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Abstract: The poultry industry contributes majorly to the food industry. The demand for poultry
chickens raises across the world quality concerns of the poultry chickens. The quality measures in
the poultry industry contribute towards the production and supply of their eggs and their meat.
With the increasing demand for poultry meat, the precautionary measures towards the well-being
of the chickens raises the concerns of the industry stakeholders. The modern technological ad-
vancements help the poultry industry in monitoring and tracking the health of poultry chicken.
These advancements include the identification of the chickens’ sickness and well-being using video
surveillance, voice observations, ans feces examinations by using IoT-based wearable sensing devices
such as accelerometers and gyro devices. These motion-sensing devices are placed over a chicken
and transmit the chicken’s movement data to the cloud for further analysis. Analyzing such data
and providing more accurate predictions about chicken health is a challenging issue. In this paper,
an IoT based predictive service framework for the early detection of diseases in poultry chicken is
proposed. The proposed study contributes by extending the dataset through generating the synthetic
data using Generative Adversarial Networks (GAN). The experimental results classify the sick and
healthy chicken in a poultry farms using machine learning classification modeling on the synthetic
data and the real dataset. Theoretical analysis and experimental results show that the proposed
system has achieved an accuracy of 97%. Moreover, the accuracy of the different classification models
are compared in the proposed study to provide more accurate and best performing classification
technique. The proposed study is mainly focused on proposing an Industrial IoT-based predictive
service framework that can classify poultry chickens more accurately in real time.

Keywords: chicken health; classification; industrial IoT service; machine learning; poultry industry;
predictive modeling

1. Introduction

Poultry chickens are a major contributor towards the fulfillment of the demand for
high-protein and low-fat food around the world. The poultry industry has been fulfilling
the demands of the chickens’ meat and their eggs for the last hundreds of decades [1]. The
increase in the demand for chicken poultry has also raised the health quality of the chicken
as an important concern of the consumer market. The welfare of the animal is highly
concerned towards the quality of the poultry products as well as the consumer’s health.
Good animal welfare always improves the health of the poultry products by reducing the
disease rate within the poultry chickens and, hence, in the poultry products. The chickens
have a tendency to spread illness within their respective flocks and even to entire poultry
farms, resulting in mass losses of the poultry industry [2]. The losses and spread of a
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disease in poultry chickens can be reduced by the early detection of sick chickens through
labeling or classifying individuals based on their behaviors.

The use of the modern advancements provide the possibilities to track, monitor, and
detect and predict a chicken’s sickness and well-being early by observing and sensing
behaviors in a poultry farms. The latest technologies provide a continuous and automated
monitoring of the poultry chickens. These poultry monitoring techniques include sound
analysis [3], which can automatically monitor the chicken’s behavior without direct inter-
action with the chicken’s body. The wearable sensing devices [4] help in the autonomous
identification and tracking of the chicken’s location and the movement of individuals in
the real time with radio-frequency identification devices. The surveillance of poultry farms
through image processing [5] is another technological advancement to identify the activity
behaviors and early detection of the disease. All the technological advancements may track
and monitor the groups of poultry chickens or individuals.

The recent advancement in wearable sensing devices for poultry farms collects the
chicken’s activity data [6] using accelerometers. Figure 1 provides the graphical representa-
tion of monitoring and tracking the poultry chickens by collecting their movement data.
The activities observed include the dustbathing, pecking, and preening behaviors of the
chicken within poultry farms. Ectoparasites reside on the surface of the chicken’s body and
can cause stress and affect the productivity of laying eggs and health of the chickens [7].
The effect of ectoparasites on poultry chicken can infest the flocks. Ectoparasites are im-
posed by researchers to observe and analyze the activity behavior of the poultry chickens.
The behavioral activity of sick and healthy chickens provide significant evidence of the
difference between the behavior of chickens without ectoparasites and with ectoparasites.
The study [6] provides the labeled dataset and validation technique of the collected dataset.

Wearable Sensing Device

Figure 1. A poultry chicken with the wearable sensing device for tracking and monitoring of
its health.

