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Abstract: The accurate estimation of real estate value helps the development of real estate policies
that can respond to the complexities and instability of the real estate market. Previously, statistical
methods were used to estimate real estate value, but machine learning methods have gained popu-
larity because their predictions are more accurate. In contrast to existing studies that use various
machine learning methods to estimate the transactions or list prices of real estate properties without
separating the building and land prices, this study estimates land price using a large amount of
land-use information obtained from various land- and building-related datasets. The random forest
and XGBoost methods were used to estimate 52,900 land prices in Seoul, South Korea, from January
2017 to December 2020. The models were also separately trained for different land uses and different
time periods. Overall, the results revealed that XGBoost yields a higher prediction accuracy. Whereas
the XGBoost models were more accurate on the 2020 data than on the 2017–2020 data when analyzing
residential areas, the random forest models were more accurate on the 2017–2020 data than on the
2020 data. Further analysis will extend the prediction model to consider submarkets determined by
price volatility and locality.

Keywords: land price; prediction modeling; machine learning; ensemble; random forest; XGBoost

1. Introduction

Real estate has few market participants because of its high value [1]. This characteristic
of real estate causes an asymmetry in market information and reduces market efficiency [2].
The quick and accurate estimation of real estate values resolves this instability in the real
estate market to a certain degree and helps establish real estate policies [3]. For these
reasons, attempts have been made to increase the quality of data in the public and private
sectors to improve the estimation of real estate values, increase the efficiency and accuracy
of valuation, and build an automated valuation model [4].

Recently, large-scale data collection and machine/deep-learning-based valuation
models have become available in the real estate field owing to the application of information
and artificial intelligence technologies. A machine learning approach can consider many
variables and employs flexible, data-driven model specifications [5]. Previous empirical
studies have verified these advantages in prediction performance when compared with
the performance of traditional hedonic regression approaches. Simlai (2021) estimated
the owner-occupied housing values of 7904 census tracks in California by employing
least-squares-based machine-learning models such as ridge regression, least absolute
shrinkage and selection operator (LASSO), and elastic net regression [6]. The study also
utilized conventional ordinary least-squares (OLS) and weighted least-squares regression
models. However, the results revealed that the machine learning models (ridge, LASSO,
and elastic net) had better prediction capabilities than conventional regression models.
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Schulz and Wersing (2021) used the data of 11,908 housing transactions from 2016 to 2019
in Aberdeen, Scotland, to evaluate boosting-based machine learning models, which yielded
better prediction accuracy than conventional statistical models such as polynomial and
spatial autoregressive models [7].

Previous studies have also compared the prediction capabilities of machine learn-
ing models. Mullainathan and Spiess (2017) estimated 10,000 owner-occupied housing
prices randomly selected from the 2011 American Housing Survey by employing a tree-
based ensemble machine learning as well as regression-based machine learning [8]. They
incorporated 150 various covariates to perform the estimation and concluded that the
prediction capability of the random forest (RF), which is a typical ensemble method,
was superior. Ceh et al. (2018) estimated 7407 apartment sale prices in the city of Ljubljana,
Slovenia using RF and OLS methods and showed better performances in terms of R-squared
using the RF method [9]. Singh et al. (2020) used housing sales data from 2006–2010 in
Ames, Iowa, USA, to estimate prices using the RF, gradient boosting, and LASSO machine
learning techniques [10]. Their study showed that the prediction accuracy was high when
prices were estimated by gradient boosting. Pai and Wang (2020) evaluated machine learn-
ing models (least-squares support vector regression, classification and regression trees, and
backpropagation neural networks) with respect to the prediction of 32,215 housing prices
from April 2016 to April 2019 in Taichung, Taiwan [11]. Their study considered 23 housing
and environmental features and showed that the least-squares support vector regression
model outperformed the others. Park and Bae (2015) analyzed classification-based machine
learning models such as the C4.5 DT algorithm, repeated incremental pruning to produce
error reduction (RIPPER), naïve Bayes method, and AdaBoost using the list price data of
5359 townhouses from the Multiple Listing Service in Fairfax County, VA, USA [12]. Their
study considered 27 features such as structural characteristics (e.g., bathroom, bedroom,
exterior features, heating, lot size, and parking), financial characteristics (e.g., mortgage),
and public school ratings. The numerical results of their study showed that the RIPPER
prediction model was the most accurate. Antipov and Pokryshevskaya (2012) used the
price data of 2848 two-room apartment transactions completed in 2010 in Saint-Petersburg,
Russia, to estimate prices using various machine learning methods such as RF, k-nearest
neighbors, boosting, the classification and regression tree, chi-squared automatic inter-
action detection, and an artificial neural network [13]. Alfaro-Navarro et al. (2020) used
different ensemble methods (bagging, RF, and boosting) to estimate 790,631 real estate
prices with 33 feature variables representing property characteristics in Spain [14]. Their
results showed better performances in terms of the mean absolute percentage error in the
bagging and RF methods. Ho et al. (2021) used 39,554 housing prices from 1996 to 2014 in
Hong Kong to analyze machine-learning models for price estimation [15]. Their study used
support vector machine, RF, and gradient boosting machine (GBM) models to estimate the
prices, and the analysis results verified that the accuracies of RF and GBM were higher
than that of the support vector machine. A study by Truong et al. (2020) used RF, extreme
gradient boosting (XGBoost), light gradient boosting machine, hybrid regression, and
stacked generalization regression models to estimate more than 300,000 housing prices in
Beijing, China, with 58 features and found that the RF model achieved the lowest root
mean squared logarithmic error [16].

