
sustainability

Article

A Q-Learning Rescheduling Approach to the Flexible Job Shop
Problem Combining Energy and Productivity Objectives

Rami Naimi, Maroua Nouiri * and Olivier Cardin

����������
�������

Citation: Naimi, R.; Nouiri, M.;

Cardin, O. A Q-Learning

Rescheduling Approach to the

Flexible Job Shop Problem Combining

Energy and Productivity Objectives.

Sustainability 2021, 13, 13016. https://

doi.org/10.3390/su132313016

Academic Editor: Barbara Motyl

Received: 7 October 2021

Accepted: 14 November 2021

Published: 24 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

LS2N UMR CNRS 6004, IUT de Nantes, Nantes University, 2 Avenue du Pr. J. Rouxel, 44470 Carquefou, France;
rami.naimi@univ-nantes.fr (R.N.); olivier.cardin@univ-nantes.fr (O.C.)
* Correspondence: maroua.nouiri@univ-nantes.fr

Abstract: The flexible job shop problem (FJSP) has been studied in recent decades due to its dynamic
and uncertain nature. Responding to a system’s perturbation in an intelligent way and with minimum
energy consumption variation is an important matter. Fortunately, thanks to the development of
artificial intelligence and machine learning, a lot of researchers are using these new techniques to
solve the rescheduling problem in a flexible job shop. Reinforcement learning, which is a popular
approach in artificial intelligence, is often used in rescheduling. This article presents a Q-learning
rescheduling approach to the flexible job shop problem combining energy and productivity objectives
in a context of machine failure. First, a genetic algorithm was adopted to generate the initial predictive
schedule, and then rescheduling strategies were developed to handle machine failures. As the system
should be capable of reacting quickly to unexpected events, a multi-objective Q-learning algorithm is
proposed and trained to select the optimal rescheduling methods that minimize the makespan and
the energy consumption variation at the same time. This approach was conducted on benchmark
instances to evaluate its performance.

Keywords: flexible job shop problem; artificial intelligence; rescheduling; Q-learning; machine
failure; multi-objective optimization

1. Introduction

Energy consumption control is a growing concern in all industrial sectors. Controlling
the energy consumption and realizing energy savings are the goals of many manufactur-
ing enterprises. Therefore, the scheduling of a manufacturing production system must
now be approached taking into account aspects relating to sustainability and energy
management [1]. To implement such measures, researchers focused on developing more
energy-efficient scheduling approaches to make a balance between energy consumption
and system stability. In addition to that, manufacturing systems constitute dynamic en-
vironments in which several perturbations can arise. Such disturbances have negative
impacts on energy consumption and system robustness and make the scheduling process
much more difficult. In the literature, a lot of researchers solve the job shop problem (JSP)
under different types of perturbations, they use different metaheuristics approaches like ge-
netic algorithms [2] or particle swarm optimization [3]. Other researchers use rescheduling
approaches that repair the initial disrupted schedule Like dispatching rules.

Recently, many researchers have designed reactive, dynamic, and robust rescheduling
approaches using artificial intelligence. These learning-based approaches gain the knowl-
edge of the manufacturing system to be used in the decision-making process. In this case,
the rescheduling can adapt to the system’s disruption at any time. Research on reducing
energy consumption in job shops has focused on energy consumption optimization in
the predictive phase when building the initial schedule. The main contribution of this
article is first to develop a new approach where energy consumption reduction is taken into
account in the predictive and reactive phase. Second, the developed approach integrates

Sustainability 2021, 13, 13016. https://doi.org/10.3390/su132313016 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-9035-9660
https://doi.org/10.3390/su132313016
https://doi.org/10.3390/su132313016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su132313016
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su132313016?type=check_update&version=2

Sustainability 2021, 13, 13016 2 of 36

a multi-objective machine learning algorithm to be able to react more quickly in case of
disruptions (select best rescheduling method rapidly). In the predictive phase, a genetic
algorithm was set to build the initial schedule, taking into consideration both energy con-
sumption and completion time optimization. Then, to get a responsive and energy-efficient
production system, a multi-objective Q-learning algorithm was developed. This algorithm
selects the best rescheduling strategy that minimizes both the completion time and energy
consumption in real time, depending on energy availability.

The remainder of this article is organized as follows: the next section provides a litera-
ture review on energy-aware scheduling and rescheduling methods, as well as rescheduling
approaches using artificial intelligence techniques. Section 3 contains the FJSP problem
formulation and the description of rescheduling methods. The Q-learning algorithm and
selection of the optimal rescheduling approach are described in Section 4. The experiments
and the evaluation of the approach on FJSP benchmarks are presented in Section 5. Finally,
a conclusion and some future directions are provided.

2. Related Works

This section is divided into two parts. The first part presents some of the recent
energy efficient methods for scheduling and rescheduling in manufacturing systems. The
second part focuses on rescheduling methods using artificial intelligence (AI) techniques.
A discussion section is presented to analyze the related works and to highlight their limits.

2.1. Energy-Efficient Scheduling

The approaches that can be found in literature are very often related to job shops or
flexible job shops. The next subsections present a short overview of both problems.

2.1.1. Job Shop Energy-Efficient Scheduling

One of the most studied production scheduling problems in the literature is the job-
shop scheduling problem (JSSP), in which jobs are assigned to resources at particular
times. In recent years, due to rising energy costs and environmental concerns, researchers
have started working on energy-efficient scheduling problems as a main feature of JSSP.
Two integer programming models were for example used in [4], namely a disjunctive
and a time-indexed formulation, to solve the JSSP in order to minimize electricity cost.
A scheduling model with the turn off/turn on of machines was introduced in [5], and
a multi-objective genetic algorithm based on non-dominated sorting genetic algorithm
NSGA-II was developed to minimize the energy consumption and total weighted tardiness
simultaneously. A metaheuristic to solve the JSSP which includes a power threshold that
must not be exceeded over time was also developed [6], with two power requirements
considered for operations: a peak consumption at the beginning of the machining and a
nominal consumption after. The aim of this work was to minimize the makespan while
respecting the power threshold. Decentralized systems attract the interest of many other
researchers, where the decision making is distributed over several autonomous actors. For
example, an agent-based approach for measuring, in real time, the energy consumption
of resources in job shop manufacturing process [7], where the energy consumption was
individually measured for each operation and the optimization problem was implemented
using IBM ILOG OPL in order to minimize the makespan and the energy consumption.

2.1.2. Flexible Job Shop Energy-Efficient Scheduling

Another type of scheduling in job shop is the flexible job shop scheduling problem
(FJSSP) as an extension of JSSP, which has been given widespread attention, due to its
flexibility. An energy-efficient scheduling in FJSSP environment was designed by [8], with
an enhanced evolutionary algorithm based on genetic algorithm and simulated annealing
algorithms incorporated with three objective functions: minimizing total completion time,
maximizing the total availability of the system, and minimizing the total energy cost. Simi-
larly, an integrated energy and labor perception multi-objective FJSSP scheduling approach

Sustainability 2021, 13, 13016 3 of 36

that considers makespan, total energy cost, total labor cost, maximal and total workload
was proposed in [9]. In order to solve the optimization problem, the non-dominated sorting
genetic algorithm-III (NSGA-III) was used. Likewise, in [10], a hybrid meta-heuristic algo-
rithm based on an artificial immune algorithm (AIA) and simulated annealing algorithm
(SA) was developed, to consider simultaneously the maximal completion time and the
total energy consumption.

The aforementioned research handled the static scheduling, but few focused on the
FJSSP under a real-life environment, considering disturbances such as machine failures,
random and new arrival jobs, unexpected processing times or unavailability of operators.
The accurate detection and control of these events is becoming a topic of concern on shop
floors. The job-shop scheduling problem under disruptions that can occur at any time
was solved by [11]. To achieve this, they used a match-up technique to determine the
rescheduling zone and its feasible reschedule. Then, a memetic algorithm was proposed to
find a schedule that minimizes the energy consumption within that zone. A rescheduling
method based on a genetic algorithm to address dynamic events (i.e., new job arrivals
and machine breakdowns) was introduced by [2]. The objective of their work was to
minimize the energy consumption and the productivity simultaneously. Another form of
unpredictable events that gets a lot of attention lately is the new job arrivals: [12] developed
an energy-conscious FJSSP with new job arrivals, where the minimization of makespan
and energy consumption and instability were considered. To solve the scheduling problem,
they proposed a discrete improved backtracking search algorithm (BSA), and for the
rescheduling they used a novel slack-based insertion algorithm. In [13], the authors
designed a heuristic template for dispatching rules with a potential to make better routing
decisions. As a solution, they developed a genetic programming hyper-heuristic with
delayed routing (GPHH-DR) method for solving multi-objective DFJSS that optimizes the
mean tardiness and energy efficiency simultaneously. Within this context and to deal with
the new job arrival, [14] provided a dynamic energy aware job shop scheduling model
which seeks a trade-off among the total tardiness, the energy cost and the disruption to
the original schedule. An adequate renewed scheduling plan in a reasonable time, based
on a parallel GA algorithm was presented. Scheduling of the energy-efficient FJSSP can
also be settled with distributed approaches: [15] proposed a negotiation and cooperation-
based information interaction and process control method, which combines IoT and energy-
efficient scheduling methods, to quickly handle machine breakdowns and urgent order
arrivals. In this study, a new metaheuristic algorithm, denoted as PN-ACO, based on
timed transition Petri nets (TTPN) and ant colony optimization (ACO) algorithms, was
introduced. An alternate form of metaheuristic algorithm for scheduling in FJSP is the
particle swarm optimization method (PSO), which was used to minimize the makespan and
global energy consumption under machine breakdowns in [3]. In [16], an evolved version
of the PSO was presented, as well as a multi-agent architecture named EasySched for the
predictive and reactive scheduling of production based on renewable energy availability.

2.2. Job Shop Scheduling Using Artificial Intelligence

After the emergence of artificial intelligence (AI) and machine learning (ML) tech-
niques, intelligent and automated scheduling and rescheduling have become possible,
and methods based on ML techniques began to arise. In general, there are three types of
machine learning: supervised learning, unsupervised learning, and reinforcement learning.
Starting with supervised learning techniques, the training data generally includes examples
of the input vectors along with their corresponding target vectors [17]. In other terms, it is
the learning of a function that maps an input to an output based on example input-output
pairs. Decision tree (DT) is a well-known supervised technique used in literature: the
scheduling knowledge can, for example, be modeled through data mining to identify a
rule-set [18]. Three modules were designed here, namely optimization, simulation, and
learning: (i) optimization provides efficient schedules based on tabu search (TS), (ii) simula-
tion transforms the solution provided by the optimization module into a set of dispatching

Sustainability 2021, 13, 13016 4 of 36

decisions and (iii) the learning module makes use of the implicit knowledge contained in
the problem domain and efficient solution domain to approximate the behavior of efficient
solution. Similarly, [19] applied a data mining module based on DT knowledge extraction.
Here, timed Petri nets were used to describe the dispatching processes of JSSP, a Petri
net-based branch-and-bound algorithm was used to generate efficient solutions, and finally
the extracted knowledge was formulated as DTs and produced a new dispatching rule. This
solution solved the conflicts between operations, by predicting which operation should be
dispatched first. Another machine learning technique that combines several decision trees
is random forest (RF). The authors in [20] started by generating and processing data sam-
ples of machine failures, then designed the RF-based rescheduling model that would decide
which rescheduling strategy has to be made (no rescheduling, right-shift rescheduling or
total rescheduling). In [21], a comparison between several machine learning techniques was
made. They developed a model for the FJSSP with sequence-dependent setup and limited
dual resources, solved the scheduling problem through a hybrid metaheuristic approach
based on GA and TS to minimize the makespan, then trained the ML classification models
such as support vector machines (SVM) and RF for identifying rescheduling patterns when
machines and setup workers are not available.

A subset of supervised learning in literature is deep learning. In [22] GA was used to
solve the scheduling problem in a job shop in order to minimize the makespan, coupled
with an artificial neural network (ANN), which was employed to predict the total energy
consumption. GA was also used in [23] to minimize the makespan, but they handled the
dynamic events and perturbations in a job shop environment, they therefore designed a
back-propagation neural network (BPNN) to describe machine breakdowns and new job
arrivals. Thanks to their feedback adjustments, BPNN can generate a feasible solution for
the JSP by resolving the conflicts. In [24] cumulative time error was used as the quantitative
index of implicit disturbance, locally linear embedding (SLLE) and general regression
neural networks (GRNN) were applied to reduce and map the data, and then a least
square-support vector machine (LS-SVM) was used to select the best rescheduling mode.

Other works treated the new job arrival disturbance. The authors of [25] presented a
scheduling and dispatching rule-based approach for solving a realistic FJSSP, through a
combination of a discrete event simulation (DES) model and a BPNN model to find optimal
or near-optimal solutions while favoring the fast reactivity to unexpected new arrival jobs.
An appropriate management of both methods in the GA optimization process (GA-Opt)
was achieved to minimize the makespan.

Compared with supervised learning, unsupervised learning operates upon only the
input data without outputs or target variables. The goal in such problems may be to
discover groups of similar examples within the data, in an operation called clustering [17].
K-means, an unsupervised technique, was used in [26]. They developed the modified
variable neighborhood search (MVNS) method in the optimization process to minimize
the mean flow time. This method was combined with the k-means algorithm as a cluster
analysis algorithm. It was used to place similar jobs according to their processing time into
the same clusters, then jobs in the farther clusters have greater probability to be selected in
the replacement mechanism.

