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Abstract: A microcosm experiment was carried out to provide a deeper insight into the toxic mecha-
nisms exerted by two lipid regulator agents, as well as their interactions with the polyvinyl chloride
microplastic on marine meiofauna. Two concentrations of Atorvastatin “A” and of Simvastatin “S”,
(i.e., 0.6 mg.kg−1 and 6 mg.kg−1), as well as a single dosage of polyvinyl chloride microplastics “P”
at 20 mg.kg−1, separately and their combined mixtures (“AP” and “SP”) were used on coastline
dwelling marine meiofauna, with a main focus on nematodes. The results showed a significant
reduction in meiofauna abundance in treatments compared to control. SIMPER analysis highlighted a
significant decrease in the abundance of epigrowth feeders (2A), which possess conical (co) tails, and
indistinct (id) amphideal foveas compared to control microcosms, reflected mainly in the decrease
in abundance of the species Prochromadorella longicaudata. Furthermore, the contamination with
microplastic affected only the omnivores-carnivores guild. Another finding of the current experiment
is that the mixtures of microplastic with drugs lead to synergic interactions that increased their toxic
effects on marine nematode communities.

Keywords: lipid regulators; polyvinyl chloride (PVC); meiobenthic nematodes; taxonomy; func-
tional traits

1. Introduction

Seafood adequate quality and safety is a major challenge in food sciences and in
most fisheries and aquaculture research departments [1]. The ecotoxicological effects of
pollutants in marine habitats represent a topic of growing concern. An important class of
such chemicals comprises the over-the-counter and prescription drugs by humans at an
alarmingly increasing rate. It was reported that up to 90% of these drugs end in aquatic
habitats via human egesta through wastewater, leaks from septic tanks, and landfills [2].

The increasing consumption of cardiovascular drugs and lipid regulator is currently
recorded at alarming rates in western countries, such as Germany, UK, and Canada [3–5].
In the USA, the most widespread lipid regulator agents are Simvastatin “S” (hereafter S)
and Atorvastatin “A” (hereafter A) [6,7]. Statins comprise lipid regulators that inhibit the
cholesterogenesis in liver, hence reducing the cholesterol production in the human body [8].
These compounds are known to induce toxic effects on aquatic invertebrates too, as it was
proved for A [9] and S [10], respectively. Moreover, these compounds are absorbed by
other organic compounds in marine sediments [11,12].
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Another major class of emerging pollutants in marine habitats are the microplastics.
Whereas plastic particles >5 mm in diameter can be consumed by marine biota [13],
smaller particles, defined as microplastics [14,15], are not easily removable from the marine
environment [16]. The microplastics represent nowadays one of the most undesirable and
widespread types of contaminants in marine habitats [17–20]. Of special concern is the
polyvinyl chloride (hereafter P), which adsorbs a variety of other pollutants, such as drugs
and heavy metals [21–24].

Free-living marine nematodes comprise a very diverse and abundant group of ben-
thic organisms [25]. These worms represent a key-group essential for the wellbeing of
marine benthic habitats; hence their wide usage as bioindicators in routine environmental
biomonitoring programs [26–30]. Their small body-size and fast life cycle, associated with
the ease of their maintenance in laboratory conditions, makes this group very useful in
ecotoxicological studies [31–33]. Our aim was to investigate the multifaceted effects of
single (i.e., A, S and P, respectively), as well as of their combined (i.e., AP and SP) interac-
tions on the abundance, diversity, and potential changes in the ratio of functional traits of
typical coastline dwelling nematode communities. We expected polyvinyl chloride and
lipid regulators to induce visible negative effects on all meiobenthic taxa, as well as for
their mixture. Another working hypothesis is that the effect would be of additive nature
given no chemical interactions are known among the tested xenobiotics.

2. Material and Methods
2.1. Collecting Site and Sediment Manipulation

Sediments were collected on 1 December 2020 from a subtidal site (37◦16′435′′ N,
9◦52′453′′ E) within the harbor of Bizerte, Tunisia. Multiple hand cores (10 cm2 area)
were employed to sample the top layer (i.e., 5 cm) of sediment at 50 cm below water
surface, according to Hedfi [34]. The sampling was restricted to the first 5 cm of sediment
because, in most coastal habitats with fine sediments, more than 90% of the meiofauna
are found in the surface 1–2 cm [34]. The collected sediment was stored in a room with
fixed lighting (10.5 h light/13.5 h dark) and temperature (21 ◦C/16 ◦C) for three days of
acclimatization. The room temperature used in the current experiment was based on the
temperature recorded (http://www.infoclimat.fr accessed on 30 November 2020) for the
previous month (i.e., November 2020).

