manufacturing

2019

An architecture and working principles of
new job shop scheduling mode are
proposed to reduce the
scheduling deviation.

X [52]

19 Chen et al.

The framework design of smart
factory in discrete manufacturing
industry based on
cyber–physical system

2019

The paper explains four main
charateristics of smart factory,
and proposes a framework for the design
of smart factory CPS-model-based
digital twin.

X [36]

20 Zhang et al.
Digital twin-enabled reconfigurable
modeling for smart
manufacturing systems

2019

This paper provides a complete set of
modelling approaches for DT-based and
robotics-based manufacturing systems to
reconfigure manufacturing systems at
different levels.

X [53]

21 Zhang, Zhang and
Yan

Digital twin-driven cyber–physical
production system towards smart
shop-floor

2019

The paper provides a reference
architecture of a digital-twin-driven
cyber–physical production system to
enhance the transparency in the smart
shop floor and to allow real-time
production control.

X [18]
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ID Authors Title Year Focus
DT

Conceptual
Model

DT
Framework

DT Benefits
and

Challenges
Reference

22 Zhang et al.
A data- And knowledge-driven
framework for digital twin
manufacturing cell

2019

The paper introduces a data- and
knowledge-driven framework for a
digital twin manufacturing cell (DTMC)
to support the construction of an
autonomous manufacturing cell that aims
to maximize the product quality
and throughput.

X [54]

23 Zhang and Zhu

Application framework of digital
twin-driven product smart
manufacturing system: A case study
of aeroengine blade manufacturing

2019

The article proposes a novel application
framework of a digital-twin-driven
product smart manufacturing system and
it analyzes its operation mechanism.

X [55]

24 Zhang et al.
A reconfigurable modeling approach
for digital twin-based
manufacturing system

2019

It proposes a reconfigurable digital twin
(RDT)-based manufacturing system for
improving the operation efficency of
systems for carrying out the
reconfiguration production tasks, saving
time, and costs.

X [62]

25 Tao et al.

Digital Twins and Cyber–Physical
Systems toward Smart
Manufacturing and Industry 4.0:
Correlation and Comparison

2019

It analyzes differences and correlation
between CPS and digital twin from three
different levels: the unit level, the system
level (production line, shop floor, or factory),
and the system of systems (SoS) level.

X X [63]

26 Liu et al.
A digital twin-based approach for
dynamic clamping and positioning of
the flexible tooling system

2019
The paper proposes a digital-twin-based
approach for dynamic clamping and
positioning of the flexible tooling system.

X [64]

27 Liu et al.
Dynamic Evaluation Method of
Machining Process Planning Based on
Digital Twin

2019

A novel digital-twin-based machining
process evaluation (DT-MPPE)
framework method is proposed for
complex parts simulation and evaluation.

X [65]

28 Min et al.

Machine Learning based Digital Twin
Framework for Production
Optimization in
Petrochemical Industry

2019

It proposes a digital twin framework for
petrochemical production control
optimization based on the industrial IoT
and machine learning.

X [66]

29 Delbrügger and
Rossmann

Representing adaptation options in
experimentable digital twins of
production systems

2019

The paper introduces an experimentable
digital twin of the factory that tracks
production and transport capabilities.
The factory EDT is able to create valid
production and transport plans that can
be updated if the capabilities change.

X [67]
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Table A1. Cont.

ID Authors Title Year Focus
DT

Conceptual
Model

DT
Framework

DT Benefits
and

Challenges
Reference

30 Ding et al.

Defining a Digital Twin-based
Cyber–Physical Production System
for autonomous manufacturing in
smart shop floors

2019

It defines a digital-twin-based
cyber-physical production system
(DT-CPPS) that includes a physical shop
floor (PSF) configuration and a cybershop
floor (CSF) configuration for a transparent
management of data flow.

X [68]

31 Park et al.
Design and implementation of a
digital twin application for a
connected micro smart factory

2019

The paper proposes a digital twin
solution for simultaneously solving the
cost and performance hurdles of a
personalized production.

X [69]

32 Xu et al.
A Digital-Twin-Assisted Fault
Diagnosis Using Deep
Transfer Learning

2019

The paper presents a two-phase
digital-twin-assisted fault diagnosis using
deep transfer learning (DFDD) which
aims to make fault diagnosis more
suitable for increasingly autonomous and
complex manufacturing.

X [70]

33 Kousi et al.
Digital twin for adaptation of robots’
behavior in flexible robotic
assembly lines

2019

The study investigates the use of digital
modeling techniques in hybrid
production systems. The suggested
digital world model infrastructure
includes the dynamic real time updating
of the digital twin based on sensors.

X [71]

34 Pfeiffer, Oppelt,
and Leingang

Evolution of a Digital Twin for a
Steam Cracker 2019

The paper, through the example of a
steam cracker, shows numerous aspects of
an integrated application of a digital twin
for process plants.

X [72]

35 Zipper and Diedrich Synchronization of Industrial Plant
and Digital Twin 2019

The paper presents an architecture and an
algorithm to synchronize the states of a
plant and its digital twin while in the
same time still providing the possibility to
detect changes.

X [73]

36 Martins, Costelha,
and Neves

Shop Floor Virtualization and
Industry 4.0 2019

It describes the virtualization of a typical
production process, the digital twin in the
scope of Industry 4.0, involving different
devices such as robotic arms, conveyors,
automatic warehouses, and vision
systems.

X [74]
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Table A1. Cont.

ID Authors Title Year Focus
DT

Conceptual
Model

DT
Framework

DT Benefits
and

Challenges
Reference

37 Park et al.

Digital twin-based cyber–physical
production system architectural
framework for
personalized production

2019
The study focuses on a CPPS to prevent
the degradation of production plant
performance in the operation stage.

X [75]

38 Guo et al.
Digital twin-enabled Graduation
Intelligent Manufacturing System for
fixedposition assembly islands

2020

The paper introduces the
digital-twin-enabled graduation
intelligent manufacturing system
(DT-GiMS) for fixed-position assembly
islands, real-time convergence,
and synchronization among the physical
layer, digital layer, and service layer.

X [56]

39 Cheng et al.

DT-II: Digital twin enhanced
Industrial Internet reference
framework towards
smart manufacturing

2020

The paper presents the implementation
and operation mechanisms of digital twin
industrial internet (DT-II) from three
perspectives: product lifecycle level,
intra-enterprise level,
and inter-enterprise level.

X [39]

40 Leng et al.

Digital twin-driven rapid
reconfiguration of the automated
manufacturing system via an open
architecture model

2020

The paper discusses the digital twin
system for a rapid reconfiguration process
that allows to find the balance between
the maximization of the productivity and
the economic efficiency in terms of
minimizing costs of machine moving and
machine holding.

X [76]

41 Qamsane et al.
A unified digital twin framework for
real-time monitoring and evaluation
of smart manufacturing systems

2020

The paper proposes a digital twin
architecture for the real-time monitoring
and evaluation of large-scale smart
manufacturing systems. An application to
a manufacturing flow shop is presented
to illustrate the usefulness of the
proposed methodology.

X X [77]
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