The third type of machine learning is reinforcement learning (RL). This type was
widely used to solve the scheduling problem in job shop. It describes a class of problems
where an agent operates in an environment and must learn to operate using feedback.
The use of an environment means that there is no fixed training dataset. In other words,
reinforcement learning is learning what to do, how to map situations to actions to maximize
a numerical reward signal. The learner is not told which actions to take, but instead must
discover which actions yield the most reward by trying them [27]. There are different types
of reinforcement learning such as Q-learning, deep Q-learning, SARSA, policy gradient,
prioritized experience replay . . . [28] are among the first ones to have used reinforcement
learning in their work. They proposed an approach to learn local dispatching policies in a
job shop with the aim of reducing the summed tardiness. They applied an ANN- based

Sustainability 2021, 13, 13016 5 of 36

agent to each resource which was trained by Q-learning. This approach demonstrated a
better performance than common heuristic dispatching rules. The authors of [29] developed
a rule-driven dispatching method. To do so, they used reinforcement learning to train
the intelligent agent in order to obtain the knowledge to set appropriate weight values
of elementary rules to solve the work in process fluctuation of a machine. The objective
of their work was to minimize the mean flow time and mean tardiness time in JSSP. In a
different way of using RL, [30] used a policy gradient method for autonomous dispatching
to minimize the makespan. They designed a multi-agent system where each machine
was attached to an agent which employed probabilistic dispatching policies to decide
which operation is currently waiting to be processed. In the same context, to select the
best dispatching rule, in [31] the rescheduling strategy was acquired by the agent of the
proposed Q-learning. The agent-based approach can then select a best strategy under
different machine failures. In [32], the Q-learning algorithm was applied to update the
parameters of the variable neighborhood search (VNS) at any rescheduling point. New job
insertion was also handled using Q-learning. In [33], six composite dispatching rules were
developed to select an unprocessed operation and assign it on an available machine when
an operation is completed or a new job arrives. Later, a deep Q-learning agent was trained
to select the appropriate dispatching rules. In a distributed way, [34] used a Q-learning
algorithm associated with Intelligent Products (IP) which collected data to pinpoint the
current scheduling context, and then determined the most suitable machine selection rule
and dispatching rule in a dynamic flexible job shop scheduling problem with new job
insertion. The authors of [35] proposed a multi-agent system containing machine, buffer,
state and job agents for dynamic job shop scheduling to minimize earliness and tardiness
punishment. A weighted Q-learning algorithm based on a dynamic greedy search was
adopted to determine the optimal scheduling rules.

A comparison between all the above-mentioned studies is summarized in Table 1.
The first column indicates the reference of the works, the second column specifies the type
of problem studied, the third column defines the type of perturbation considered. In the
fourth column, the scheduling or rescheduling method is presented. In the fifth and sixth
column the solving method architecture is mentioned: centralized, which means that only
one actor handles the scheduling problem, or distributed, through different communicating
agents. In the seventh and eighth columns, the nature of the objective function and the
objectives to minimize are presented. Finally, in the last column, the artificial intelligence
techniques used in relevant works are presented.

2.3. Discussion

Most works in the literature consider energy-efficiency scheduling as a multi-objective
strategy, which includes reducing the energy consumption or the energy cost alongside
the traditional scheduling objectives, e.g., makespan, mean tardiness, mean flow time,
maximal workload and many other objectives. Considering the energy related strategies
and the traditional objectives proved to be a good solution to increase scheduling efficiency,
this new technique is inspiring a lot of research and has become an important topic.

To reduce energy consumption, many aspects were reviewed. Processing, machine
idle time reduction, machine speed, transportation, maintenance, setup and switching
energy are examples of energy consumption aspects. Many articles handle the energy
efficiency in scheduling but do not clearly outline the energy consumption aspects, or only
consider one aspect, mainly the processing energy, and ignore the rest that can have a great
impact on energy consumption.

Sustainability 2021, 13, 13016 6 of 36

Table 1. An overview of the literature review for energy-efficient scheduling.

Reference Type of
Problem

Type of
Disturbance

Scheduling/
Rescheduling

Techniques

Architecture Objective Function AI
Techniques

Centralized Distributed Mono-
Objective Multi-Objective

[4] JSP Integer linear
programming × Energy cost

[5] JSP NSGA-II ×

Energy
consumption

And total
weighted
tardiness

[6] JSP GRASP × ELS × Makespan

[7] JSP

IBM ILOG
OPL:

ILOG CP
Optimizer

×
Makespan and

energy
consumption

[8] FJSP Evolutionary
algorithm ×

Total completion
time; total

availability of
system; energy
consumption

[9] FSJP NSGA-III ×

Makespan; total
energy cost; total

labor cost;
maximal

workload; and
total workload

[10] FJSP
hybrid

meta-heuristic:
AIA and SA

×

Maximal
completion

Time and total
energy

consumption

[11] JSP Disruptions

match-up
technique and

memetic
algorithm

×
Makespan and

energy
consumption

[2] FJSP

New jobs
arrival and

machine
breakdown

GA ×

Energy
consumption
and schedule

efficiency

[12] FJSP New job
arrivals

BSA with
slack-based

insertion
strategy

×

Makespan, total
energy

consumption,
and instability

[13] FJSP New job
arrivals GPHH-DR ×

Mean tardiness
and energy
efficiency

[14] DJSP New job
arrivals parallel GA ×

Total tardiness;
total energy cost;
disruption to the
original schedule

[15] FJSP

Machine
breakdown
and urgent

order arrival

PN-ACO +
IOT ×

Energy
consump-

tion

[3] FJSP Machine
breakdowns PSO ×

Makespan and
Less global

energy
consumption

Sustainability 2021, 13, 13016 7 of 36

Table 1. Cont.

Reference Type of
Problem

Type of
Disturbance

Scheduling/
Rescheduling

Techniques

Architecture Objective Function AI
Techniques

Centralized Distributed Mono-
Objective Multi-Objective

[16] FJSP
Machine

breakdowns

PSO with
editable

ponderation
factor

×
Makespan and

energy
consumption

[28] JSP × Summed
tardiness

neural
network +
Q-learning

[22] JSP GA × Makespan ANN

[29] JSP Fluctuation
of WIP ×

Mean flow time
and Mean
tardiness

Q-learning

[30] JSP × Makespan Policy
gradient

[18] JSP TS × Lateness DT

[19] JSP

Petri net-based
branch-and-

bound
algorithm

× Makespan DT

[23] DJSP

Machine
breakdown
and new job

arrivals

GA × Makespan BPNN

[24] JSP Recessive
disturbances RSR/PR/TR ×

Time accu-
mulation

error

SLLE +
GRNN +
LS-SVM

[20] DJSP Machine
failure RSR/TR × Delay and

deviation RF

[26] DJSP

Random job
arrivals and

Machine
breakdowns

MVNS × Mean flow
time k-means

[32] DJSP

Random job
arrivals and

Machine
breakdowns

VNS × Mean flow
time Q-learning

[31] FJSP Machine
failure GA × Makespan Q-learning

[21] FJSP

Availability
of machines
and setup
workers

GA + TS × Makespan ML
classification

[25] FJSP New job
insertions GA-Opt × Makespan BPNN

[33] FSJP New job
insertions × Total

tardiness DQN

[34] FSJP New job
insertions ×

Makespan; total
weighted

completion time;
Q-learning

[35] JSP New job
insertions ×

Earliness
and

tardiness
punishment

Q-learning

Our
method FJSP Breakdown

of machines GA ×

Makespan,
robustness and

energy
consumption

Multi-
objective

Q-learning

Sustainability 2021, 13, 13016 8 of 36

About rescheduling, many methods are dynamically used in job shops, but these
methods depend on the state of the system in a particular moment. Due to the changing
and uncertain nature of job shops, rules have to be modified dynamically and at the right
time. Therefore, rescheduling can be handled using machine learning algorithms. In that
case, the system is able to select the best method and adapt to the system’s perturbation. The
learning methods are trained to acquire the system’s knowledge which will be used in the
decision-making process. From the literature review, a lot of works applied these learning-
based approaches using inductive learning, neural networks, or reinforcement learning,
especially RL which has been widely used and has proved to have high performance in
selecting the best approaches for rescheduling or modifying existing approaches. However,
they have not integrated energy-efficiency in these approaches and are usually interested
in minimizing the operations execution time. In this article both makespan and energy
consumption reductions are considered in the learning process.

A classical GA was chosen for the initial solving of FJSSP (predictive phase). GAs
have already been successfully adopted to solve FJSSP, as proven by the growing number
of articles on the topic. Genetic algorithms might not be the best solution in a generic
context in terms of solving time. However, this solving is performed in an offline phase
that is not penalizing in the context of this work. Moreover, a different choice can be made
by a practitioner according to a specific context, without questioning the validity of the
overall approach.

On the reactive phase of rescheduling, as no prior knowledge of the environment is
considered (because no coherent pre-trained data of manufacturing system were available
to use in the learning process), Q-learning was chosen in this work. Literature provides
many works that have used Q-learning for a single objective, optimization of productivity,
whereas this article develops a multi-objective optimization that also considers energy
consumption. In addition, the learning is generally performed on classical dispatching
rules. This article presents a learning phase on actual multi-objective optimization methods
of rescheduling.

In addition, Q-learning is an agent-based approach which facilitates its integration in
distributed approaches that can be developed on embedded systems which is the topic of
possible future works.

3. A Dynamic Flexible Job Shop Scheduling with Energy Consumption Optimization

The FJSSP has been widely researched in recent decades due to its complexity. On top
of that, dynamic events can occur frequently and randomly in job shop systems, which
increases its complexity. Many metaheuristics have been proposed in literature to solve this
problem. In this section, a solution to FJSSP considering energy consumption optimization
is proposed. Then, corresponding rescheduling methods are proposed to handle the
dynamic nature of the system.

3.1. Description of FJSSP

In FJSSP, there are n jobs that should be processed on M machines. Each job consists of
a predetermined sequence of nj operations which should be processed in a certain order.
The objective of FJSSP is to assign each operation to the suitable machine and arrange the
sequence of operations on each machine [36].

We define the notations used in this article to model the FJSSP:

• J =J1 . . . Jn is a set of n independent jobs to be scheduled.
• Oij is the operation i of job j.
• M = M1 . . . Mm is a set of m machines. We denote Pijk the processing time of operation

Oij when executed on machine Mk.

FJSSP is a generalization of the job shop scheduling problem, where an operation
can be processed on several machines, usually with varying costs. Here after a list of
characteristics of FJSP problem:

1. Jobs are independent and no priorities are assigned to any job type.

Sustainability 2021, 13, 13016 9 of 36

2. Operations of different jobs are independent.
3. Each machine can process only one operation at a time.
4. Each operation can be processed without interruption during its performance on one

of the set of machines.
5. There are no precedence constraints among operations of different jobs.
6. Two assumptions are considered in this work:
7. All machines are available at time 0 and the transportation time is neglected.

An example of an FJSSP instance is presented in Table 2. A processing machine and
time of FJSSP includes 3 jobs and 4 machines.

Table 2. An instance of FJSSP.

Jobs Operations
Processing Machine and Time (Time Units)

M1 M2 M3 M4

J1

O11
O21
O31

3
5
9

5
-

12

-
4
8

7
5

10

J2

O12
O22
O32

2
-
5

2
-
2

1
-
4

4
9
2

J3

O13
O23
O33

-
4
5

5
-
6

6
4
8

5
4
-

A full description of the mathematical mixed integer programming (MIP) formulation
for FJSP considering energy consumption proposed MIP has been proposed in [37].

Table 2 illustrates an example of a small FJSP instance.

3.2. Genetic Algorithm (GA)

In this article, we propose to use a classical GA for the initial solving of FJSSP [38]. It
is an optimization method based on an evolutionary process. The performance validation
of the proposed algorithm is detailed in Section 5.1.

The aim of the FJSSP is to find a feasible schedule that minimizes makespan and
energy consumption at the same time. Therefore, makespan and energy consumption are
integrated into one objective function (F) using a weighted sum approach. The relative
importance of each objective can be modified in F, which represents the fitness of the
GA. Since the values of energy consumption and makespan are not proportional, we
have to normalize both measures [39]. As presented in equation 1, makespan is divided
by MaxMakespan, which is the maximum makespan value for the given problem, and
energy consumption is divided by the MaxEnergy, which is the sum of the energy needed
to execute all tasks of the problem. λ is the weight that reflects the importance of each
objective function, λ ∈ [0 . . . 1]. This weight is modified statically, in this work. A dynamic
evolution of λ is out of the scope of this article, and future perspectives may consider using
an agent that controls the energy availability and triggers a rescheduling order when a
threshold is reached.

F = λ × makespan
MaxMakespan

+ (1− λ)× energy
MaxEnergy

(1)

A flow chart illustrating the process of the genetic algorithm is represented in Figure 1.
The overall structure of GA can be described in the following steps:

1. Encoding: Each chromosome represents a solution for the problem. The genes of the
chromosomes describe the assignment of operations to the machines, and the order
in which they appear in the chromosome describes the sequence of operations.

Sustainability 2021, 13, 13016 10 of 36

2. Tuning: The GA includes some tuning parameters that greatly influence the algorithm
performance such as the size of population, the number of generations, etc. Despite
recent research efforts, the selection of the algorithm parameters remains empirical
to a large extent. Several typical choices of the algorithm parameters are reported
in [40,41].

3. Initial population: a set of initial solution is selected randomly.
4. Fitness evaluation: A fitness function is computed for each of the individuals, this

parameter indicates the quality of the solution represented by the individuals.
5. Selection: At each iteration, the best chromosomes are chosen to produce their progeny.
6. Offspring generation: The new generation is obtained by applying genetic operators

like crossover and mutation
7. Stop criterion: when a fixed number of generations is reached, the algorithm ends

and the best chromosome, with their corresponding schedule, is given as output.
Otherwise, the algorithm iterates again steps 3–5.