Although the performance of machine learning methods in previous studies varied
according to the study domain and dataset, the overall high accuracy of machine learning
models (both bagging-based (e.g., RF) or boosting-based (e.g., GBM) ensemble approaches)
has been generally verified. Previous studies have broadened our understanding of the
application of machine learning techniques to real estate value estimation, but the following
three research gaps remain.

First, most previous studies estimated the transaction or list prices of real estate
without separating land and structural components. The final real estate value is based
on the combination of the contributions of land and improvement components, but these
two contributions are not separately listed in normal market transactions. However, the
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estimated value of the land alone might provide information that is important for real
estate businesses and policies. By estimating the value of the land only, the feasibility
of an investment can be more efficiently determined. In addition, the valuation of the
land provides an important basis for establishing real estate taxation policies, as in the
example of South Korea. Buildings deteriorate over time, which causes a depreciation
in their prices and leads to errors in real estate valuations. Davis and Heathcote (2007)
noted that improvement values are estimated as the depreciation of construction costs [17].
Previous research also found that land price leads to more volatile trends in the real estate
market compared with housing price [17,18], and different factors determine land and
improvement components [19]. The extensive hedonic price literature has shown housing
prices are a function of various factors ranging from structural (e.g., built year, lot size, and
number of rooms) and financial characteristics (e.g., foreclosed status) to neighborhood
(e.g., socioeconomic, safety, built environments) characteristics [20,21]. Land price has
long relied on monocentric models mainly explained by accessibility (e.g., distance to
the central business district) and land use density as essential concepts in land economic
theories [22,23]. Previous studies found significant impacts of accessibility to jobs and
nearby amenities such as park, open space, and waters [24–26], but studies rarely explored
land use factors, which are more likely to influence land price in modern developed
urban environments.

Second, a system for collecting land price data and modeling automated valuations
needs to be built. Zillow, a representative American real estate platform (zillow.com),
collects various real estate related information on topics such as population, school districts,
crimes, geography, multiple listing services, and sale and lease transactions. It also provides
predicted prices obtained from machine-learning techniques under the name of Zestimate.
In South Korea, several platforms that provide real estate price information, such as
Zigbang (zigbang.com), Dabang (dabangapp.com), and Value Map (valueupmap.com) are
available; nonetheless, these platforms provide information only on residential real estate
prices or brokerage services. Recently, the government has provided massive information
related to real estate in the form of an open data platform via an application programming
interface (API) to encourage its use. Although data collection through an API can overcome
the limitations of conventional data collection methods, such as manual collection or
collection that requires the permission of real-estate agents, a process for integrating and
refining various real estate data is still needed to extract adequate information about land
transaction prices. Hence, in this study, the process of data collection was automated using
a patented technique developed by Seoul Appraisal Co., Ltd., and rich datasets to analyze
land prices.

Third, an insufficient number of studies have been conducted on real estate values in
Seoul. Seoul is the capital city of South Korea, has a population of 9.8 million people, and
a population density of 26,000 people/km2. It is large enough to provide the number of
real estate transaction samples required for analyses according to various socioeconomic
activities. Recent studies analyzed machine learning models that estimated real estate
values in Seoul; however, their study was limited to the valuation of apartments [4]
or buildings [27]. Accordingly, this study constructed a dataset consisting of the land
transaction prices of 52,900 lots in Seoul from 2017 to 2020 and employed ensemble-based
RF and eXtreme gradient boosting (XGBoost), both high-performance machine learning
methods, to estimate land prices using data that contain rich information on land use. The
results of this study demonstrate the potential for a more sophisticated prediction model.