2.2. Sediment Contamination and Experiment Set-Up

Before the experiment, a part of the collected sediments was defaunated by repeated
freezing (3 times) at −20 ◦C and thawing (12 h/48 h), according to Schratzberger et al. [35].
Following the removal of coarser particles by sieving (1 mm), the rest of the sediment was
kept for acclimatization for one week. Simultaneously, a stock solution (2 g.L−1) of A and
S (Sigma-Aldrich) was diluted in dimethyl sulfoxide (DMSO) and kept in dark at room
temperature. The stock solution was used to enrich 100 g of defaunated sediment for sedi-
ment concentrations of 0.6 mg.kg−1 of A1 and S1 and 6 mg.kg−1 of A2 and S2, respectively.
The sediment concentrations of A and S were chosen based on invertebrates LC 50/96 h
used in toxicological studies [9,10]. The experiment lasted for one month [31–33]. Spherical
particles of microplastics (>40 µm; MW = 48,000 g.mol−1, 16 mmol of Cl. g−1, 99%) were
added as such as to contaminate 100 g of defaunated sediment with a concentration of
20 mg.kg−1 [36].

Overall, 30 sets were prepared (three replicates for each set) using a factorial design
approach: one set comprised the control, one set of sediment was contaminated with P,
two sets of sediments were contaminated with the employed concentrations of A, and the
other two with S. Moreover, two sets were contaminated with a mixture of P and each of
the A concentrations; two sets of sediments contaminated by a mixture of P and each of the
S concentrations.

Each microcosm was filled with 200 g of sediment with natural meiofauna mixed with
100 g of contaminated defaunated sediment and topped with one liter of filtered water

http://www.infoclimat.fr
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(40 µm). The control experimental set “C” was obtained by mixing 100 g uncontaminated
defaunated sediment with 200 g of natural sediment. Each system consisted of a 2-litre
glass bottle, which was constantly aerated through an aquarium pump throughout the
experiment [34,36].

2.3. Meiofauna Analyses

The meiofauna was removed from the sediment using two sieves with mesh sizes
of 1 mm and 40 µm, respectively [37], then stained with Rose-Bengal (0.2 g.L−1) [38] and
fixed in 4% formalin [35]. Afterwards, 100 randomly collected nematodes per replicate
were removed under a dissecting microscope and transferred into 21% glycerol vials [39].
Species identification was done using the taxonomic keys of Platt and Warwick [40,41],
Warwick et al. [42], as well as the Ghent University database [43]. Five functional traits
were also quantified in the current experiment:

Feeding groups classified according to Wieser [44] as follows: selective deposit feeders
(1 A), epigrowth feeders (2 A), and omnivores/predators (2 B), non-selective deposit
feeders (1 B).

• The shape of tails, according to Thistle et al. [45] as follows: conical (co), short/round
(s/r), clavate/conico-cylindrical (cla), and elongated/filiform (e/f).

• The shape of amphideal fovea, according to Semprucci et al. [29], as follows: spiral
(Sp), circular (Cr), indistinct (Id), and pocket (Pk).

• The life history (c–p scores), according to Bongers et al. [46] ranked from 1 to 5.
• The length of adults, according to Schratzberger et al. [47] divided in the following

size-classes: 1–2 mm, 2–4 mm, and >4 mm. The body-size was measured using a
Nikon DS-Fi2 camera coupled with a Nikon microscope (Image Software NIS Elements
Analysis Version 4.0 Nikon 4.00.07ebuild 787e64 bit).