Sustainability 2021, 13, x FOR PEER REVIEW 11 of 33

Figure 1. Genetic algorithm process.

3.3. Disturbances in FJSSP
FJSSP considers a large variety of disturbances. These perturbations are random and

uncertain and will bring instability to the initial schedule. In this work, one of the most
common and frequent disruption in production scheduling will be considered: machine
failures. We will deal with these events using rescheduling methods that will be
discussed in the next section. These methods will try to maintain the stability of the
system.

To simulate a machine failure [3], we have to select:
• The moment when the failure occurs (rescheduling time). These failures are

randomly occurring, with a uniform distribution between 0 and the makespan of the
original schedule generated with GA algorithm.

• The machine failing.
• The breakdown duration, which obeys to a uniform distribution between 25% and

50% of the makespan.
To simplify the problem, some assumptions about machine failures are considered:

1. There is only one broken-down machine at a time.
2. The time taken to transfer a job from the broken-down machine to a properly

functioning machine is neglected.
3. Machine maintenance is immediate after the failure.

3.4. Rescheduling Strategies

Figure 1. Genetic algorithm process.

Sustainability 2021, 13, 13016 11 of 36

3.3. Disturbances in FJSSP

FJSSP considers a large variety of disturbances. These perturbations are random and
uncertain and will bring instability to the initial schedule. In this work, one of the most
common and frequent disruption in production scheduling will be considered: machine
failures. We will deal with these events using rescheduling methods that will be discussed
in the next section. These methods will try to maintain the stability of the system.

To simulate a machine failure [3], we have to select:

• The moment when the failure occurs (rescheduling time). These failures are randomly
occurring, with a uniform distribution between 0 and the makespan of the original
schedule generated with GA algorithm.

• The machine failing.
• The breakdown duration, which obeys to a uniform distribution between 25% and

50% of the makespan.

To simplify the problem, some assumptions about machine failures are considered:

1. There is only one broken-down machine at a time.
2. The time taken to transfer a job from the broken-down machine to a properly func-

tioning machine is neglected.
3. Machine maintenance is immediate after the failure.

3.4. Rescheduling Strategies

One question can arise when dealing with the system disturbances, or the changed
production circumstances: what kind of rescheduling methodologies should be used to
produce a new schedule for the disturbance scenario? In the literature, many rescheduling
methodologies were reported. Researchers classified these methods into two categories:
(i) repairing a schedule that has been disrupted and (ii) creating a schedule that is more
robust with respect to disruptions [42,43].

There are common methods used to repair a schedule that is no longer feasible due to
disruptions: right shifting rescheduling, partial rescheduling, and total rescheduling. Their
definitions are described respectively as follows [24]:

• Right shifting rescheduling (RSR): postpone each remaining operation by the amount
of time needed to make the schedule feasible.

• Partial rescheduling (PR): reschedule only the operations affected directly or indirectly
by the disturbances and preserve the original schedule as much as possible.

• Total rescheduling (TR): reschedule the entire set of operations that are not processed
before the rescheduling point.

The choice of the most appropriate methodology depends on the nature of the pertur-
bation and is generally made by experts. Rescheduling methods have different advantages
and drawbacks: RSR and PR can quickly respond to machines’ breakdowns, however TR
can offer a high-performance rescheduling, but with excessive computational effort. In this
work, the targeted rescheduling strategy is the optimal one that minimizes the makespan
and the energy consumption.

4. Proposed Multi Objective Q-Learning Rescheduling Approach

The proposed Q-learning-based rescheduling is described in Figure 2. The system is
composed of two modes:

• An offline mode: in the first place the predictive schedule is obtained using a genetic
algorithm, which represents the environment of the Q-learning agent. By interacting
with this schedule and simulating experiments of machine failures, this agent learns
how to select the optimal rescheduling solution for different states of the system.

• An online mode: when a machine failure occurs, the state of the system at the time
of the interruption is delivered to the Q-learning agent. It responds by selecting the
optimal rescheduling decision for this particular type of failure.

Sustainability 2021, 13, 13016 12 of 36Sustainability 2021, 13, x FOR PEER REVIEW 13 of 33

Figure 2. Proposed reschedule decision-making approach under machine failure.

A key aspect of RL is that an agent has to learn a proper behavior. This means that it
modifies or acquires new behaviors and skills incrementally [44]. An improvement of the
Q-learning algorithm was also made to consider different criteria (multi-objective
Q-learning). Next sections detail this algorithm.

4.1. Q-Learning Terminologies
In order to be more accurate in the description of the algorithm, some terminologies

of Q-learning are recalled below [45]:
• Agent: The agent interacts with its environment, selects its own actions, and

responds to those actions;
• States: The set of environmental states S is defined as the finite set {𝑠ଵ,..., 𝑠ே}, where

the size of the state space is N;
• Actions: The set of actions A is defined as the finite set {𝑎ଵ,..., 𝑎}, where the size of

the action space is K. Actions can be used to control the system’s state;
• Reward function: The reward function specifies rewards for being in a state or doing

some action in a state.
To sum up, the agent will make optimal decisions using experiences, make an action

in a particular state, and evaluate its consequences based on a reward. This process is
done repeatedly until it becomes able to choose the best decision.

Q-learning is a value-based learning algorithm; it updates the value function based
on a Bellman equation. The ‘Q’ here stands for quality of an action. The agent maintains a
table of Q(s, a), updated along time based on Equation (2):

Figure 2. Proposed reschedule decision-making approach under machine failure.

A key aspect of RL is that an agent has to learn a proper behavior. This means that
it modifies or acquires new behaviors and skills incrementally [44]. An improvement
of the Q-learning algorithm was also made to consider different criteria (multi-objective
Q-learning). Next sections detail this algorithm.

4.1. Q-Learning Terminologies

In order to be more accurate in the description of the algorithm, some terminologies
of Q-learning are recalled below [45]:

• Agent: The agent interacts with its environment, selects its own actions, and responds
to those actions;

• States: The set of environmental states S is defined as the finite set {s1,..., sN}, where
the size of the state space is N;

• Actions: The set of actions A is defined as the finite set {a1,..., ak}, where the size of the
action space is K. Actions can be used to control the system’s state;

• Reward function: The reward function specifies rewards for being in a state or doing
some action in a state.

To sum up, the agent will make optimal decisions using experiences, make an action
in a particular state, and evaluate its consequences based on a reward. This process is done
repeatedly until it becomes able to choose the best decision.

Q-learning is a value-based learning algorithm; it updates the value function based on
a Bellman equation. The ‘Q’ here stands for quality of an action. The agent maintains a
table of Q(s, a), updated along time based on Equation (2):

Q(st , at) = (1− α) Q(st , at) + α(rt+1 +γmaxQ(st+1 , a)) (2)

Sustainability 2021, 13, 13016 13 of 36

where rt+1 is the reward received when the agent transferring from the state st to the state
st+1, α is the learning rate (0 < α ≤ 1) (representing the extent to which our Q-values are
being updated in every iteration), and γ is the discount factor (0 ≤ γ ≤ 1) (determining
what importance is given to future rewards).

The algorithm of Q-learning is detailed in Algorithm 1.

Algorithm 1 Q-Learning

Initialize Q(s , Aa) randomly
Repeat for each episode:

Initialize s
Repeat for each step of episode

Choose an action from a using a policy derived from Q (ε-greedy)
Take an action a and observe the reward R and the next state s’
Update

Q(st ,at) = (1− α) Q(st ,at) + α(rt+1 +γmaxQ(st+1 , a))
s← s′

until s is terminal

4.2. Multi-Objective Q-Learning

In this case the agent has to optimize two objective functions at the same time. Here,
the reward will transform from a scalar value to a vector of the size of the number of
objective functions:

R(s, a) = [R1 (s , a), R2(s , a)Rm(s , a)] (3)

where m is the number of objective functions.
The same thing occurs with action-state value Q(s,a) which becomes also a m-dimensional

vector which is defined as follow:

Q(s, a) = [Q1 (s , a), Q2(s , a)Qm(s , a)] (4)

where every value corresponds to a reward value from the reward vector.
In this article a multi-objective Q-learning with single policy approach is used. This

means that it reduces the dimensionality of the multi-objective function. This new function
fairly represents the importance of all objectives. For the single policy approach, many
methods have been proposed. The most well-known is the weighted sum approach where
scalarizing function is applied to Q(s, a) to acquire a scalar value Q(s , a) that considers
all the objective functions. The linear scalarizing function is used and described as follows:

Q(s , a) = ∑m
i=0 Qi(s , a)] ∗ wi (5)

where 0 ≤ wi ≤ 1 is the weight that specifies the importance of each objective function,
and must satisfy the following equation: ∑m

i=0 wi = 1
The algorithm of the multi-objective Q-learning is detailed in Algorithm 2.

Algorithm 2 Multi-Objective Q-Learning

Initialize Q(s , a) randomly
Repeat for each episode:

Initialize s
Repeat for each step of episode

Choose an action from a using a policy derived from Q (ε-greedy)
Take an action a and observe the rewards R1 and R2 and the next state s’
Update

Q1(st , at) = (1− α) Q1 (st , at) + α(R1t+1 + γ maxQ1 (st+1 , a))
Q2(st, at) = (1− α) Q2 (st , at) + α(R2t+1 + γ maxQ2 (st+1 , a))

s← s′

until s is terminal

Sustainability 2021, 13, 13016 14 of 36

4.3. State Space Definition

The state space is the set of all possible situations the agent could inhabit. We have
to select the number of states that will give the optimal solution and how to define these
states. In this article, two indicators were used to establish the state space:

• s1: indicates the moment when the perturbation happens, e.g., in the beginning, the
middle or in the end of the schedule. For this purpose, the initial makespan was
divided into 3 intervals, so s1 can take the values 0, 1 or 2.

• s2: defined by the indicator SD which is the ratio of the duration of the directly affected
operation by the machine’s breakdown to the total processing time of the remaining
operations on failed machine. The formula is described as follows:

SD =
Oa f f

RT
∗ 100 (6)

where Oaff is the directly affected operation by the breakdown machine and RT is the total
processing time of the remaining operations on failed machine. s2 is an integer between 0
and 9 depending on the value of SD.

The couple (s1, s2) represents the state of the system at a particular time, given the
rescheduling time, the failure machine, and the breakdown duration. In total we have
30 states, where 0 ≤ s1 ≤ 2 and 0 ≤ s2 ≤ 9 (s1 and s2 are integers).

4.4. Actions and Reward Space Definition

The agent encounters one of the 30 states, and it takes an action. The action in this
case is one of the rescheduling methods:

• Action 0: Partial rescheduling (PR)
• Action 1: Total rescheduling (TR)
• Action 2: Right shifting rescheduling (RSR)

The definition of the reward plays an important role in the algorithm since the Q-
learning agent is reward-motivated. This means that it selects the best action by evaluating
the reward. In this work, the reward is a vector with two scalars

R(s, a) = [R1 (s, a), R2(s, a)] (7)

where R1(s, a) depends on delay time (the longer the delays, the smaller the rewards) and
R2(s, a) depends on the difference of energy consumption between the initial scheme and
the scheme after rescheduling (the bigger these differences, the smaller the rewards). The
rewards are set to be between 5 and −5, based on how much delay time there is and the
difference in energy consumption the action will cause.

5. Experiments and Results

In order to evaluate the performance of the proposed model, benchmark problems
are used. At the authors’ best knowledge, there are currently no benchmarks available
in the literature considering energy in an FJSSP. Therefore, instances had to be created in
order to test and validate this work. The choice was made to extend classical problems
from the literature to support energy consumption. The chosen problems are taken from
Brandimarte [46]. This consists of 10 problems (mk1 to mk10), where the jobs range from 10
to 20 operations, machines from 6 to 15, and operations for each job from 5 to 15. An energy
consumption of every operation was added randomly, obeying a uniform distribution
between 1 and 100. Thus, for each instance, the machining energy consumption and the
idle power of machines are specified as inputs.

In this article, the unit of the makespan is unit of time and the unit of the energy
consumption is in kWh.

Sustainability 2021, 13, 13016 15 of 36

5.1. Predictive Schedule Based on GA

Initially, the optimal scheduling scheme is acquired based on GA. Python program-
ming is used to develop the proposed method using the distributed evolutionary algorithms
in python framework (DEAP), which is a novel evolutionary computation framework. The
parameters of GA are set as follows: the size of initial population is 50 and the number of
generations is 500.

To validate the GA, a comparison with other methods in literature was made, such as
PSO proposed by [47] and TS proposed by [48]. The result of the Brandimarte instances in
terms of makespan of these different algorithms is presented in Table 3. The weight of the
objective function of genetic algorithm is set to 1, to give importance to makespan rather
than energy reduction.

Table 3. Results in terms of makespan (in time units) of the Brandimarte instances for differ-
ent algorithms.

Instances The Proposed GA PSO
by [47]

TS
by [48]

Mk01 42 41 42

Mk02 32 26 32

Mk03 206 207 211

Mk04 67 65 81

Mk05 179 171 186

Mk06 86 61 86

Mk07 164 173 157

Mk08 523 523 523

Mk09 342 307 369

Mk10 292 312 296
Italics here identify the most effective algorithm through the lowest value of the makespan.

As can be seen from Table 3, the proposed GA gives similar results to PSO and TS
algorithm when the weight is set to 1. Therefore, we consider this proposition as satisfying.