The rest of this paper is structured as follows. The next section elaborates on the study
methodology, including the descriptions of the study area, the data sources, the variable
measures, and two modeling techniques, Random Forest and XGBoost. Thereafter, the
summary statistics and the empirical results are presented and compared in Section 3. The
interpretation of the two empirical models and their associations with various land use
variables are discussed in Section 4. Conclusions are made in the closing section.
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2. Materials and Methods
2.1. Study Area

The study area is Seoul, South Korea, which has an area of 605 km2 and a population
of 9.8 million people. Seoul consists of 25 boroughs (called “gu”), 425 administrative
districts (called “dong”), and 640,575 parcels of property. Each borough has 25,623 parcels
on average, ranging from 13,109 parcels to 39,010 parcels. Seoul includes land for various
uses (e.g., residential, commercial, industrial, and green) and natural environments (e.g.,
rivers and mountains). Commercial, residential, and green land uses account for 5.9%,
18.9%, and 41.8% of the total area of Seoul, respectively. A mixture of residential and
commercial land use accounts for 13% of the total area. The Han River runs through the
city, and green belts exist in the outskirts of the city. The study area is shown in Figure 1.
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2.2. Data Sources

The data were obtained from government websites operated by the Ministry of Land,
Infrastructure, and Transport (MLIT) and the Korea Real Estate Board (KREB). The MLIT is
a central administrative agency responsible for establishing policies and laws related to
the national territory, construction, and real estate. The KREB is a public enterprise of the
MLIT that discloses real estate prices and performs the analysis and management of real
estate information.

The public APIs provided by the MLIT were used to collect information from the
building register, land use, appraised land value, real estate transaction price, and land
price change rate datasets. The dataset of the standard unit prices of buildings was
purchased from the KREB. The details of the datasets are described in Section 2.3. All
datasets except for the real estate transaction price dataset were merged according to parcel
number to form a single dataset for the analysis. Because the datasets are provided to the
public, the real estate transaction price data do not include the parcel numbers or specific
addresses because of privacy concerns. To merge the transaction price data, we used a
matching algorithm patented by Seoul Appraisal Co., Ltd. (Patent No. 10-1857011, Korean
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Intellectual Property Office). The steps used to process datasets and variables are illustrated
in Figure 2.
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In this study, all transaction data generated from January 2017 to December 2020
were collected. A total of 60,456 arm’s length transactions occurred during this period.
The transactions for apartments and small sites (less than 3.3 m2) were excluded. The
data of 52,900 transactions were used for our final analysis. Table 1 shows the number of
transactions by land use in Seoul for each year. The residential areas of Seoul make up
approximately 90% of all transactions for each year, and the commercial areas, industrial
areas, and green areas make up the rest, in that order.

Table 1. Number of transactions by land use from 2017 to 2020 in Seoul (unit: m2).

Residential
Areas

Commercial
Areas

Industrial
Areas Green Areas Total

2017 14,078 662 328 236 15,304
2018 12,448 784 312 256 13,800
2019 10,044 825 304 213 11,386
2020 11,085 823 283 219 12,410
Total 47,655 3094 1227 924 52,900

2.3. Variables

The independent variables (or features) were based on the land use and appraised
land value data. The land use data included both geographical and land use information.
Various geographical attributes corresponding to administrative location (e.g., borough and
district), bearing (i.e., east, west, south, north, southeast, northeast, or northwest), area size,
topography (e.g., steep slopes), shape (e.g., irregular or square), and road interface (e.g.,
distributor or arterial roads) were measured. Various land use attributes corresponding to
the main zoning (e.g., residential or commercial), special district designation, land category,
planned facilities, area restrictions, farmland classification, forest land, railroads, and waste
were also measured. The appraised land value data were used to measure the appraisal
land value and determine the standard lot status.
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The dependent variable (or target) of this study was the land unit price. Land unit
prices were calculated as the land transaction price divided by land area. This study used
four-year transaction price data from 2017 to 2020, and the rate of change in land value from
the transaction date to 31 December 2020 was applied to the land unit price at transaction
time to obtain a value that is equivalent to the price as of 31 December 2020. For example,
the land unit price as of 31 December 2020 was calculated by multiplying the land unit
price at the transaction date by the rate of change in land value from the corresponding
transaction date to 31 December 2020. The calculation formulas are as follows.