2.4. StatisticalAanalyses

The abundance of nematodes (N), taxonomic richness (S), the Shannon-Wiener index
(H’), and Pielou’s evenness (J’) were calculated using PRIMER v5.0 software [48,49], after
data normalization (Kolmogorov–Smirnov test) and assessing the homogeneity of variance
(Bartlett test). A log10 (x + 1) transformation was applied to data for parametric analy-
ses [48,50]. One-way ANOVA, followed by multiple post hoc comparison Tukey HSD tests
were performed in STATISTICA (v5.1) to check the differences of the measured metrics
among treatments. Multidimensional non-metric ordination (nMDS) was performed using
species abundance data, following their square roots transformation, and was based on
Bray-Curtis similarity matrix. ANOSIM analysis was used to determine possible signifi-
cant differences between the nematode assemblages from different types of microcosms.
SIMPER analysis (similarity percentage) allowed the identification of most contributing
species to the dissimilarity/similarity among control and treatments. Another nMDS
ordination was performed to identify which functional traits influenced the response of
various species to treatments.

3. Results
3.1. Meiofaunistic Abundances

The control microcosms were dominated by the end of the experiment by free-living
marine nematodes (1154.66 ± 79.54 individuals/microcosm) (ind.mic−1). The second
most abundant group was the copepods (108 ± 16.64 ind.mic−1), followed by amphipods
(2.66 ± 0.57 ind.mic−1), and polychaetes (2.33 ± 0.57 ind.mic−1) (Figure 1).
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Compared to control experimental sets, a significant reduction (p < 0.05, Tukey’s
HSD test, Figure 1) in nematodes’ abundance was observed, mainly in treatment AP2
(290.33 ± 31.34 ind.mic−1), which showed the lowest abundance. Likewise, the copepod
abundance showed a significant decrease in all treatments, mainly in SP2 (9 ± 2 ind.mic−1).
The abundance of polychaetes and amphipods followed a similar pattern (Figure 1).

3.2. Taxonomic Diversity of Nematodes

The free-living marine nematodes comprised 20 species spanning 5 orders, 12 families,
and 18 genera; the families Xyalidae and Oncholaimidae were dominant (Table 1).

By the end of the experiment the control treatment (C0) was dominated by Prochro-
madorella longicaudata (30.67 ± 1.53%), Oncholaimus campylocercoides (16.67 ± 1.15%), An-
ticoma eberthi (6 ± 1%), and Metalinhomoeus numidicus (6 ± 1%), respectively, comprising
less than 5% of the nematofauna after one month-exposure. In treatments P, a similar trend
was observed for the diversity indices, the community being dominated by P. longicaudata
(28.33 ± 1.53%). The treatments S2 (17.67 ± 3.21%), S1 (18.67 ± 1.53%), A2 (16.67 ± 0.58%),
and A1 (21 ± 1%) were dominated by O. campylocercoides. The same species dominated
the treatments SP2 (15.33 ± 0.58%), SP1 (16.33 ± 1.53%), AP2 (16.67 ± 0.58%) and “AP1”
(21 ± 1%) (Table 1).

The species richness (S) and diversity indices (d and H’) revealed significant differ-
ences compared to C0 (p < 0.05, Tukey’s HSD test, Figure 2), revealing a surprisingly
increase of the overall nematode diversity (Figure 2).

The nMDS output indicated a significant effect induced by S, A, and P alone or by
their mixtures on species distribution within the ordination space (stress = 0.2). The AP2
treatment was most dissimilar compared to C0, whereas the P community was the closest
to control (Figure 3).
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Table 1. Species list and biological traits of nematode species identified in uncontaminated (C0) and contaminated (P; S2; S1; A2; A1; SP2; SP1; AP2; AP1) microcosms. Colonizers-persisters
scores (c-p); tail shape (Tl): conical (co). elongated/filiform (e/f). clavate (cla); amphid shape (Am): pocket-like (Pk). indistinct (Id). spiral (Sp). circular (Cr); feeding groups according to
Wieser (1953) (FG): selective deposit-feeders (1A). non-selective deposit-feeders (1B). epistratum-feeders (2A). omnivores carnivores (2B); adult length (AL).