In the next step, more importance is given to energy reduction, therefore the weight of
the objective function is modified. The Gantt chart of the predictive schedule using GA of
Mk01 for different weight values is shown in Figure 3.

The makespan and energy consumption values for different cases are described in
Table 4. This shows that the two objective functions are antagonistic. When the weight
is set to 1, importance is given to makespan, therefore in this case GA provides the best
makespan (42) but the biggest energy consumption value (2812). On the opposite, when
the weight is set to 0, the importance is given to energy reduction, in this case GA provides
the worst makespan (73) but the best energy consumption value (2229). It may be noted
that when the weight decreases, makespan decreases but energy consumption increases.

5.2. Rescheduling Strategies

To illustrate the difference between the different rescheduling methods presented in
Section 3.4, the predictive schedule of the instance MK01 where the weight is set to 1 is
taken as example. A random perturbation (machine failure) is applied, assuming that at
time t = 20, machine 1 is broken down and t′ = 6 is the duration of the breakdown. The new
schedules acquired by the three rescheduling methods (PR, TR and RSR) are presented in
Figure 4, the red line representing the starting time and ending time of machine failure.

Sustainability 2021, 13, 13016 16 of 36

Sustainability 2021, 13, x FOR PEER REVIEW 16 of 33

distribution between 1 and 100. Thus, for each instance, the machining energy
consumption and the idle power of machines are specified as inputs.

In this article, the unit of the makespan is unit of time and the unit of the energy
consumption is in kWh.

5.1. Predictive Schedule Based on GA
Initially, the optimal scheduling scheme is acquired based on GA. Python

programming is used to develop the proposed method using the distributed
evolutionary algorithms in python framework (DEAP), which is a novel evolutionary
computation framework. The parameters of GA are set as follows: the size of initial
population is 50 and the number of generations is 500.

To validate the GA, a comparison with other methods in literature was made, such
as PSO proposed by [47] and TS proposed by [48]. The result of the Brandimarte
instances in terms of makespan of these different algorithms is presented in Table 3. The
weight of the objective function of genetic algorithm is set to 1, to give importance to
makespan rather than energy reduction.

Table 3. Results in terms of makespan (in time units) of the Brandimarte instances for different
algorithms.

Instances The Proposed GA
PSO

by [47]
TS

by [48]
Mk01 42 41 42
Mk02 32 26 32
Mk03 206 207 211
Mk04 67 65 81
Mk05 179 171 186
Mk06 86 61 86
Mk07 164 173 157
Mk08 523 523 523
Mk09 342 307 369
Mk10 292 312 296

Italics here identify the most effective algorithm through the lowest value of the makespan.

As can be seen from Table 3, the proposed GA gives similar results to PSO and TS
algorithm when the weight is set to 1. Therefore, we consider this proposition as
satisfying.

In the next step, more importance is given to energy reduction, therefore the weight
of the objective function is modified. The Gantt chart of the predictive schedule using GA
of Mk01 for different weight values is shown in Figure 3.

(a) (b)

Sustainability 2021, 13, x FOR PEER REVIEW 17 of 33

(c) (d)

Figure 3. The predictive schedule for different weights of the objective functions. (a–d) represent respectively the
predictive schedule when the weight of the objective function of GA algorithm is set to 1, 0.5, 0.2, or 0 respectively.

The makespan and energy consumption values for different cases are described in
Table 4. This shows that the two objective functions are antagonistic. When the weight is
set to 1, importance is given to makespan, therefore in this case GA provides the best
makespan (42) but the biggest energy consumption value (2812). On the opposite, when
the weight is set to 0, the importance is given to energy reduction, in this case GA
provides the worst makespan (73) but the best energy consumption value (2229). It may
be noted that when the weight decreases, makespan decreases but energy consumption
increases.

Table 4. Makespan (MK in time units) and energy consumption (EC in kWh) calculation example
on MK01 instance.

Instance Size Weight
KPIs

MK EC

MK01 10 × 6

1 42 2812
0.5 44 2457
0.2 49 2411
0 73 2229

5.2. Rescheduling Strategies
To illustrate the difference between the different rescheduling methods presented in

Section 3.4, the predictive schedule of the instance MK01 where the weight is set to 1 is
taken as example. A random perturbation (machine failure) is applied, assuming that at
time t = 20, machine 1 is broken down and t′ = 6 is the duration of the breakdown. The
new schedules acquired by the three rescheduling methods (PR, TR and RSR) are
presented in Figure 4, the red line representing the starting time and ending time of
machine failure.

Figure 3. The predictive schedule for different weights of the objective functions. (a–d) represent respectively the predictive
schedule when the weight of the objective function of GA algorithm is set to 1, 0.5, 0.2, or 0 respectively.

Table 4. Makespan (MK in time units) and energy consumption (EC in kWh) calculation example on
MK01 instance.

Instance Size Weight
KPIs

MK EC

MK01 10 × 6

1 42 2812

0.5 44 2457

0.2 49 2411

0 73 2229

The directly affected operations by the failure machine are O5,6, O6,2 , O6,6, O6,10, and O6,3,
these operations are executed by the broken-down machine. In PR, O5,6, O6,2 , O6,10 are
postponed after the breakdown and the O6,6 and O6,3 are executed respectively on machine
4 and 5 with a different processing time (Figure 4b). In TR, all the remaining jobs are
rescheduled using the GA algorithm after the breakdown (Figure 4c). As for RSR, all the
remaining jobs are postponed by the breakdown duration (Figure 4d). The performance of
the rescheduling methods is described in the Table 5.

Sustainability 2021, 13, 13016 17 of 36Sustainability 2021, 13, x FOR PEER REVIEW 18 of 33

(a) (b)

(c) (d)

Figure 4. Demonstration of initial scheme, PR scheme, TR scheme and RSR scheme. (a) illustrates the predictive schedule,
(b–d) illustrate the reactive schedule provided by the three rescheduling methods PR, TR and RSR respectively.

The directly affected operations by the failure machine are 𝑂ହ, , 𝑂,ଶ , 𝑂, , 𝑂,ଵ, and 𝑂,ଷ, these operations are executed by the broken-down machine. In PR, 𝑂ହ,, 𝑂,ଶ , 𝑂,ଵ are postponed after the breakdown and the 𝑂, and 𝑂,ଷ are executed
respectively on machine 4 and 5 with a different processing time (Figure 4b). In TR, all
the remaining jobs are rescheduled using the GA algorithm after the breakdown (Figure
4c). As for RSR, all the remaining jobs are postponed by the breakdown duration (Figure
4d). The performance of the rescheduling methods is described in the Table 5.

Table 5. The makespan (time units) and energy consumption (kWh) calculation for rescheduling
methods on MK01 instance.

Schedule Makespan (MK) Energy Consumption(EC)
Predictive schedule 42 2812

Reactive
schedule

PR schedule 50 3046
TR schedule 49 2895

RSR schedule 57 2887

As can be seen from Table 5, the three rescheduling methods gives different results.
Both makespan and energy consumption are increased due to the presence of the
machine failure that affects a set of operation. In terms of makespan, TR gives the best
result (42), but in terms of energy consumption, RSR gives the best result (2887). This
result can be explained by the date of the failure, which happened close to the end of the
initial schedule.

5.3. Rescheduling Based on Q-Learning

Figure 4. Demonstration of initial scheme, PR scheme, TR scheme and RSR scheme. (a) illustrates the predictive schedule,
(b–d) illustrate the reactive schedule provided by the three rescheduling methods PR, TR and RSR respectively.

Table 5. The makespan (time units) and energy consumption (kWh) calculation for rescheduling
methods on MK01 instance.

Schedule Makespan (MK) Energy
Consumption(EC)

Predictive schedule 42 2812

Reactive schedule

PR schedule 50 3046

TR schedule 49 2895

RSR schedule 57 2887

As can be seen from Table 5, the three rescheduling methods gives different results.
Both makespan and energy consumption are increased due to the presence of the machine
failure that affects a set of operation. In terms of makespan, TR gives the best result (42),
but in terms of energy consumption, RSR gives the best result (2887). This result can be
explained by the date of the failure, which happened close to the end of the initial schedule.

5.3. Rescheduling Based on Q-Learning

To test the performance of the proposed Q-learning algorithm, we designed simulation
experiments of machine failures. The parameters are set as follows:

• α = 1: A learning rate of 1 means the old value will be completely discarded, the model
converges quickly, no large number of episodes are required;

• γ = 0: The agent considers only immediate rewards. In each episode, one state is
evaluated (the initial state of the system at a particular time, given the rescheduling
time, the failure machine and the breakdown duration)

Sustainability 2021, 13, 13016 18 of 36

• ε = 0.8, the balance factor between exploration and exploitation. Exploration refers to
searching over the whole sample space while exploitation refers to the exploitation of
the promising areas found. In the proposed model, 80% is given to exploitation, so in
80% of cases the agent will choose the action with the biggest reward and in 20% of
cases he will randomly choose an action to explore more of its environment.

• The number of episodes is 1000, for the model to converge.

In each episode the Q-table is updated depending on the value of the rewards (Figure 5).

Sustainability 2021, 13, x FOR PEER REVIEW 19 of 33

To test the performance of the proposed Q-learning algorithm, we designed
simulation experiments of machine failures. The parameters are set as follows:
• α = 1: A learning rate of 1 means the old value will be completely discarded, the

model converges quickly, no large number of episodes are required;
• γ = 0: The agent considers only immediate rewards. In each episode, one state is

evaluated (the initial state of the system at a particular time, given the rescheduling
time, the failure machine and the breakdown duration)

• ε = 0.8, the balance factor between exploration and exploitation. Exploration refers to
searching over the whole sample space while exploitation refers to the exploitation
of the promising areas found. In the proposed model, 80% is given to exploitation, so
in 80% of cases the agent will choose the action with the biggest reward and in 20%
of cases he will randomly choose an action to explore more of its environment.

• The number of episodes is 1000, for the model to converge.
In each episode the Q-table is updated depending on the value of the rewards

(Figure 5).

Figure 5. Q-table initialization and update.

5.3.1. The Single Objective Q-Learning
Two types of Q-learning algorithm are proposed in this article: the single objective

Q-learning and multi-objective Q-learning.
The aim of the single objective function Q-learning is to minimize the makespan,

which means the minimization of the delay time. The curve of the reward and the delay
time in the first 50 episodes are described in Figure 6. It can be seen that the longer the
delay time, the lower the reward value.

Figure 5. Q-table initialization and update.

5.3.1. The Single Objective Q-Learning

Two types of Q-learning algorithm are proposed in this article: the single objective
Q-learning and multi-objective Q-learning.

The aim of the single objective function Q-learning is to minimize the makespan,
which means the minimization of the delay time. The curve of the reward and the delay
time in the first 50 episodes are described in Figure 6. It can be seen that the longer the
delay time, the lower the reward value.

Sustainability 2021, 13, x FOR PEER REVIEW 20 of 33

Figure 6. The evolution of reward value and delay time along episodes.

To show how the Q-values are updated in each episode, the state (0.7) is taken as
example. Figure 7 describes the variation of Q-values of each action. The agent first
selects the action 0 and gets a positive reward so its Q-value increases. After a few
episodes, action 0 is chosen again because it has the biggest Q-value but gets a negative
reward. Its Q-value thus decreases, giving the chance for action 1 to be selected. After
that, action 1 is chosen in every episode because it gets a positive reward each time so its
Q-value increases. Action 2 is selected in 100୲୦ and 800୲୦ episodes due to the ε-greedy
where the agent still has a 20% probability to explore but its Q-value decreases because it
gets negative rewards.

Figure 7. Q-value prediction of state (0.6).

5.3.2. The Multi-Objective Q-Learning

Figure 6. The evolution of reward value and delay time along episodes.

Sustainability 2021, 13, 13016 19 of 36

To show how the Q-values are updated in each episode, the state (0.7) is taken as
example. Figure 7 describes the variation of Q-values of each action. The agent first selects
the action 0 and gets a positive reward so its Q-value increases. After a few episodes, action
0 is chosen again because it has the biggest Q-value but gets a negative reward. Its Q-value
thus decreases, giving the chance for action 1 to be selected. After that, action 1 is chosen in
every episode because it gets a positive reward each time so its Q-value increases. Action 2
is selected in 100th and 800th episodes due to the ε-greedy where the agent still has a 20%
probability to explore but its Q-value decreases because it gets negative rewards.

Sustainability 2021, 13, x FOR PEER REVIEW 20 of 33

Figure 6. The evolution of reward value and delay time along episodes.

To show how the Q-values are updated in each episode, the state (0.7) is taken as
example. Figure 7 describes the variation of Q-values of each action. The agent first
selects the action 0 and gets a positive reward so its Q-value increases. After a few
episodes, action 0 is chosen again because it has the biggest Q-value but gets a negative
reward. Its Q-value thus decreases, giving the chance for action 1 to be selected. After
that, action 1 is chosen in every episode because it gets a positive reward each time so its
Q-value increases. Action 2 is selected in 100୲୦ and 800୲୦ episodes due to the ε-greedy
where the agent still has a 20% probability to explore but its Q-value decreases because it
gets negative rewards.

Figure 7. Q-value prediction of state (0.6).

5.3.2. The Multi-Objective Q-Learning

Figure 7. Q-value prediction of state (0.6).

5.3.2. The Multi-Objective Q-Learning

The goal of the multi-objective Q-learning approach is to minimize the makespan and
the energy consumption at the same time. In this case, two rewards are considered: reward
R1 that depends on the delay time and reward R2 that depends on the energy consumption
deviation. Figure 8 describes the variation of the reward along the first 50 episodes. It can
be seen that R1 increases when the delay time decreases and R2 increases when the energy
consumption deviation decreases.