1. Building price = Replacement cost − Depreciation amount (applied from the approved
date of use to the transaction time);

2. Land unit price at transaction time = (real transaction price of the real estate −
Building price)/land area;

3. Land unit price as of 31 December 2020 = land unit price at transaction time × rate of
change in land price (from the transaction time to 31 December 2020).

The real estate transaction price data from the MLIT provided real estate prices without
separate prices for the land and buildings. If a building exists on a parcel, the building
price was subtracted from the transaction price to obtain the land price. The building
price was calculated by subtracting the depreciation amount from the cost of replacement
(or reproduction). The amount of depreciation was calculated based on a valuation of
the wear or loss over time from the approved date of use to 31 December 2020. The
replacement cost refers to the reasonable cost required to reproduce or reacquire a target
building in new-construction condition for full utilization at the current market price. The
data for the standard unit price of new buildings included the criterion for calculating the
replacement cost, which is determined according to the building structure and its use. The
building register data included the details about the building structure (e.g., wood, block,
or masonry) and building use (e.g., residential, commercial, or industrial).

2.4. Analysis
2.4.1. Analytical Framework

We conducted a three-fold analysis. The real estate market often varies according
to temporal and spatial submarket characteristics. We first separated our final dataset
into 2017–2020 data and 2020 data to examine how the prediction of land prices changed
according to temporal changes in the market. Second, we separated the dataset based
on land use to examine how the prediction of land prices changed according to land-
use differences. Third, we examined the prediction of land prices with and without the
appraised land value variable. All analyses were carried out using Python 3.7 and the
relevant program packages.

2.4.2. Machine Learning Methods: RF and XGBoost

This study employed the ensemble approach methods of RF and XGBoost, which
have been found to yield high performance in both previous studies and Kaggle com-
petitions. The ensemble approach combines weak multiple predictors to create a single
strong predictive model. This single ensemble model aggregates the results derived from
all predictors and often yields a higher accuracy than any individual predictor model [28].
The predictors are broadly trained in three ways to predict the class: voting, bagging, or
boosting. In the voting method, the predictors are independently trained, and the final
predicted target class is determined via majority vote. The bagging method also employs
majority vote predictors, but sampling with replacement is used for each predictor, which
has been trained using the same training algorithm. In the boosting method, multiple pre-
dictors are sequentially trained, and each predictive model is corrected using information
from the predecessor. RF is trained using the bagging method, which combines multiple
independent decision tree (DT) based classifiers [29]. XGBoost is trained using the boosting
method and consists of sequential classifiers using DTs as the base predictors to correct
the errors of the preceding, underfitted predictor. A DT is a tree-like structure in which
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a root node, which forms the initial node of the tree structure, is split into internal nodes
representing a decision on feature classification, and a final class label is assigned to a leaf
node, which represents the final target value [30]. The classification rules for achieving
high data uniformity are applied to the data until the nodes cannot be further divided into
sub-nodes [30]. The uniformity of the final classified data is measured using the Gini or
entropy index to select the best DT model [30].

The RF model is built using randomly selected input variables and sampling with re-
placement [31]. We followed a three-step procedure for using the RF model: (1) the DTs are
generated using bootstrap sampling; (2) the hyperparameters, such as the number of trees,
depth of the trees, and number of randomly selected input variables, are tuned; (3) the RF
model is trained and used to predict the final values by voting. The hyperparameters were
determined using the GridSearch function in the scikit-learn Python library. GridSearch
generates a grid of hyperparameter values and specifies which hyperparameters to use to
control the learning process [32]. The number of input variables was set to five, following
previous empirical studies [33]. The RandomForestRegressor algorithm in scikit-learn was
used to analyze the RF model. The hyperparameters were set as follows: 10,000 for the
number of trees (n_estimators), 9 for the depth of trees (max_depth), and default values for
all other hyperparameters. The details on the hyperparameters are presented in Table 2.

Table 2. Hyperparameters of the algorithms used in the study.