Species Functional Traits Treatments

c-p Tl Am FG Adult
Length C0 P S2 S1 A2 A1 SP2 SP1 AP2 AP1

Anticoma
acuminata 2 e/f pk 1A 2–4 mm 0.91 ± 0.78 0.46 ± 0.8 0.43 ± 0.75 0.47 ± 0.81 0.42 ± 0.72 1.63 ± 0.7 0.96 ± 0.83 0.44 ± 0.76 1.25 ± 1.27

Anticoma
eberthi 2 e/f pk 1A 2–4 mm 8.27 ± 1.15 13.01 ± 1.37 13.55 ± 1.85 10.9 ± 1.85 5.35 ± 1.09 14.75 ± 1.06 14.28 ± 1.78 6.74 ± 0.88 8.32 ± 1.93 14.29 ± 3.02

Calomicrolaimus
honestus 3 co sp 2A 1–2 mm 2.75 ± 1.34 1.38 ± 1.37 1.26 ± 1.24 3.94 ± 2.3 1.8 ± 0.79 2.06 ± 1.46 1.63 ± 0.7 3.37 ± 0.85 1.75 ± 0.76 1.2 ± 1.19

Chromadora
sp. 2 co id 2A 1–2 mm 1.83 ± 0.75 4.19 ± 0.09 0.86 ± 0.75 0.84 ± 1.48 0.45 ± 0.78 1.22 ± 1.22 0.97 ± 0.84 0.43 ± 0.75

Daptonema
trabeculosum 2 cla cr 1B 1–2 mm 1.38 ± 1.35 2.79 ± 0.06 5.08 ± 1.26 1.75 ± 1.98 8.13 ± 1.72 4.92 ± 1.22 2.44 ± 1.21 3.85 ± 1.69 8.79 ± 2.12 6.1 ± 1.18

Marylynnia
puncticaudata 3 e/f sp 2A 2–4 mm 0.48 ± 0.82 0.91 ± 1.58 2.09 ± 1.39 2.65 ± 2.3 6.59 ± 4.48 5.72 ± 1.81 11.84 ± 1.94 6.74 ± 5.5 11. 83 ±

1.16 8.89 ± 2.29

Metalinhomoeus
numidicus 2 e/f cr 1B 2–4 mm 2.34 ± 1.68 5.58 ± 1.35 2.96 ± 0.65 6.99 ± 2.72 11.68 ± 0.94 5.72 ± 1.81 11.02 ± 1.16 14.42 ± 2.9 10.95 ± 1.41 10.54 ± 1.6

Enoplolaimus
littoralis 3 e/f id 2B 2–4 mm 0.45 ± 0.78 0.41 ± 0.71 0.43 ± 0.74 0.83 ± 1.07 1.63 ± 0.7 1.91 ± 2.18 3.94 ± 1.26 1.62 ± 0.68

Metoncholaimus
pristiurus 3 cla pk 2B >4 mm 8.31 ± 1.43 6.51 ± 2.1 8.03 ± 1.74 10.02 ± 1.8 10.76 ± 1.13 13.52 ± 1.07 8.17 ± 3.08 6.25 ± 1.64 6.15 ± 2.05 11.79 ± 3.02

Odontophora
villoti 2 co cr 1B 2–4 mm 0.45 ± 0.78 0.43 ± 0.75 0.48 ± 0.82

Oncholaimus
campylocer-

coides
4 cla pk 2B >4 mm 23.08 ± 2.28 15.84 ± 3.08 22.46 ± 4.06 24.44 ± 1.5 22.43 ± 0.6 25.82 ± 1.27 18.77 ± 0.65 23.56 ± 2.26 18 ± 1.74 23.18 ± 1.3

Paracomesoma
dubium 2 cla sp 2A 1–2 mm 0.45 ± 0.78 0.46 ± 0.82 0.41 ± 0.71 0.43 ± 0.74 0.92 ± 0.8 0.42 ± 0.72 0.81 ± 1.41 2.4 ± 0.83 1.75 ± 0.76 1.62 ± 0.68

Paramonohystera
wieseri 2 cla cr 1B 1–2 mm 1.4 ± 1.42 2.32 ± 1.6 4.28 ± 2.71 6.99 ± 2.72 3.53 ± 3.39 3.28 ± 0.73 6.55 ± 4.99 3.36 ± 1.66 7.02 ± 0.85 1.2 ± 2.09

Paramonohystera
pilosa 2 cla cr 1B 1–2 mm 0.46 ± 0.79 0.46 ± 0.8 0.43 ± 0.75 1.23 ± 1.22 0.41 ± 0.71 2.2 ± 0.78
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Table 1. Cont.