This time, state (1.9) is taken as an example and the weight of the objective function
of the multi Q-learning algorithm is set to 0.5 (which means that makespan and energy
consumption have the same importance). Throughout the episodes, action 1 gets positive
rewards and its Q-value increases so it is selected most of the times, on the other hand
action 0 and action 2 get negative rewards so their Q-values decrease, they are chosen only
in the exploration phase. The Q-value prediction of the state (1.9) is presented in Figure 9.

5.4. Models Validation

The results of the optimal rescheduling methods for the Brandimarte [46] instances
and the solution given by the Q-learning agent are represented in Appendix A. In Table 6,
an extraction of Appendix A, corresponding to the instance MK01, is taken as example.
The first column is the name of the instance, followed by its size and its level of flexibility.
In the fourth column, the weight of the objective function of the GA and of the multi-
objective Q-learning is defined. In the fifth column, makespan and energy consumption
of the predictive schedule are calculated. In the sixth column, different types of machine
failures are defined by their failure time, the reference of the failing machine and the

Sustainability 2021, 13, 13016 20 of 36

failure duration. Next comes the state definition, then the rescheduling methods and their
performance. In the last column the evaluated Q-learning approach is presented by giving
the makespan (MK) and the energy consumption (EC) of the selected optimal rescheduling
solution using single objective Q-learning and multi-objective Q-learning.

Sustainability 2021, 13, x FOR PEER REVIEW 21 of 33

The goal of the multi-objective Q-learning approach is to minimize the makespan
and the energy consumption at the same time. In this case, two rewards are considered:
reward 𝑅ଵ that depends on the delay time and reward 𝑅ଶ that depends on the energy
consumption deviation. Figure 8 describes the variation of the reward along the first 50
episodes. It can be seen that Rଵ increases when the delay time decreases and 𝑅ଶ
increases when the energy consumption deviation decreases.

Figure 8. The change of rewards, delay time and energy consumption variation along episodes.

This time, state (1.9) is taken as an example and the weight of the objective function
of the multi Q-learning algorithm is set to 0.5 (which means that makespan and energy
consumption have the same importance). Throughout the episodes, action 1 gets positive
rewards and its Q-value increases so it is selected most of the times, on the other hand
action 0 and action 2 get negative rewards so their Q-values decrease, they are chosen
only in the exploration phase. The Q-value prediction of the state (1.9) is presented in
Figure 9.

Figure 8. The change of rewards, delay time and energy consumption variation along episodes.

Sustainability 2021, 13, x FOR PEER REVIEW 22 of 33

Figure 9. Q-value prediction of state (1.9).

5.4. Models Validation
The results of the optimal rescheduling methods for the Brandimarte [46] instances

and the solution given by the Q-learning agent are represented in Appendix A. In Table
6, an extraction of Appendix A, corresponding to the instance MK01, is taken as example.
The first column is the name of the instance, followed by its size and its level of flexibility.
In the fourth column, the weight of the objective function of the GA and of the
multi-objective Q-learning is defined. In the fifth column, makespan and energy
consumption of the predictive schedule are calculated. In the sixth column, different
types of machine failures are defined by their failure time, the reference of the failing
machine and the failure duration. Next comes the state definition, then the rescheduling
methods and their performance. In the last column the evaluated Q-learning approach is
presented by giving the makespan (MK) and the energy consumption (EC) of the selected
optimal rescheduling solution using single objective Q-learning and multi-objective
Q-learning.

Table 6. Performance measurement of the predictive and reactive schedule in MK01 instance.

Instance Size p Weight
of BF

Predictive
Schedule Machine Failure

State
of the
Syste

m

Reactive Schedule Q-Learning
PR TR RSR

Single
Objecti

ve

Multi-O
bjective

MK
(Time
Units)

EC
(kWh)

Fail
ure
Tim

e

Broken-D
own

Machine

Failure
Durati

on

MK
(Time
Units)

EC
(kW
h)

MK
(Tim

e
Unit

s)

EC
(kWh)

MK
(Time
Units

)

EC
(kWh)

MK01 10 × 6 2
1 42 3046

3 5 20 (0.5) 46 3064 45 3115 61 3160 TR TR
16 4 19 (1.9) 60 3128 55 3243 66 3180 TR TR
8 1 17 (0.6) 57 3099 50 3190 58 3142 TR TR
23 3 14 (1.7) 57 3101 56 3218 58 3142 TR TR
13 5 10 (0.4) 46 3058 45 3028 52 3106 TR TR
13 6 20 (0.9) 56 3098 54 3204 59 3148 TR TR

0.5 49 2837 11 1 12 (0.5) 54 2872 58 2826 61 2909 TR TR

Figure 9. Q-value prediction of state (1.9).

Sustainability 2021, 13, 13016 21 of 36

Table 6. Performance measurement of the predictive and reactive schedule in MK01 instance.

Instance Size p Weight
of BF

Predictive Schedule Machine Failure
State of

the
System

Reactive Schedule Q-Learning

PR TR RSR
Single

Objective Multi-ObjectiveMK
(Time
Units)

EC
(kWh)

Failure
Time

Broken-
Down

Machine

Failure
Duration

MK (Time
Units)

EC
(kWh)

MK
(Time
Units)

EC
(kWh)

MK (Time
Units)

EC
(kWh)

MK01 10 × 6 2

1 42 3046

3 5 20 (0.5) 46 3064 45 3115 61 3160 TR TR

16 4 19 (1.9) 60 3128 55 3243 66 3180 TR TR

8 1 17 (0.6) 57 3099 50 3190 58 3142 TR TR

23 3 14 (1.7) 57 3101 56 3218 58 3142 TR TR

13 5 10 (0.4) 46 3058 45 3028 52 3106 TR TR

13 6 20 (0.9) 56 3098 54 3204 59 3148 TR TR

0.5 49 2837

11 1 12 (0.5) 54 2872 58 2826 61 2909 TR TR

7 5 23 (0.9) 56 2890 57 2724 76 2999 PR TR

22 2 22 (1.9) 62 2950 56 2968 65 2993 TR TR

5 2 12 (0.3) 54 2935 54 2853 55 2939 TR TR

11 1 12 (0.6) 54 2872 58 2826 61 2909 PR PR

13 4 13 (0.2) 50 2839 54 2816 54 2867 PR PR

0.2 52 2672

31 2 15 (1.9) 64 2702 67 2711 67 2672 PR PR

4 2 20 (0.4) 75 2797 78 2757 75 2800 TR PR

10 4 14 (0.0) 52 2673 58 2670 59 2714 PR PR

10 1 21 (0.6) 64 2728 68 2632 73 2798 TR PR

20 2 22 (1.7) 72 2769 76 2773 75 2820 PR PR

6 5 26 (0.9) 65 2727 68 2704 74 2804 PR TR

0 79 2554

23 6 20 (0.9) 91 2649 99 2612 102 2692 PR TR

1 5 26 (0.3) 79 2560 79 2574 102 2686 PR PR

31 2 37 (1.8) 92 2668 110 2706 116 2776 PR PR

3 2 24 (1.6) 88 2639 100 2666 106 2689 PR PR

16 2 34 (0.6) 98 2700 110 2744 116 2776 PR PR

30 6 20 (1.9) 79 2564 79 2605 98 2668 PR PR

Sustainability 2021, 13, 13016 22 of 36

In the predictive schedule, when the weight decreases, the makespan increases but
the energy consumption decreases. This is normal because importance is given to energy
consumption each time the weight is decreased. After simulating different types of failure
randomly, it can be seen that the Q-learning is able to choose the best rescheduling methods
each time; the single objective Q-learning selects the best methods that minimize the
makespan but the multi objective Q-learning selects the best methods that minimize
the makespan and energy consumption depending on the value of the weight of the
objective function.

When this weight is set to 1, the single objective and multi-objective Q-learning have
the same results. They both choose the methods that minimize the makespan regardless of
the value of the energy consumption. From Table 7, in the case of the MK01, TR proved
to have the highest performance and was selected in both algorithms. Giving the same
importance to energy consumption, which implies setting the value of the weight to 0.5,
the selected method changes to make a compromise between the two objectives. There is a
difference between the result of single objective and multi-objective Q-learning. Taking
the state (0.9) as example, PR and TR gives 56 and 57 as makespan respectively and 2890
and 2724 as energy consumption respectively, so PR is selected by the single-objective
Q-learning because it generates the minimum makespan, but TR is selected by the multi-
objective Q-learning because it has better result than PR in terms of energy consumption.

Table 7. CPU time comparison.

Instances
CPU Time (s)

Traditional Rescheduling Q-Learning

MK01 6.173

0.001

MK02 7.261

MK03 45.068

MK04 13.680

MK05 24.488

MK06 48.855

MK07 30.716

MK08 61.261

MK09 85.610

MK10 84.545

By further decreasing the value of the weight to 0.2, more prominence is given to
energy consumption. Taking the example of the state (0.4), PR and TR give 75 and 79
as makespan respectively and 2797 and 2757 as energy consumption respectively. Here
PR is selected by the single objective Q-learning because it minimizes the makespan, but
TR is selected by the multi-objective Q-learning because it has better optimization of the
energy consumption that was given more importance. Once the weight is set to 0, the multi-
objective Q-values selects the methods that optimizes the energy consumption regardless
of the value of the makespan, as in state (0.9) when PR gave the best makespan (91) so it
was selected by the single-objective Q-learning, but TR was selected by the multi-objective
Q-learning because it gave the best energy consumption (2612).

Considering all the instances of the Brandimarte benchmark, in Appendix A, we can
also deduce that the right shift rescheduling turned out to have the worst performance,
this is due to the postponement of the remaining tasks which increases both the makespan
and the energy variation. Another deduction that can be taken is that generally TR have
the best performance in early failures and PR gives better results when the failures occur
in the middle or in the end of the schedule and especially with instances that have high

Sustainability 2021, 13, 13016 23 of 36

flexibility. The results of RSR also become improved at the end of the schedule because the
number of postponed operations is smaller.

The Q-learning algorithm not only selects the optimal methods for rescheduling but
also responds immediately to perturbation. Table 7 indicates the CPU time comparison
between the time spent to execute the three rescheduling methods (PR, TR, RSR) and to
select the optimal one and the time spent by the Q-learning algorithm to select the best
method from the Q-table. The reported values are evaluated using a laptop computer with
Intel core i5-8250U with 1.8 GHZ speed and with 12 Gb memory. The offline training of the
Q-learning algorithm can take minutes or even some hours depending on the instance size,
but it can be seen that, in online execution, the learning-based rescheduling selection of
the optimal solution takes only one millisecond compared with traditional rescheduling
that can exceed one minute, this time corresponds to state calculation of the system after
perturbation and the selection of the best methods that have the highest Q-values from the
corresponding Q-values table. However, the execution of the three rescheduling methods
and the selection of the best method can take several seconds, even minutes when the
instance is large.

6. Conclusions

This work deals with the flexible job shop scheduling problem under uncertainties. A
multi-objective Q-learning rescheduling approach is proposed to solve the FJSSP under
machine failures. Two key performance indicators are used to select the best schedule: the
makespan and the energy consumption. The idea was not only to maintain effectiveness
but also to improve energy efficiency. The approach is hybrid and combines predictive and
reactive phases. The originality of this work is to combine AI and scheduling techniques to
be able to rapidly solve a bi-objectives problem (makespan and energy consumption) of
rescheduling in a context of FJSP.

First, a genetic algorithm was developed to provide an initial predictive schedule that
minimizes the makespan and energy consumption simultaneously. In this predictive phase,
different types of machine failures were simulated and classical rescheduling policies (RSR,
TR, PR) were executed to repair the predictive scheduling and to find new solutions. Based
on these results, the Q-learning agent is trained. To consider the energy consumption
even in the rescheduling process, a multi-objective Q-learning algorithm was proposed. A
weighting parameter is used to make a tradeoff between the makespan and the energy con-
sumption. In the reactive phase, the Q-learning agent is tested on new machine disruptions.
The Q-learning agent seeks to find the best action to take given the current state. In fact,
the main goal of using AI tools is to be able to react quickly facing failures while rapidly
selecting the best rescheduling policy related to the state of the environment. In order to
assess the performance of the developed approach, the Brandimarte [46] benchmark was
extended to support energy consumption. On this new benchmark, the Q-learning based
rescheduling approach was tested to respond to unexpected machine failures and select
the best rescheduling strategy.

The results of this study show that the approach proved to be effective in responding
quickly and accurately to unexpected machine failures. The Q-learning algorithm provided
appropriate strategy choices based on the state of the environment with various balance
between the objectives of energy consumption and productivity. The learning phase was
therefore efficient enough to enable these efficient choices. The choices of genetic algorithm
and Q-learning algorithm proved their efficiency on the extended classical instances of
Brandimarte in this work. Nevertheless, the approach leaves the possibility to the user to
integrate their own choice of algorithm according to the specific context.

Future works are oriented to take into consideration other types of disruptions like
new job insertions, variety of availability of energy, urgent job arrivals, etc. Another future
perspective that can be expected is the evaluation of the proposed approach on other types
of learning techniques in order to compare with the Q-learning algorithm. On a more
global perspective, this work contributes to the development of efficient rescheduling

Sustainability 2021, 13, 13016 24 of 36

approaches for the control of future industrial systems. Such systems are meant to inte-
grate more and more flexibility, and the performance evaluation of this work on a FJSP
shows the compatibility of the approach with this objective. This work also contributes to
the integration of multi-objective rescheduling strategies in industry, which is especially
relevant for sustainability concerns.