Model Python Library Hyperparameter

Random
Forest

RandomforestRegressor
from Scikit-Learn

n_estimators = 10,000, max_depth = 9, and default for others (n_estimators
= 100, criterion = ‘mse’, max_depth = None, min_samples_split = 2,

min_samples_leaf = 1, min_weight_fraction_leaf = 0.0,
max_features = ‘auto’, max_leaf_nodes = None,

min_impurity_decrease = 0.0, min_impurity_split = None,
bootstrap = True, oob_score = False, n_jobs = None, random_state = None,
verbose = 0, warm_start = False, ccp_alpha = 0.0, max_samples = None)

XGBoost XGBoostRegressor
from Scikit-Learn Wrapper

n_estimators = 18,385, max_depth = 6, learning_rate = 0.005,
obj = squarederror, and default for others (base_score = 0.5,

booster = gb_tree, colsample_bylevel = 1, colsample_bynode = 1,
colsample_bytree = 1, gamma = 0, importance_type = ‘gain’,

max_delta_step = 0, min_child_weight = 1, missing = None, nthread = −1,
reg_alpha = 0, reg_lambda = 1, scale_post_weight = 1, seed = 0,

subsample = 1, verbosity = 1)

XGBoost is a scalable model that reduces overfitting and bias and increases computa-
tional speed and model performance by applying gradient boosting-based tree pruning,
parallelization in tree construction, and regularization [34]. The fast runtime of XGBoost is
achieved by applying cache-aware access and out-of-core computation [34]. The boosting
approach creates a strong learner by combining multiple weak learners with a simple
tree structure. When a weak learner is trained at each iteration, the weights are updated
to the next learner to increase the prediction performance and reduce the bias. This
method employs the gradient descent algorithm to reduce residuals resulting from the
predecessor learner. The XGBoost algorithm in the scikit-learn wrapper module was
used [35]. The hyperparameters were determined to be n_estimators = 18,385, max_depth
= 6, learning_rate = 0.005, and default values were used for the remaining hyperparameters
(see Table 2).

2.4.3. Model Evaluation Measure

The data were randomly split into training, validation, and test sets using a 7:1:2 ratio,
which is a common technique used to evaluate a model [32]. For model evaluation, we
used the accuracy rate, which is calculated as the number of correct predictions. Prediction
was regarded as being correct when the predicted land price was within the ±10% error
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margin of the actual land price. We used this range because it has been widely accepted for
valuation errors [36,37]. We also tested 5% and 15% error margins, but for brevity, only the
results with 10% error margin are reported in this paper.

• Prediction is correct if
∣∣∣predicted land price−actual land price

actual land price

∣∣∣ ≤ 10%

• Accuracy =
Number of correct predictions

Total number of predictions

3. Results
3.1. Summary Statistics

Table 3 summarizes the statistics of the variables. The average land unit price of the
samples was KRW 8,109,860. The average appraised land value was KRW 4,466,413. The
samples had an average area of 199.931 m2. They were mostly flatland or elevated areas,
had the shape of a square, rectangle, or ladder, and abutted onto medium-sized or narrow
roads. The main zoning was residential, and most areas were not designated as restricted
areas or specific use areas.

Table 3. Summary of statistics.

Variables Descriptions Mean/
Frequency

S.D. (Min.–Max.)/
%

Dependent variable (Target)

Land unit price Continuous: (KRW) 8,109,860 7,322,789
(9201–326,671,182)

Independent variables (Features)

Appraisal Information

Appraised land value Continuous: (KRW) 4,466,413 3,785,368
(7240–176,000,000)

Standard lot status Binary: 1: standard lot 2403 4.543%
0: non-standard lot 50,497 95.457%

Geographical Land Information

Area Continuous: m2 199.931 992.714 (3.3–177435)

Topography

Category: 1: Steep slope 393 0.743%
2: Undulating slope 1275 2.410%

3: Flatland 10,749 20.319%
4: Low-lying area 38 0.072%
5: Elevated area 40,445 76.456%

Shape

Category: 1: Irregular 4447 8.406%
2: Square 8577 16.214%
3: Ladder 16,059 30.357%
4: Triangle 828 1.565%

5: Flag 3199 6.047%
6: Vertical rectangle 13,620 25.747%

7: Horizontal rectangle 6147 11.620%
8: Inverted triangle 23 0.043%

Abutting road

Category: 1: Thoroughfare 3142 5.940%
2: Medium-sized road 3096 5.853%

3: Medium-narrow road 6971 13.178%
4: Narrow road 39,267 74.229%

5: Land with no road access 424 0.802%

Land Use Information

First main zoning
Category: 1: Residential 47,655 90.085%

2: Commercial 3094 5.849%
3: Industrial 1227 2.319%

4: Green 924 1.747%

Area of first main zoning
Category: 1: Residential 163.830 211.528 (3.4–14,149)