Species Functional Traits Treatments

c-p Tl Am FG Adult
Length C0 P S2 S1 A2 A1 SP2 SP1 AP2 AP1

Prochromadorella
longicaudata 2 co id 2A 1–2 mm 42.38 ± 0.9 39.53 ± 1.85 22.06 ± 2.33 20.54 ± 1.21 19.82 ± 2.96 16.8 ± 0.48 13.47 ± 1.22 14.9 ± 0.71 7.01 ± 1.45 11.79 ± 3.02

Spirinia
gerlachi 3 co cr 2A 1–2 mm 0.46 ± 0.79 1.7 ± 0.75 0.88 ± 0.76 1.24 ± 1.25 0.41 ± 0.71 2.39 ± 1.64 0.43 ± 0.75 0.82 ± 0.71

Steineria sp. 2 cla cr 1B 1–2 mm 0.46 ± 0.79 0.41 ± 0.71 0.48 ± 0.84 1.31 ± 1.32

Synonchiella
edax 4 e/f sp 2B 2–4 mm 0.46 ± 0.79 0.93 ± 0.81 1.7 ± 0.75 0.82 ± 0.71 0.41 ± 0.71 1.93 ± 0.84 3.07 ± 1.52 1.65 ± 1.43

Theristus
flevensis 2 co cr 1B 1–2 mm 3.24 ± 0.9 5.13 ± 2.2 11.03 ± 1.57 4.83 ± 2.1 7.65 ± 2.23 2.04 ± 0.69 5.31 ± 1.43 5.29 ± 1.69 6.6 ± 2.37 4.06 ± 0.62

Viscosia cobbi 3 e/f pk 2B 1–2 mm 0.46 ± 0.79 0.48 ± 0.82 1.28 ± 1.3 3.5 ± 0.79 0.43 ± 0.74 0.42 ± 0.7
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Figure 3. Non-metric multidimensional scaling (nMDS) 2D plot based on nematode species
abundances from uncontaminated (C0) and contaminated (P; S2; S1; A2; A1; SP2; SP1;
AP2; AP1) microcosms.

The average dissimilarity value increased following the pattern “P”→ “S1”→ “S2”
→ “A2”→ “A1”→ “SP1”→ “SP2”→ “AP1”→ “AP2” (Table 2). The ANOSIM results
(R-statistics = 0.422−1, p-value < 0.05, Table 2) indicated the presence of various taxonomic
categories of nematodes, confirming the trends noticeable in the nMDS representation
(Figure 3).

SIMPER results indicated that the abundance of P. longicaudata decreased in all treat-
ments except for “P”, whereas the abundance of the nematode Marylynnia puncticaudata
increased in the combined treatments, driving most of the noticed dissimilarity noticeable
in the MDS graphic representation (Table 2).
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Table 2. Dissimilarity percentages between treatments (bold values) and results of Similarity Percentage analysis (SIMPER) based on square-root transformed data. Species and functional
groups accounting for ~70% of overall dissimilarity are ranked in order of importance of their contribution. More abundant (+); less abundant (−).

C0 vs. P C0 vs. S2 C0 vs. S1 C0 vs. A2 C0 vs. A1 C0 vs. SP2 C0 vs. SP1 C0 vs. AP2 C0 vs. AP1