Author Contributions: Conceptualization, R.N. and M.N.; Funding acquisition, O.C.; Investigation,
M.N.; Methodology, R.N. and M.N.; Software, R.N.; Supervision, M.N.; Validation, M.N.; Visualiza-
tion, O.C.; Writing—original draft, R.N.; Writing—review & editing, M.N. and O.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the PULSAR Academy sponsored by the University of Nantes
and the Regional Council of Pays de la Loire, France.

Institutional Review Board Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Sustainability 2021, 13, 13016 25 of 36

Appendix A

Table A1. Performance evaluation of the Q-learning approach on the Brandimarte benchmark.

Instance Size p Weight
of BF

Predictive Schedule Machine Failure
State of

the
System

Reactive Schedule Q-Learning

PR TR RSR
Single

Objective Multi-ObjectiveMK
(Time
Units)

EC
(kWh)

Failure
Time

Broken-
Down

Machine

Failure
Duration

MK (Time
Units)

EC
(kWh)

MK
(Time
Units)

EC
(kWh)

MK (Time
Units)

EC
(kWh)

MK01 10 × 6 2

1 42 3046

3 5 20 (0.5) 46 3064 45 3115 61 3160 TR TR

16 4 19 (1.9) 60 3128 55 3243 66 3180 TR TR

8 1 17 (0.6) 57 3099 50 3190 58 3142 TR TR

23 3 14 (1.7) 57 3101 56 3218 58 3142 TR TR

13 5 10 (0.4) 46 3058 45 3028 52 3106 TR TR

13 6 20 (0.9) 56 3098 54 3204 59 3148 TR TR

0.5 49 2837

11 1 12 (0.5) 54 2872 58 2826 61 2909 TR TR

7 5 23 (0.9) 56 2890 57 2724 76 2999 PR TR

22 2 22 (1.9) 62 2950 56 2968 65 2993 TR TR

5 2 12 (0.3) 54 2935 54 2853 55 2939 TR TR

11 1 12 (0.6) 54 2872 58 2826 61 2909 PR PR

13 4 13 (0.2) 50 2839 54 2816 54 2867 PR PR

0.2 52 2672

31 2 15 (1.9) 64 2702 67 2711 67 2672 PR PR

4 2 20 (0.4) 75 2797 78 2757 75 2800 TR PR

10 4 14 (0.0) 52 2673 58 2670 59 2714 PR PR

10 1 21 (0.6) 64 2728 68 2632 73 2798 TR PR

20 2 22 (1.7) 72 2769 76 2773 75 2820 PR PR

6 5 26 (0.9) 65 2727 68 2704 74 2804 PR TR

0 79 2554

23 6 20 (0.9) 91 2649 99 2612 102 2692 PR TR

1 5 26 (0.3) 79 2560 79 2574 102 2686 PR PR

31 2 37 (1.8) 92 2668 110 2706 116 2776 PR PR

3 2 24 (1.6) 88 2639 100 2666 106 2689 PR PR

16 2 34 (0.6) 98 2700 110 2744 116 2776 PR PR

30 6 20 (1.9) 79 2564 79 2605 98 2668 PR PR

Sustainability 2021, 13, 13016 26 of 36

Table A1. Cont.

Instance Size p Weight
of BF

Predictive Schedule Machine Failure
State of

the
System

Reactive Schedule Q-Learning

PR TR RSR
Single

Objective Multi-ObjectiveMK
(Time
Units)

EC
(kWh)

Failure
Time

Broken-
Down

Machine

Failure
Duration

MK (Time
Units)

EC
(kWh)

MK
(Time
Units)

EC
(kWh)

MK (Time
Units)

EC
(kWh)

MK02 10 × 6 3.5

1 32 3173

15 1 12 (1.7) 46 3234 45 3223 45 3263 TR TR

4 2 16 (0.7) 45 3216 47 3330 49 3263 PR PR

18 6 9 (1.8) 40 3205 37 3296 43 3239 TR TR

1 6 12 (0.3) 44 3223 46 3071 44 3245 PR PR

10 2 4 (0.9) 49 3232 52 3386 51 3287 PR PR

2 4 9 (0.4) 38 3191 37 3282 43 3239 TR TR

0.5 37 2479

5 6 17 (0.6) 49 2525 48 2334 56 2593 TR TR

17 6 11 (1.9) 42 2494 45 2334 50 2557 PR TR

25 6 13 (2.9) 45 2497 46 2384 50 2557 PR TR

10 1 9 (0.7) 44 2503 47 2187 46 2533 PR TR

18 6 9 (1.6) 42 2490 40 2342 46 2490 TR TR

5 4 11 (0.3) 38 2487 42 2288 50 2557 PR TR

0.2 49 1992

23 2 14 (1.7) 59 2035 62 2014 65 2088 PR TR

16 1 23 (0.9) 53 2018 54 1996 64 2082 PR TR

1 6 16 (0.4) 55 2017 50 1935 60 2058 TR TR

11 1 18 (0.7) 63 2014 52 1983 67 2100 TR TR

24 2 20 (1.9) 64 2062 57 2071 72 2130 PR TR

5 6 18 (0.6) 60 2040 58 1940 66 2040 TR TR

0 49 1964

21 4 16 (1.9) 56 1990 52 1996 66 2066 TR PR

35 3 20 (2.9) 66 2010 68 2045 71 2030 PR PR

2 4 15 (0.5) 55 2000 64 1990 65 2060 PR TR

10 4 19 (0.6) 61 2035 55 1992 69 2084 TR TR

10 5 20 (0.9) 60 2038 60 1985 68 2087 TR TR

22 1 14 (1.6) 52 1995 54 1981 64 2054 PR PR

Sustainability 2021, 13, 13016 27 of 36

Table A1. Cont.

Instance Size p Weight
of BF

Predictive Schedule Machine Failure
State of

the
System

Reactive Schedule Q-Learning

PR TR RSR
Single

Objective Multi-ObjectiveMK
(Time
Units)

EC
(kWh)

Failure
Time

Broken-
Down

Machine

Failure
Duration

MK (Time
Units)

EC
(kWh)

MK
(Time
Units)

EC
(kWh)

MK (Time
Units)

EC
(kWh)

MK03 15 × 8 3

1 206 8846

113 4 70 (1.8) 255 9120 239 9135 279 9430 TR TR

45 6 66 (0.4) 254 9262 246 9042 272 9374 TR TR

55 2 59 (0.6) 250 9063 221 9263 268 9342 TR TR

75 2 53 (1.7) 250 9078 219 8824 272 9374 TR TR

1 2 65 (0.3) 221 9839 238 9001 246 9166 PR PR

57 8 82 (0.8) 269 9276 237 9160 301 9606 TR TR

0.5 227 7515

83 8 67 (1.8) 278 7787 254 7201 309 8171 TR TR

182 4 88 (2.9) 310 7905 296 7874 317 8235 PR PR

66 2 77 (0.6) 244 7618 249 7209 302 8115 PR TR

44 1 80 (0.4) 304 8014 307 7516 317 8235 PR TR

94 4 66 (1.4) 266 7791 242 7387 297 8075 PR PR

97 3 67 (1.4) 264 7969 243 7426 276 7907 PR PR

0.2 231 7200

94 2 98 (1.9) 273 7408 263 7275 335 8032 TR TR

29 4 76 (0.5) 284 7598 291 7222 300 7832 PR TR

13 1 111 (0.6) 355 8042 368 8118 355 8192 PR PR

98 3 116 (1.8) 337 7907 278 7327 349 8136 TR TR

170 4 88 (2.9) 304 7544 282 7497 313 7856 TR TR

40 1 116 (0.7) 334 7958 350 7742 353 8176 PR TR

0 253 6574

152 6 97 (1.9) 328 7040 336 6952 348 7239 PR TR

64 4 67 (0.4) 282 6790 325 6900 325 7150 PR PR

105 1 103 (1.8) 341 7081 338 7080 369 7502 TR TR

43 8 121 (0.7) 296 7010 276 6816 358 7414 TR TR

30 8 104 (0.6) 278 6983 299 6916 361 7438 PR TR

86 3 73 (1.5) 297 6846 288 6805 334 7222 PR TR

Sustainability 2021, 13, 13016 28 of 36

Table A1. Cont.

Instance Size p Weight
of BF

Predictive Schedule Machine Failure
State of

the
System

Reactive Schedule Q-Learning

PR TR RSR
Single

Objective Multi-ObjectiveMK
(Time
Units)

EC
(kWh)

Failure
Time

Broken-
Down

Machine

Failure
Duration

MK (Time
Units)

EC
(kWh)

MK
(Time
Units)

EC
(kWh)

MK (Time
Units)

EC
(kWh)

MK04 15 × 8 2

1 67 5206

6 4 31 (0.6) 102 5427 84 5214 102 5486 TR TR

1 3 17 (0.1) 74 5249 77 5398 84 5334 PR PR

49 3 27 (2.9) 110 5398 94 5347 109 5470 TR TR

30 2 17 (1.3) 67 5206 72 5315 84 5342 PR PR

11 2 19 (0.3) 67 5206 75 5342 87 5366 PR PR

1 7 26 (0.4) 83 5324 87 5495 93 5422 PR PR

0.5 73 4872

43 3 26 (1.9) 96 4976 87 4891 99 5080 TR TR

34 4 25 (1.7) 71 4999 68 5054 98 5072 TR TR

3 1 23 (0.4) 95 5015 93 5023 99 5080 TR TR

28 6 18 (1.8) 98 5007 84 4976 95 5048 TR TR

3 6 20 (0.3) 84 4974 85 4723 94 5040 PR TR

36 2 28 (1.4) 73 4886 78 4930 80 4886 PR PR

0.2 76 4562

40 4 35 (1.9) 106 4738 92 4724 112 4850 TR TR

7 1 27 (0.4) 103 4779 107 4723 104 4786 PR TR

42 7 21 (1.7) 95 4635 88 5479 101 4579 PR TR

21 3 30 (0.7) 109 4750 90 4615 109 4826 PR TR

30 1 37 (1.8) 110 4742 105 4810 113 4858 TR PR

11 6 25 (0.5) 87 4621 85 4600 103 4778 PR TR

0 90 4406

37 4 32 (1.7) 107 4510 102 4572 126 4658 TR PR

23 2 41 (0.7) 94 4459 96 4462 131 4734 PR PR

33 3 39 (1.9) 113 4528 107 4559 129 4679 TR PR

8 7 36 (0.5) 135 4611 121 4580 130 4726 TR TR

3 5 28 (0.8) 96 4492 105 4488 121 4654 PR TR

20 7 24 (0.4) 108 4490 103 4518 114 4598 TR PR

Sustainability 2021, 13, 13016 29 of 36

Table A1. Cont.

Instance Size p Weight
of BF

Predictive Schedule Machine Failure
State of

the
System

Reactive Schedule Q-Learning

PR TR RSR
Single

Objective Multi-ObjectiveMK
(Time
Units)

EC
(kWh)

Failure
Time

Broken-
Down

Machine

Failure
Duration

MK (Time
Units)

EC
(kWh)

MK
(Time
Units)

EC
(kWh)

MK (Time
Units)

EC
(kWh)

MK05 15 × 4 1.5

1 179 5577

30 2 81 (0.5) 260 5866 227 6121 286 5925 TR TR

116 3 50 (1.9) 224 5702 225 5676 230 5781 PR PR

84 2 48 (1.5) 229 5741 206 5777 229 5777 TR TR

124 4 48 (2.8) 229 5749 216 5639 230 5781 TR TR

28 3 48 (0.3) 234 5766 210 5496 234 5797 TR TR

5 3 78 (0.4) 257 5855 234 5911 257 5889 TR TR

0.5 186 4977

134 1 79 (2.9) 257 5243 231 5248 262 5309 TR TR

57 3 67 (0.5) 256 5197 247 5177 256 5257 PR PR

77 2 86 (1.8) 262 5227 234 5162 273 5325 TR TR

49 3 87 (0.6) 276 5277 252 5384 276 5337 TR TR

122 4 65 (1.9) 246 5202 240 5216 255 5253 TR TR

13 4 64 (0.4) 257 5247 223 5120 257 5261 TR TR

0.2 197 4834

89 2 51 (1.5) 241 4990 216 4882 252 5054 TR TR

2 3 55 (0.3) 256 5030 232 4956 254 5062 TR TR

43 2 71 (0.5) 261 5058 212 4925 274 5142 TR TR

159 4 80 (2.9) 280 5156 274 5112 280 5166 TR TR

15 2 62 (1.8) 243 4982 218 4888 260 5086 TR TR

105 4 57 (1.6) 247 5027 243 4958 255 5066 TR TR

0 223 4751

171 4 92 (2.9) 311 5015 294 5050 311 5103 TR TR

15 3 58 (0.3) 284 4980 286 5049 289 5007 PR RR

19 1 77 (0.5) 257 4901 247 4911 299 5055 TR PR

93 3 66 (1.5) 287 4998 270 4950 295 5039 TR TR

111 4 68 (1.7) 287 5002 268 4922 291 5023 TR TR

140 2 104 (1.9) 281 5002 284 4990 284 5139 PR TR

Sustainability 2021, 13, 13016 30 of 36

Table A1. Cont.