2: Commercial 231.112 1037.090 (3.4–49,206)
3: Industrial 241.188 543.344 (4–8209)

4: Green 1687.738 6912.444 (5–177,435)

Second main zoning
Category: 1: Residential 793 1.499%

2: Commercial 61 0.115%
3: Green 55 0.104%

Area of second main zoning
Category: 1: Residential 0.7658 15.649 (0–1920)

2: Commercial 13.710 91.575 (0–2630)
3: Industrial 0.726 15.650 (0–478)

4: Green 38.113 869.074 (0–2598)
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Table 3. Cont.

Variables Descriptions Mean/
Frequency

S.D. (Min.–Max.)/
%

Restricted area Binary: 1: Restricted area 1372 2.594%
0: Non-restricted area 51,528 97.406%

Specific use area Binary: 1: Specific use area 9623 18.191%
0: Non-specific use area 43,277 81.809%

Forest land Binary: 1: Forest land 269 0.509%
0: other than forest land 52,631 99.491%

Farmland Binary: 1: farmland 274 0.518%
0: other than farmland 52,626 99.482%

Waste Binary: 1: waste 40,846 77.214%
0: other than waste 12,054 22.786%

Planned facilities Binary: 1: planned facilities 3898 7.369%
0: other than planned facilities 49,002 92.631%

Planned facility conflict rate Continuous: % 47.44 53.22 (0–100)

Land category

Category: 1: Park site 4 0.008
2: Orchard 4 0.008

3: Rice paddy 274 0.518
4: Site 51,518 97.388

5: Forest land 348 0.658
6: Miscellaneous land 90 0.170

7: Factory site 65 0.123
8: Field (dry) 451 0.853

9: Site for religious use 30 0.057
10: Gas station land 29 0.055

11: Parking site 30 0.057
12: Storage site 3 0.006

13: Right of way 31 0.059
14: Site for athletics use 1 0.002

15: School site 22 0.042

Distance to railway land

Category: 1. Within 10 m
2. Within 50 m
3. Within 100 m
4. Within 500 m
5. Beyond 500 m

2443
4380
9953

17,861
18,263

4.62
8.28
18.81
33.76
34.52

Land use details

Category: 1: Industrial 256 0.484%
2: Orchard 5 0.009%

3: Residential 37,004 69.951%
4: Commercial 7519 14.214%

5: Farmland 542 1.025%
6: Residential and commercial

complex 6781 12.819%

7: Office 556 1.051%
8: Forest land 237 0.448%

Note: Year dummy variables (2017, 2018, 2019, and 2020), administrative location dummy variables (borough and district), and geographic
location dummy variables (east, west, south, and north) were included but not reported for brevity.

3.2. Empirical Results: Prediction Modeling

Table 4 provides the empirical results obtained by the RF and XGBoost models for
predicting land unit prices in Seoul. The accuracy rates for models that consider different
samples (the 2017–2020 sample and the 2020 sample) and variables are reported. The first
model (M1) considers only the appraisal value variable, the second model (M2) considers all
variables except for the appraisal land value variable, and the third model (M3) considers
all variables. Overall, the XGBoost models yielded higher accuracy rates than the RF
models. For RF models M1 and M2, the accuracy on the 2017–2020 sample was higher than
it was on the 2020 sample, whereas the accuracy rates obtained by all XGBoost models on
the 2020 sample were higher than those on the 2017–2020 sample. A larger sample might
be expected to have better prediction capabilities, but differing results were obtained by
the RF and XGBoost models. Model M3, which includes all variables, obtained higher
accuracy rates than models M1 and M2.
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Table 4. Empirical results of RF and XGBoost for predicting the land unit prices in Seoul.

Year Data
RF XGBoost

M1 M2 M3 M1 M2 M3

2017–2020
(N = 52,900)

Training 76.46 45.30 78.39 85.91 55.09 88.96
Test 75.42 45.30 77.41 84.03 56.19 87.82
All 75.98 45.98 77.93 83.46 53.99 86.50

2020
(N = 12,410)

Training 76.29 53.49 73.87 88.00 56.30 90.95
Test 73.81 51.78 76.67 84.51 55.98 90.44
All 74.98 51.99 74.28 85.86 54.58 89.76

Note: RF: random forest; M1 = model using only the appraised land value; M2 = model with all features except for the appraised land
value; M3 = model with all features.