Average
dissimilarity (%) 20.04 29.04 28.67 33.11 34.17 38.66 35.35 47.55 39.79

R-statistics 0.422 0.704 0.593 0.741 0.852 0.852 0.852 1 1

p-value 0.029 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Species

Oncholaimus
campylocercoides

18.47% −

Prochromadorella
longicaudata

30.37% −

Prochromadorella
longicaudata

35.16% −

Prochromadorella
longicaudata

32.88% −

Prochromadorella
longicaudata

32.36% −

Prochromadorella
longicaudata

33.01% −

Prochromadorella
longicaudata

40.58% −

Prochromadorella
longicaudata

35.91% −

Prochromadorella
longicaudata

34.19% −

Anticoma eberthi
11.59% +

Theristus flevensis
14.44% +

Paramonohysteria
weiseri 10.15% +

Metalinhomoeus
numidicus 14.4% +

Anticoma eberthi
11.44% +

Marylynnia
puncticaudata

15.67% +

Metalinhomoeus
numidicus 16.62%

+

Marylynnia
puncticaudata

12.28% +

Metalinhomoeus
numidicus 11.36%

+
Metoncholaimus

pristiurus 11.58%
−

Anticoma eberthi
10.65% +

Metalinhomoeus
numidicus 8.58% +

Daptonema
trabeculosum

10.34% +

Metoncholaimus
pristiurus 9.51% +

Metalinhomoeus
numidicus 12.3% +

Marylynnia
puncticaudata

8.65% +

Metalinhomoeus
numidicus 9.43% +

Marylynnia
puncticaudata

11.35% +
Prochromadorella
longicaudata 8.8%

−

Daptonema
trabeculosum 6.84%

+

Viscosia cobbi 5.48%
+

Marylynnia
puncticaudata

9.49% +

Oncholaimus
campylocercoides

8.23% +

Daptonema
trabeculosum 3.34%

+

Daptonema
trabeculosum 8.05%

+

Anticoma eberthi
9.28% +

Theristus flevensis
8.45% +

Oncholaimus
campylocercoides

6.34% +

Anticoma eberthi
5.48% +

Marylynnia
puncticaudata

8.23% +
Metalinhomoeus

numidicus 8.02% +

Feeding groups
12.36% 23.49% 21.34% 27.36% 27.36% 30.11% 25.22% 36.53% 31.82%
2B − 2A − 2A− 2A− 2A− 2A− 2A− 2A− 2A−
1B + 2B+

Tail shape 9.09% 14.77% 20.16% 21.75% 30.58% 30.74% 23.93% 35.74% 35.22%
e/f + co − co − co − co − e/f + co − co − co −

Amphid shape
8.50% 23.02% 23.78% 26.79% 29.29% 30.75% 31.62% 40.69% 33.91%
cr + id − id − id − id − id − id − id − id −

pk − cr + pk +

Adult length 10.02% 9.02% 12.09% 13.74% 23.64% 26.69% 23.76% 25.52% 30.91%
>4mm + 2–4mm + 2–4mm + 1–2mm − 1–2mm − 2–4mm + 1–2mm − 2–4mm + 2–4mm +

c-p score 11.86% 7.13% 9.58% 7.52% 13.25% 9.96% 11.53% 10.71% 11.87%
cp2 + cp2 + cp3 + cp3 + cp3 + cp3 + cp2 − cp3 + cp3+
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3.3. Functional Diversity of Nematodes

The C0 nematofauna was dominated by epigrowth feeders (2A) and omnivores carni-
vores (2B), with conical (co) and clavate (cla) tails, indistinct (id), pocket-like (pk) amphids,
life history groups c-p 2, and length intervals 1–2mm. Except for treatment P, the contami-
nation led to a significant modification of feeding groups, amphid shape, tail shape, life
history, and adult length composition, respectively (Figure 4).
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SIMPER results revealed a significant decrease in the abundance of the epigrowth
guild (2A), with conical (co) tails, and indistinct (id) amphids compared to C0. Conversely,
SIMPER results also revealed a significant increase in nematodes’ abundance with a c-p
score of 3, compared to C0. To a lesser extent, some treatments showed an increase in
the number of taxa belonging to 1B and 2B guilds, with circular (cr) and pocket-like (pk)
amphids, respectively (Table 2).

The nMDS second-stage ordination showed that the responses of nematode species
to the different treatments depended mainly on their shapes of amphids (86.45%), tails
(83.21%), and composition of trophic guilds (82.39%) (Figure 5).
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4. Discussion

The control community was dominated by small-sized (1–2 mm), epigrowth feeding
species (2A), dominated by P. longicaudata, along with larger (> 4 mm), omnivore-carnivore
(2B) species, which was dominated by O. campylocercoides. The contamination with P
showed no clear changes in the taxonomic composition of the nematode communities,
except for the guild2B, which slightly decreased during the experiment. Species belonging
to this trophic guild have large mouth openings and also ingest small grains as part of
their diet [51], hence temptingly leading to a potential correlation between the level of
contamination with microplastics and mortality rate of this group.