Instance Size p Weight
of BF

Predictive Schedule Machine Failure
State of

the
System

Reactive Schedule Q-Learning

PR TR RSR
Single

Objective Multi-ObjectiveMK
(Time
Units)

EC
(kWh)

Failure
Time

Broken-
Down

Machine

Failure
Duration

MK (Time
Units)

EC
(kWh)

MK
(Time
Units)

EC
(kWh)

MK (Time
Units)

EC
(kWh)

MK06 10× 15 3

1 86 8108

6 7 30 (0.5) 116 8359 114 8646 121 8458 TR TR

57 7 33 (1.9) 116 8317 107 8317 119 8438 TR TR

25 8 25 (0.3) 106 8235 107 8317 114 8388 PR PR

37 8 26 (1.7) 104 8202 95 8563 107 8318 TR TR

18 8 43 (0.7) 143 8471 115 8597 130 8548 TR TR

35 6 43 (1.6) 106 8242 99 8421 118 8428 TR TR

0.5 99 8004

57 5 33 (1.8) 127 8156 117 8039 135 8364 TR TR

25 7 47 (0.7) 143 8359 141 7669 147 8484 TR TR

3 6 41 (0.3) 131 8193 121 7749 141 8424 TR TR

54 2 49 (1.9) 135 8885 120 7800 140 8414 TR TR

83 1 46 (2.9) 142 8212 139 8164 145 8346 TR TR

29 4 50 (0.8) 130 8265 133 7728 153 8534 PR TR

0.2 114 7435

1 8 51 (1.8) 143 7630 138 7254 162 7915 TR TR

6 7 31 (0.3) 147 7748 149 7140 150 7795 PR TR

91 5 32 (1.9) 161 7843 153 7438 171 8005 TR TR

78 8 34 (2.9) 131 7547 128 7370 150 7795 TR TR

34 9 35 (0.5) 121 7528 134 7071 145 7725 PR TR

26 9 51 (0.7) 239 7658 239 7459 164 7935 PR TR

0 141 6564

26 9 64 (0.6) 148 6807 163 6885 206 7214 PR PR

66 5 51 (1.8) 150 6716 159 6746 186 7014 PR PR

36 1 60 (0.7) 172 6930 181 6875 202 7147 PR TR

94 7 39 (2.9) 167 6702 162 6753 185 6916 TR PR

30 2 61 (0.9) 159 6881 160 6700 196 7114 PR TR

49 9 44 (1.7) 155 6822 158 6643 184 6994 PR TR

Sustainability 2021, 13, 13016 31 of 36

Table A1. Cont.

Instance Size p Weight
of BF

Predictive Schedule Machine Failure
State of

the
System

Reactive Schedule Q-Learning

PR TR RSR
Single

Objective Multi-ObjectiveMK
(Time
Units)

EC
(kWh)

Failure
Time

Broken-
Down

Machine

Failure
Duration

MK (Time
Units)

EC
(kWh)

MK
(Time
Units)

EC
(kWh)

MK (Time
Units)

EC
(kWh)

MK07 20 × 5 3

1 164 5599

43 1 59 (0.5) 220 5803 200 5702 226 5909 PR TR

112 5 77 (2.9) 242 5891 221 5841 244 5999 TR TR

8 5 73 (0.4) 228 5861 208 5834 237 5964 TR TR

65 2 75 (1.8) 217 5872 196 5656 240 5979 TR TR

52 4 75 (0.7) 244 5942 245 5875 244 5999 PR PR

1 5 58 (0.3) 214 5495 222 5633 223 5894 PR PR

0.5 189 4699

5 1 86 (0.5) 270 4920 228 4695 280 5154 TR TR

86 4 84 (1.9) 274 4950 248 4932 274 5124 TR TR

77 2 54 (1.5) 243 4982 206 4624 258 5044 TR TR

59 1 84 (0.7) 243 4899 234 4569 273 5119 TR TR

145 1 89 (2.9) 272 4859 254 4964 285 5179 TR TR

94 1 48 (1.7) 233 4799 208 4564 248 4994 TR TR

0.2 220 4345

81 5 62 (1.5) 285 4577 248 4277 290 4695 TR TR

157 1 94 (2.9) 288 4493 275 4553 317 4830 TR TR

39 3 92 (0.5) 307 4750 273 4267 312 4805 TR TR

87 2 78 (1.7) 253 4518 257 4366 299 4740 PR TR

35 2 102 (0.8) 276 4658 294 4498 339 4890 PR TR

110 4 80 (1.8) 299 4696 288 4563 300 4745 TR TR

0 236 4097

44 2 61 (0.7) 253 4216 272 4092 297 4407 PR TR

79 3 111 (1.9) 285 4381 290 4290 350 4667 PR TR

51 3 99 (0.9) 267 4319 271 4198 332 4577 PR TR

55 4 77 (0.5) 297 4355 310 4228 326 4547 PR TR

172 4 104 (2.9) 316 4298 325 4452 341 4517 PR PR

99 1 72 (1.5) 302 4331 269 4178 308 4457 TR TR

Sustainability 2021, 13, 13016 32 of 36

Table A1. Cont.

Instance Size p Weight
of BF

Predictive Schedule Machine Failure
State of

the
System

Reactive Schedule Q-Learning

PR TR RSR
Single

Objective Multi-ObjectiveMK
(Time
Units)

EC
(kWh)

Failure
Time

Broken-
Down

Machine

Failure
Duration

MK (Time
Units)

EC
(kWh)

MK
(Time
Units)

EC
(kWh)

MK (Time
Units)

EC
(kWh)

MK08 20× 10 1.5

1 523 13,255

292 7 250 (1.9) 613 13,956 604 14,405 775 15,523 PR PR

125 7 192 (0.7) 579 13,683 582 13,250 715 14,983 PR PR

94 1 153 (0.3) 681 14,735 693 14,974 681 14,677 PR PR

242 3 185 (1.8) 584 13,809 577 13,755 701 14,938 TR TR

86 9 207 (0.5) 559 13,579 567 13,712 727 15,091 PR PR

238 3 151 (1.7) 568 13,684 555 13,458 672 14,596 TR TR

0.5 524 12,499

81 5 258 (0.8) 495 13,852 401 13,451 487 14,596 TR TR

216 2 189 (1.9) 292 12,902 293 12,979 372 13,642 PR PR

106 9 139 (0.5) 280 12,699 273 12,587 371 13,552 TR TR

10 7 227 (0.6) 434 14,046 340 13,581 491 14,632 TR TR

418 10 152 (2.9) 404 13,048 393 13,226 420 13,495 TR TR

42 3 196 (0.4) 359 13,481 330 13,013 458 14,335 TR TR

0.2 543 12,365

337 7 159 (1.9) 619 12,848 595 12,872 682 13,616 TR TR

132 5 226 (0.8) 646 13,377 632 13,348 773 14,435 TR TR

201 8 174 (1.6) 631 13,198 589 12,976 720 13,958 TR TR

131 1 184 (0.4) 717 14,009 734 13,683 728 14,030 PR TR

320 1 158 (1.8) 689 13,467 699 13,173 709 13,859 PR TR

15 3 147 (0.3) 592 12,889 581 12,550 690 13,688 TR TR

0 561 12,320

194 9 260 (1.9) 590 12,810 584 12,949 785 14,336 TR PR

29 10 146 (0.3) 750 13,720 714 13,661 722 13,769 TR TR

126 4 260 (0.9) 607 13,062 612 12,789 821 14,660 PR TR

214 10 140 (1.4) 694 13,464 667 13,404 703 13,598 TR TR

430 10 204 (2.9) 782 13,396 744 13,420 782 13,876 TR PR

86 3 263 (0.8) 689 13,809 640 13,244 826 14,687 TR TR

Sustainability 2021, 13, 13016 33 of 36

Table A1. Cont.

Instance Size p Weight
of BF

Predictive Schedule Machine Failure
State of

the
System

Reactive Schedule Q-Learning

PR TR RSR
Single

Objective Multi-ObjectiveMK
(Time
Units)

EC
(kWh)

Failure
Time

Broken-
Down

Machine

Failure
Duration

MK (Time
Units)

EC
(kWh)

MK
(Time
Units)

EC
(kWh)

MK (Time
Units)

EC
(kWh)

MK09 20× 10 3

1 342 13,900

189 2 132 (1.8) 464 14,965 413 14,429 567 15,250 TR TR

244 7 97 (2.9) 518 14,433 488 14,404 531 14,890 TR TR

68 10 107 (0.2) 372 14,124 382 14,259 441 14,890 PR PR

50 9 94 (0.4) 377 14,259 379 14,044 424 14,720 PR PR

115 1 97 (1.5) 413 14,533 478 14,341 423 14,810 PR PR

112 9 91 (0.5) 467 14,212 451 14,176 442 14,900 TR TR

0.5 362 12,788

215 4 144 (1.9) 504 13,813 438 13,166 507 14,238 TR TR

115 6 90 (0.4) 369 12,841 382 12,566 445 13,518 PR TR

141 6 91 (1.6) 369 12,884 373 12,642 462 13,788 PR TR

261 2 102 (2.9) 443 13,637 442 13,389 442 13,798 TR TR

122 5 175 (1.7) 458 13,583 452 13,434 529 14,458 TR TR

29 10 181 (0.6) 726 13,635 693 12,213 815 14,618 TR TR

0.2 367 12,437

228 8 134 (1.9) 501 13,260 483 13,236 506 13,827 TR TR

34 10 97 (0.2) 378 12,529 393 12,566 448 13,247 PR PR

43 9 169 (0.7) 455 13,258 486 13,009 538 14,147 PR TR

184 6 93 (1.5) 405 12,760 412 12,314 452 13,287 PR TR

245 8 177 (2.9) 537 13,469 514 13,413 549 14,257 TR TR

92 9 142 (0.6) 441 13,012 435 12,495 510 13,867 TR TR

0 434 12,322

118 8 126 (0.4) 548 13,358 528 13,451 562 13,062 TR TR

187 10 192 (1.7) 520 13,031 457 12,622 628 14,262 TR TR

46 2 185 (0.6) 514 13,154 491 13,579 612 14,102 TR TR

186 1 193 (1.8) 555 13,585 541 13,309 627 14,252 TR TR

13 1 215 (0.5) 569 13,729 563 14,034 651 14,492 TR TR

244 1 158 (1.9) 532 13,330 527 13,199 588 13,862 TR TR

Sustainability 2021, 13, 13016 34 of 36

Table A1. Cont.

Instance Size p Weight
of BF

Predictive Schedule Machine Failure
State of

the
System

Reactive Schedule Q-Learning

PR TR RSR
Single

Objective Multi-ObjectiveMK
(Time
Units)

EC
(kWh)

Failure
Time

Broken-
Down

Machine

Failure
Duration

MK (Time
Units)

EC
(kWh)

MK
(Time
Units)

EC
(kWh)

MK (Time
Units)

EC
(kWh)

MK10 20× 15 1.5

1 292 13,707

1 8 148 (1.8) 365 14,400 356 14,376 421 15,126 TR TR

57 9 79 (0.4) 342 14,155 330 13,920 367 14,631 TR TR

88 9 132 (0.7) 396 14,630 367 14,336 531 15,236 TR TR

203 1 130 (2.9) 415 14,436 366 14,331 429 15,214 TR TR

41 1 86 (0.3) 345 14,050 326 14,246 379 14,664 TR TR

119 4 139 (1.7) 363 14,400 345 14,095 419 15,104 TR TR

0.5 297 12,710

10 7 146 (0.5) 420 13,946 409 13,082 453 14,426 TR TR

212 2 135 (2.9) 319 13,494 393 13,629 436 14,239 TR TR

122 6 86 (1.7) 370 13,235 322 12,722 390 13,733 TR TR

17 13 128 (0.4) 307 12,787 311 12,340 359 13,392 PR TR

157 4 138 (1.9) 391 13,667 368 12,983 444 14,327 TR TR

91 3 125 (0.7) 372 13,327 359 12,538 414 13,997 TR TR

0.2 316 11,826

8 3 150 (0.4) 352 12,223 385 12,334 474 13,564 PR PR

125 8 83 (1.6) 354 12,252 350 11,921 406 12,816 TR TR

123 7 156 (1.9) 410 12,802 401 12,610 484 13,674 TR TR

50 6 150 (0.6) 403 12,705 400 12,049 469 13,509 TR TR

151 5 123 (1.8) 427 12,852 388 12,249 450 13,300 PR PR

254 3 156 (2.9) 457 12,516 438 12,582 463 13,296 TR PR

0 344 11,483

54 10 91 (0.7) 375 11,848 370 11,747 438 12,517 TR TR

72 8 126 (0.5) 405 12,117 440 11,758 473 12,902 PR TR

162 1 102 (1.6) 410 11,999 378 11,732 451 12,553 PR TR

272 7 136 (2.9) 451 11,838 435 12,241 485 12,750 TR PR

112 8 143 (0.8) 436 12,441 422 12,176 494 13,133 TR TR

178 4 169 (1.9) 438 12,381 429 12,135 514 13,183 TR TR

Sustainability 2021, 13, 13016 35 of 36

References
1. Giret, A.; Trentesaux, D.; Prabhu, V. Sustainability in Manufacturing Operations Scheduling: A State of the Art Review. J. Manuf.