Table 5 presents the results of the prediction modeling by zoning. A comparison of
models M1, M2, and M3 reveals that, as for the results of the entire sample, the accuracy
of M3, which considers all the features, is higher overall for each zoning type. When
analyzing the 2017–2020 sample, a comparison of the results of the models that incorporate
all features showed that the accuracy rates of the RF model were high in the residential
areas (78.55), industrial areas (76.84), commercial areas (73.93), and green areas (62.69) in
that order, whereas the accuracy rates of XGBoost were high in the industrial areas (86.90),
green areas (84.99), commercial areas (83.91), and residential areas (79.29) in that order.
When analyzing only the 2020 data, it was found that the accuracy rates of the RF model
were high in the residential areas (78.28), commercial areas (77.49), industrial areas (74.91),
and green areas (62.87) in that order, whereas the accuracy rates of XGBoost were high
in the industrial areas (85.88), residential and commercial areas (84.99), and green areas
(82.58) in that order.

Table 5. Results of the prediction modeling by zoning.

Year Zones Data
RF XGBoost

M1 M2 M3 M1 M2 M3

2017–2020

Residential
(N = 47,655)

Training 78.48 47.22 80.49 78.58 49.28 80.89
Test 76.57 45.66 78.04 75.92 45.74 78.70
All 77.44 46.30 78.55 76.19 47.94 79.29

Commercial
(N = 3094)

Training 70.33 58.29 72.98 83.99 68.98 84.09
Test 68.93 57.57 73.44 82.69 66.06 83.78
All 67.89 58.50 73.93 83.00 66.91 83.91

Industrial
(N = 1227)

Training 77.84 62.99 76.83 86.04 73.91 87.95
Test 75.80 60.70 77.56 84.98 71.09 85.38
All 76.84 61.98 76.84 85.98 72.98 86.90

Green
(N = 924)

Training 59.30 57.30 61.98 83.98 75.99 85.09
Test 58.00 55.97 63.33 81.56 73.45 83.58
All 58.30 56.49 62.69 82.99 74.99 84.99

2020

Residential
(N = 11,085)

Training 77.49 55.48 79.39 85.91 55.98 86.09
Test 74.51 52.65 77.27 83.37 52.83 84.85
All 76.49 53.30 78.28 84.12 53.99 84.99

Commercial
(N = 823)

Training 72.33 66.49 78.30 83.99 77.86 85.90
Test 70.48 62.81 76.27 82.76 76.03 83.83
All 71.98 64.30 77.49 82.99 76.55 84.99

Industrial
(N = 283)

Training 74.56 66.24 75.99 85.99 78.79 86.99
Test 73.70 64.94 73.38 83.77 77.60 85.71
All 74.29 65.49 74.91 84.98 78.18 85.88

Green
(N = 219)

Training 56.13 55.53 64.92 80.20 79.49 81.98
Test 54.51 53.65 61.37 79.83 77.25 80.69
All 55.39 54.39 62.87 79.50 78.72 82.58

Note: RF: random forest; M1 = model using only the appraised land value; M2 = model with all features except for the appraised land
value; M3 = model with all features.
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Table 6 shows the results from an assessment of the importance of the variables that
determine land unit prices. The appraisal land value was the most influential factor in both
the RF and XGBoost models, but the importance of other variables varied; nevertheless,
it was found that when considering the top 10 variables ordered by importance, the geo-
graphical features of the area and administrative location, as well as the land-use features
of land use, main zoning, and special district, appeared to be important in predicting the
land prices.

Table 6. Variables that determine land unit prices ranked by importance.

Ranking RF XGBoost

1 Land appraisal value (0.160) Land appraisal value (0.240)
2 Area (0.112) Land use (0.153)
3 Main zoning area (0.107) Dong (0.101)
4 Road condition (0.081) Main zoning (0.087)
5 Land use (0.073) Gu (0.049)
6 Dong (0.071) Specific use district (0.041)
7 Main zoning (0.058) Second zoning area (0.041)
8 Shape (0.058) Second zoning (0.033)
9 Land category (0.058) Road condition (0.031)