The knowledge of toxic effects of A on benthic invertebrates is scant. Previous in-
vestigations reported concentrations as low as 76 ng.L−1 in raw wastewater and 37 and
22.4 ng.L−1, respectively, in wastewater treatment plant outlets [52]. These concentrations
of A imposed however little risk for benthic invertebrates [9]. The employed concentrations
of A from the current experiment closely followed those previously reported for the marine
amphipod Hyalella azteca LC50 [9]. Previous studies reported S in the inlet of Canadian
wastewater treatment plants concentrations of 4 ng.L−1 and 1 ng.L−1, in the outlets, respec-
tively. Previous experimental essays reported high toxic (LC50) effects of S on harpacticoid
copepods and larval grass shrimp for 96 h contaminations at 0.81 mg.L−1 and 1.18 mg.L−1,
respectively [53]. The exposure to sublethal levels, reported by the same authors, showed
several important consequences on the growth and development rate of harpacticoid



Sustainability 2021, 13, 13190 11 of 14

copepods and assumed that S might have had negative effects on growth-related traits.
The current study showed a significant negative effect of S on meiofauna abundance and
on most measured functional traits of nematodes. The effects of S contamination were
comparable to that induced by A. These results also corroborate the comparable LC50s of
these drugs observed on small amphipods.

Overall, the combined treatments AP and SP had stronger negative effects on the
meiofauna community than each contaminant acting alone. These findings suggest that
there was a synergic effect between polyvinyl chloride and these drugs. The increased
surface to volume ratio of microplastics usually leads to high adsorption rates for various
contaminants [23], such as heavy metals [22], antibiotics [24], and organic pollutants [21].
These chemicals bond with microplastics and penetrate living organisms following their
ingestion, leading to toxicologic effects [54]. This could, at least in part, explain the
significant decrease of meiofauna abundance in these treatments. However, according to
the univariate indices, neither the A nor S contamination alone, nor their combinations with
P, significantly influenced the nematode diversity. Still, the taxonomic composition of the
nematode communities differed in treatments compared to control in terms of functional
traits. Contrary to our expectations, at first glance it seems that the contamination actually
proved to be beneficial for some taxa.

According to the SIMPER results (Table 2) M. puncticaudata was dominant in AP
and SP treatments, but the abundance of P. longicaudata significantly decreased, in most
treatments, except for P. Despite both species sharing several similarities it is possible that
the differences in their body-size and life cycles to have led to the replacement of the latter
group by the former. Likewise, the SIMPER results also indicated that Family Xyalidae (i.e.,
Theristus flevensis and Paramonohystera wieseri) mostly benefited from S treatment, same as
Anticoma eberthi (in A1) and Metalinhomoeus numidicus (in A2) (Table 2).

The nMDS second stage (Figure 5) indicated that the shape of amphids’ shape, fol-
lowed by tail shape and feeding type, were the most important parameters affected in
treatments. The amphid shape underwent a strong change with the decrease of indistinct
shape (id) and the increase of circular (cr) and spiral (sp) shapes. Wakkaf et al. reported
that the relative dominance of circular amphids’ shape could explain their ability to detect
and avoid pollutant.

5. Conclusions

Despite the wealth of ecotoxicological studies based on marine meiofauna as bioindi-
cators, a considerable paucity of work related to the impact of microplastics on this diverse
group is still present. To our knowledge, the current experiment is the first that investi-
gated the effects of lipid regulators on meiofauna, with a main focus on free-living marine
nematodes. Additionally, this study provided a better insight into the intimate interactions
between atorvastatin, simvastatin, and microplastics, respectively.

The results of the current experiment revealed a significant toxic effect on meiofauna
abundances. Interestingly, the Shannon index values for all treatments were close to control.
However, SIMPER analysis reported significant modifications of nematodes diversity and
identified the main functional traits that contributed most to the dissimilarity among
control and treatments, namely that of epigrowth feeders (2A), with conical (co) tails
and indistinct (id) amphids. Contamination with microplastics had noticeable impact
only on the 2B trophic group, while the interactions between lipid regulator agents and
microplastics revealed synergic interactions, resulting in increased toxicity of drugs.
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