Syst. 2015, 37, 126–140. [CrossRef]
2. Zhang, L.; Li, X.; Gao, L.; Zhang, G. Dynamic Rescheduling in FMS That Is Simultaneously Considering Energy Consumption

and Schedule Efficiency. Int. J. Adv. Manuf. Technol. 2016, 87, 1387–1399. [CrossRef]
3. Nouiri, M.; Bekrar, A.; Trentesaux, D. Towards Energy Efficient Scheduling and Rescheduling for Dynamic Flexible Job Shop

Problem. IFAC-Pap. 2018, 51, 1275–1280. [CrossRef]
4. Masmoudi, O.; Delorme, X.; Gianessi, P. Job-Shop Scheduling Problem with Energy Consideration. Int. J. Prod. Econ. 2019,

216, 12–22. [CrossRef]
5. Liu, Y.; Dong, H.; Lohse, N.; Petrovic, S. A Multi-Objective Genetic Algorithm for Optimisation of Energy Consumption and Shop

Floor Production Performance. Int. J. Prod. Econ. 2016, 179, 259–272. [CrossRef]
6. Kemmoe, S.; Lamy, D.; Tchernev, N. Job-Shop like Manufacturing System with Variable Power Threshold and Operations with

Power Requirements. Int. J. Prod. Res. 2017, 55, 6011–6032. [CrossRef]
7. Raileanu, S.; Anton, F.; Iatan, A.; Borangiu, T.; Anton, S.; Morariu, O. Resource Scheduling Based on Energy Consumption for

Sustainable Manufacturing. J. Intell. Manuf. 2017, 28, 1519–1530. [CrossRef]
8. Mokhtari, H.; Hasani, A. An Energy-Efficient Multi-Objective Optimization for Flexible Job-Shop Scheduling Problem. Comput.

Chem. Eng. 2017, 104, 339–352. [CrossRef]
9. Gong, X.; De Pessemier, T.; Martens, L.; Joseph, W. Energy-and Labor-Aware Flexible Job Shop Scheduling under Dynamic

Electricity Pricing: A Many-Objective Optimization Investigation. J. Clean. Prod. 2019, 209, 1078–1094. [CrossRef]
10. Chen, X.; Li, J.; Han, Y.; Sang, H. Improved Artificial Immune Algorithm for the Flexible Job Shop Problem with Transportation

Time. Meas. Control 2020, 53, 2111–2128. [CrossRef]
11. Salido, M.A.; Escamilla, J.; Barber, F.; Giret, A. Rescheduling in Job-Shop Problems for Sustainable Manufacturing Systems. J.

Clean. Prod. 2017, 162, S121–S132. [CrossRef]
12. Caldeira, R.H.; Gnanavelbabu, A.; Vaidyanathan, T. An Effective Backtracking Search Algorithm for Multi-Objective Flexible Job

Shop Scheduling Considering New Job Arrivals and Energy Consumption. Comput. Ind. Eng. 2020, 149, 106863. [CrossRef]
13. Xu, B.; Mei, Y.; Wang, Y.; Ji, Z.; Zhang, M. Genetic Programming with Delayed Routing for Multiobjective Dynamic Flexible Job

Shop Scheduling. Evol. Comput. 2021, 29, 75–105. [CrossRef]
14. Luo, J.; El Baz, D.; Xue, R.; Hu, J. Solving the Dynamic Energy Aware Job Shop Scheduling Problem with the Heterogeneous

Parallel Genetic Algorithm. Future Gener. Comput. Syst. 2020, 108, 119–134. [CrossRef]
15. Tian, S.; Wang, T.; Zhang, L.; Wu, X. An Energy-Efficient Scheduling Approach for Flexible Job Shop Problem in an Internet of

Manufacturing Things Environment. IEEE Access 2019, 7, 62695–62704. [CrossRef]
16. Nouiri, M.; Trentesaux, D.; Bekrar, A. EasySched: Une Architecture Multi-Agent Pour l’ordonnancement Prédictif et Réactif de

Systèmes de Production de Biens En Fonction de l’énergie Renouvelable Disponible Dans Un Contexte Industrie 4.0. arXiv 2019,
arXiv:1905.12083. [CrossRef]

17. Bishop, C.M. Pattern Recognition and Machine Learning (Information Science and Statistics); Springer: Berlin, Germany, 2007.
18. Shahzad, A.; Mebarki, N. Learning Dispatching Rules for Scheduling: A Synergistic View Comprising Decision Trees, Tabu

Search and Simulation. Computers 2016, 5, 3. [CrossRef]
19. Wang, C.L.; Rong, G.; Weng, W.; Feng, Y.P. Mining Scheduling Knowledge for Job Shop Scheduling Problem. IFAC-Pap. 2015,

48, 800–805. [CrossRef]
20. Zhao, M.; Gao, L.; Li, X. A Random Forest-Based Job Shop Rescheduling Decision Model with Machine Failures. J. Ambient. Intell.

Humaniz. Comput. 2019, 1–11. [CrossRef]
21. Li, Y.; Carabelli, S.; Fadda, E.; Manerba, D.; Tadei, R.; Terzo, O. Machine Learning and Optimization for Production Rescheduling

in Industry 4.0. Int. J. Adv. Manuf. Technol. 2020, 110, 2445–2463. [CrossRef]
22. Pereira, M.S.; Lima, F. A Machine Learning Approach Applied to Energy Prediction in Job Shop Environments. In Proceedings

of the IECON 2018-44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October
2018; pp. 2665–2670.

23. Li, Y.; Chen, Y. Neural Network and Genetic Algorithm-Based Hybrid Approach to Dynamic Job Shop Scheduling Problem. In
Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October
2009; pp. 4836–4841.

24. Wang, C.; Jiang, P. Manifold Learning Based Rescheduling Decision Mechanism for Recessive Disturbances in RFID-Driven Job
Shops. J. Intell. Manuf. 2018, 29, 1485–1500. [CrossRef]

25. Mihoubi, B.; Bouzouia, B.; Gaham, M. Reactive Scheduling Approach for Solving a Realistic Flexible Job Shop Scheduling Problem.
Int. J. Prod. Res. 2021, 59, 5790–5808. [CrossRef]

26. Adibi, M.A.; Shahrabi, J. A Clustering-Based Modified Variable Neighborhood Search Algorithm for a Dynamic Job Shop
Scheduling Problem. Int. J. Adv. Manuf. Technol. 2014, 70, 1955–1961. [CrossRef]

27. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.

http://doi.org/10.1016/j.jmsy.2015.08.002
http://doi.org/10.1007/s00170-013-4867-3
http://doi.org/10.1016/j.ifacol.2018.08.357
http://doi.org/10.1016/j.ijpe.2019.03.021
http://doi.org/10.1016/j.ijpe.2016.06.019
http://doi.org/10.1080/00207543.2017.1321801
http://doi.org/10.1007/s10845-015-1142-5
http://doi.org/10.1016/j.compchemeng.2017.05.004
http://doi.org/10.1016/j.jclepro.2018.10.289
http://doi.org/10.1177/0020294020962130
http://doi.org/10.1016/j.jclepro.2016.11.002
http://doi.org/10.1016/j.cie.2020.106863
http://doi.org/10.1162/evco_a_00273
http://doi.org/10.1016/j.future.2020.02.019
http://doi.org/10.1109/ACCESS.2019.2915948
http://doi.org/10.21494/ISTE.OP.2019.0375
http://doi.org/10.3390/computers5010003
http://doi.org/10.1016/j.ifacol.2015.06.181
http://doi.org/10.1007/s12652-019-01574-x
http://doi.org/10.1007/s00170-020-05850-5
http://doi.org/10.1007/s10845-016-1194-1
http://doi.org/10.1080/00207543.2020.1790686
http://doi.org/10.1007/s00170-013-5354-6

Sustainability 2021, 13, 13016 36 of 36

28. Riedmiller, S.; Riedmiller, M. A Neural Reinforcement Learning Approach to Learn Local Dispatching Policies in Production
Scheduling. In Proceedings of the IJCAI, Stockholm, Sweden, 31 July–6 August 1999; Volume 2, pp. 764–771.

29. Chen, X.; Hao, X.; Lin, H.W.; Murata, T. Rule Driven Multi Objective Dynamic Scheduling by Data Envelopment Analysis and
Reinforcement Learning. In Proceedings of the 2010 IEEE International Conference on Automation and Logistics, Hong Kong
and Macau, China, 16–20 August 2010; pp. 396–401.

30. Gabel, T.; Riedmiller, M. Distributed Policy Search Reinforcement Learning for Job-Shop Scheduling Tasks. Int. J. Prod. Res. 2012,
50, 41–61. [CrossRef]

31. Zhao, M.; Li, X.; Gao, L.; Wang, L.; Xiao, M. An Improved Q-Learning Based Rescheduling Method for Flexible Job-Shops with
Machine Failures. In Proceedings of the 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE),
Vancouver, BC, Canada, 22–26 August 2019; pp. 331–337.

32. Shahrabi, J.; Adibi, M.A.; Mahootchi, M. A Reinforcement Learning Approach to Parameter Estimation in Dynamic Job Shop
Scheduling. Comput. Ind. Eng. 2017, 110, 75–82. [CrossRef]

33. Luo, S. Dynamic Scheduling for Flexible Job Shop with New Job Insertions by Deep Reinforcement Learning. Appl. Soft Comput.
2020, 91, 106208. [CrossRef]

34. Bouazza, W.; Sallez, Y.; Beldjilali, B. A Distributed Approach Solving Partially Flexible Job-Shop Scheduling Problem with a
Q-Learning Effect. IFAC 2017, 50, 15890–15895. [CrossRef]

35. Wang, Y.-F. Adaptive Job Shop Scheduling Strategy Based on Weighted Q-Learning Algorithm. J. Intell. Manuf. 2020, 31, 417–432.
[CrossRef]

36. Trentesaux, D.; Pach, C.; Bekrar, A.; Sallez, Y.; Berger, T.; Bonte, T.; Leitão, P.; Barbosa, J. Benchmarking Flexible Job-Shop
Scheduling and Control Systems. Control. Eng. Pract. 2013, 21, 1204–1225. [CrossRef]

37. Nouiri, M.; Bekrar, A.; Trentesaux, D. An Energy-Efficient Scheduling and Rescheduling Method for Production and Logistics
Systems. Int. J. Prod. Res. 2020, 58, 3263–3283. [CrossRef]

38. Mirjalili, S. Genetic algorithm. In Evolutionary Algorithms and Neural Networks; Springer: Berlin/Heidelberg, Germany,
2019; pp. 43–55.

39. Nouiri, M.; Bekrar, A.; Jemai, A.; Trentesaux, D.; Ammari, A.C.; Niar, S. Two Stage Particle Swarm Optimization to Solve
the Flexible Job Shop Predictive Scheduling Problem Considering Possible Machine Breakdowns. Comput. Ind. Eng. 2017,
112, 595–606. [CrossRef]

40. Yuan, B.; Gallagher, M. A hybrid approach to parameter tuning in genetic algorithms. In Proceedings of the 2005 IEEE Congress
on Evolutionary Computation, Edinburgh, UK, 2–4 September 2005; Volume 2.

41. Angelova, M.; Pencheva, T. Tuning genetic algorithm parameters to improve convergence time. Int. J. Chem. Eng. 2011,
2011, 646917. [CrossRef]

42. Vieira, G.E.; Herrmann, J.W.; Lin, E. Rescheduling Manufacturing Systems: A Framework of Strategies, Policies, and Methods. J.
Sched. 2003, 6, 39–62. [CrossRef]

43. Qiao, F.; Wu, Q.; Li, L.; Wang, Z.; Shi, B. A Fuzzy Petri Net-Based Reasoning Method for Rescheduling. Trans. Inst. Meas. Control.
2011, 33, 435–455. [CrossRef]

44. François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M.G.; Pineau, J. An Introduction to Deep Reinforcement Learning. In
Foundations and Trends in Machine Learning; University of California: Berkeley, CA, USA, 2018; Volume 11, pp. 219–354.

45. Li, Y. Deep Reinforcement Learning: An Overview. arXiv Preprint 2017, arXiv:1701.07274.
46. Brandimarte, P. Routing and Scheduling in a Flexible Job Shop by Tabu Search. Ann. Oper. Res. 1993, 41, 157–183. [CrossRef]
47. Nouiri, M. Implémentation d’une Méta-Heuristique Embarquée Pour Résoudre Le Problème d’ordonnancement Dans Un Atelier

Flexible de Production. Ph.D. Thesis, Ecole Polytechnique de Tunisie, Carthage, Tunisia, 2017.
48. Bożejko, W.; Uchroński, M.; Wodecki, M. Parallel Hybrid Metaheuristics for the Flexible Job Shop Problem. Comput. Ind. Eng.

2010, 59, 323–333. [CrossRef]

http://doi.org/10.1080/00207543.2011.571443
http://doi.org/10.1016/j.cie.2017.05.026
http://doi.org/10.1016/j.asoc.2020.106208
http://doi.org/10.1016/j.ifacol.2017.08.2354
http://doi.org/10.1007/s10845-018-1454-3
http://doi.org/10.1016/j.conengprac.2013.05.004
http://doi.org/10.1080/00207543.2019.1660826
http://doi.org/10.1016/j.cie.2017.03.006
http://doi.org/10.1155/2011/646917
http://doi.org/10.1023/A:1022235519958
http://doi.org/10.1177/0142331208100100
http://doi.org/10.1007/BF02023073
http://doi.org/10.1016/j.cie.2010.05.004

	Introduction
	Related Works
	Energy-Efficient Scheduling
	Job Shop Energy-Efficient Scheduling
	Flexible Job Shop Energy-Efficient Scheduling

	Job Shop Scheduling Using Artificial Intelligence
	Discussion

	A Dynamic Flexible Job Shop Scheduling with Energy Consumption Optimization
	Description of FJSSP
	Genetic Algorithm (GA)
	Disturbances in FJSSP
	Rescheduling Strategies

	Proposed Multi Objective Q-Learning Rescheduling Approach
	Q-Learning Terminologies
	Multi-Objective Q-Learning
	State Space Definition
	Actions and Reward Space Definition

	Experiments and Results
	Predictive Schedule Based on GA
	Rescheduling Strategies
	Rescheduling Based on Q-Learning
	The Single Objective Q-Learning
	The Multi-Objective Q-Learning

	Models Validation

	Conclusions
	
	References