10 Bearing (0.039) Accessibility to waste facilities (0.022)
11 Restrictions (0.034) Restrictions (0.021)
12 Area ratio included (0.030) Bearing (0.020)
13 Urban planning facilities (0.025) Reference lot (0.017)
14 Accessibility to waste facilities (0.020) Land category (0.016)
15 Agricultural land (0.020) Area (0.015)
16 Distance to railway land (0.014) Urban planning facilities (0.014)
17 Topography (0.013) Main zoning area (0.014)
18 Reference lot (0.010) Distance to railway land (0.014)
19 Specific-use district aea (0.006) Year (0.013)
20 Forest land (0.004) Area ratio included (0.013)
21 Second zoning (0.004) Agricultural land (0.012)
22 Second zoning area (0.003) Topography (0.011)
23 Gu (0.001) Shape (0.011)
24 Year (0.001) Forest land (0.010)

4. Discussion

In this study, a practical evaluation of the use of machine learning techniques to predict
land prices was performed, which has rarely been considered in previous studies. We
calculated land unit prices and diverse land use variables from various datasets obtained
via public APIs provided by government websites. The data were predicted using ensemble-
based RF and XGBoost models, which have been found to be machine learning methods
with excellent prediction capabilities.

The results of this study showed that the prediction accuracies of the XGBoost models
were overall higher than those of the RF models. In the reviewed literature, housing
prices were shown to be more accurately predicted using bagging and random forest than
boosting models [14,16], but the performance may depend on the study settings including
the amount of data, target/feature variables, hyperparameters, and evaluation measures.
Whereas the prediction performance of RF has been reported in previous studies, boosting-
based XGBoost, in which a sequential procedure focuses on errors between the actual
and fitted values from the previous step of the sequence, seemed to be more suitable for
predicting land prices in Seoul. However, it was found that the prediction accuracy of
XGBoost degraded as the amount of data increased, whereas the prediction accuracy of
the RFs improved as the amount of data increased. These findings are likely caused by the
fact that the boosting-based models are relatively sensitive to outliers [32]; the 2017–2020
data could include more outliers and variations than the single-year data. In South Korea,
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the real estate market has shown a rapid increase in prices since 2019, which might be the
reason for the higher accuracy of the single-year data.

Clear patterns were not found in the separate analyses according to land use, but
complementary results were obtained by RF and XGBoost models when analyzing the
residential areas only. The accuracy of the RF was highest in the residential areas, whereas
the accuracy of XGBoost was lowest in that area. Similar to the aforementioned comparison
of the results between the 2020 data and the 2017–2020 data, the results of XGBoost models
were more accurate on the 2020 data than on the 2017-2020 data when analyzing residential
areas only. The real estate market forms different submarkets based on supply and demand
drivers that can be determined by temporal periods and specific land uses [38,39]. Housing
prices vary both with respect to housing characteristics and location [40], and this might
lead to more outliers and variation in the land prices of residential areas. Further analyses
also need to consider submarkets based on geographical locality and price variation.

The limitations of this study are as follows. As stated in the review article [41], we also
address the limitation of machine learning models in terms of the black box nature and
the poor inferential ability. While machine learning algorithms are shown to provide high
predictions, it is unclear how to obtain consistent results or determine the best model. The
different machine learning algorithms yielded different accuracies and feature importance.
The lack of clear guidelines on the application of machine learning reveals limitations in
the future applications of models and the resultant analyses. In addition, the different
results obtained from the various hyperparameter configurations in machine learning are
another limitation. Various methods for tuning hyperparameters exist; however, not all
tuning methods were used in this study owing to time constraints. Finally, this study
considered various land-use features, but other variables that can influence land price need
to be incorporated. As noted earlier, the significance of accessibility to jobs, amenities, or
transportation to real estate price has been stated in the literature [24–26]. Future research
could incorporate neighborhood characteristics such as social and physical aspects that
affect prices, considering real estate localities.

5. Conclusions

Research on estimating real estate value has benefitted from the explosion of more
accurate machine learning models with publicly available big data. In this study, we
automatically refined price data from the massive data collected through public API and
used two ensemble machine learning methods, Random Forest and XGBoost, to estimate
52,900 land prices with 24 land-use features in Seoul. The XGBoost results showed over-
all higher prediction accuracy than that of Random Forest, but in the separate analysis
for residential land uses, Random Forest achieved somewhat higher prediction on the
2017–2020 data. Both the XGBoost and Random Forest models identified the most im-
portant feature for the land appraisal value, but differed in their importance ranking for
the remaining features. This study could not determine the superiority between the two
ensemble models, but the limited results require future analysis incorporating various other
characteristics of real estate localities, following systematic guidelines on the application of
machine learning.
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