Generative Adversarial Networks (GANs) provides the generative modeling tech-
nique using deep learning. A GAN is an unsupervised learning in machine learning that
discovers and automatically learns the regularities or patterns of the provided dataset such
that the model can generate the new data records that may be dropped or drawn from the
provided dataset. The GAN frames the problem as a supervised learning problem with
further divisions: the training of the generator model to generate new data records and the
discriminator model to classify as original data records or as synthetic (generated) data
records. The training of these models continues until the discriminator model incorrectly
classifies more than 50% of its prediction. The deep generative models are used to provide
the probability distribution of the dataset. It is a challenging problem to generate the
probability distribution from a tabular dataset. Conditional Tabular Generative Adver-
sarial Networks (CTGAN) [8] have been implemented in the study to provide the deep
generative model to extrapolate the labeled dataset [6]. This tabular probability distributed
dataset will help in our study to predict the sick or healthy chicken using machine learning
classification techniques.
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The recent computational advancements in sensing technologies provides the possi-
bility to classify and predict the healthiness or sickness of the individual. Machine learning
models are diversified with the tendency to learn whether the data are statistical, proba-
bilistic, continuous, or discrete in nature. The machine learning supervised algorithms [9]
and deep learning models such as TabNet [10] are used to build predictive models with a
capability to predict the resulting output more accurately. The classification techniques are
capable of predicting a diversified range of applications such as anomaly detection [11],
fraud detection [12], customer buying behavior [13], as well as disease modeling [14]. Most
of the applications of the machine learning classification models adopt the supervised
learning techniques rather than the unsupervised. In supervised learning, the input data
provided to the classification model are already labeled, and the model needs to predict
the unlabeled dataset based on the similarities of the classification class [15]. The machine
learning classification techniques are used to provide predictive models that can provide
the labeling of the dataset in a more accurate way. The IoT-based predictive classification
services help in identifying the behavior of the receiving data such as the poultry chickens’
sickness or well-being. The supervised learning algorithms such as Nearest Neighbour,
Decision Tree, Random Forest, Naive Bayes, and Support Vector Machine are applied in
this study to classify the poultry chicken using an IoT-based predictive service.

Our contributions are more focused on modeling an IoT-based predictive service that
helps the poultry industry in early detection of sick chickens more accurately in a real-time
manner. The proposed study achieves the following:

— Implements the CTGAN [8] deep generative model to overcome the class imbalance
problem. Moreover, the dataset available by [6] is not enough to train machine learning
and deep learning models to classify sick and healthy poultry chickens;

— Implements the supervised machine learning algorithms such as Nearest Neighbour,
Decision Tree, Random Forest, Naive Bayes, Support Vector Machine, and deep
learning techniques such as TabNet [10] on the chickens’ synthetic movement data
generated using CTGAN [8] to classify the poultry chicken with better accuracy;

— Provides a performance comparison of some machine learning and deep learning
models to classify the poultry chickens;

— Provides an IoT-based predictive service framework to develop a precision livestock
farming system which has the capability to track, monitor, detect, and predict the
disease in poultry chicken at an early stage. It can accomplished by using wearable
sensor devices.

The study further discusses the related advancements in Section 2 that provides
the monitoring and predictive methods to determine the health of the poultry chickens.
Section 3 explains the dataset generation technique and the experimental setup that are
conducted in the study. Section 4 discusses the results obtained, followed by the conclusion.

2. Related Work

The demand for poultry products raises the need for the implementation of the
poultry’s welfare. Healthy poultry products heavily depend on the good poultry conditions.
Several criteria for the comprehensive assessment of the poultry welfare contradict each
other and hence make the evaluation difficult as well as time consuming. The technological
advancements help poultry farmers to implement good poultry welfare by implementing
one of the monitoring and tracking systems to observe the sickness or well-being of the
poultry chickens. The location of feeders and drinkers can be examined and changed
with the presence of clusters or groups of the poultry chickens [16]. The activity such
as moving, perching, eating, and drinking may help in understanding the health of the
poultry chicken [17,18]. The key essence of the monitoring and tracking system is the
early detection of the individual animals in livestock farming. The detection of chicken
movement activities using wearable sensing devices can classify the chicken as sick, normal,
or active in the poultry farm [4]. The proposed study includes the recent advancements
carried out to monitor and track poultry chickens. Figure 2 provides the classification of the
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related studies with respect to the proposed techniques and Table 1 provides the limitation
of different approaches in the studies.

Table 1. A summary of the advancements in Poultry Industry for observing chicken behavior by using different approaches.

Reference Analysis Methodology Objective Limitation

[3] Sound Sound Vibrations Avian Influenza Diagnosis Overlapping of sound vibrations made
it impossible to diagnose Avian In-
fluenza within poultry chickens in large
poultry farms

[19–21] Sound Pecking Sound Analysis Feed Intake and Growth Detection Does not provide the chicken health-
iness and is not viable for poultry in-
dustry.

[22,23] Sound Peak Frequencies Growth Detection Since humming sound vibrations over-
lapped, it is therefore not viable for
poultry industry.

[24] Sound Vocal Sound Analysis Disease Detection Difficult to deploy in large poultry
farms since the vocals analysis is dif-
ficult as the overlapping of vocal vi-
brations occur between hundreds of
chickens.

[25] Sound Sound Vibrations Newcastle, Bronchitis virus,
Avian Influenza Diagnosis

Difficult to observe the sound of each
poultry chicken in large poultry farms.
Hence, it is difficult to deploy over
large poultry farms.

[5] Image Posture Feature Modeling Disease Detection Disease Detection and Classification
techniques required high computa-
tions as the proposed technique imple-
ments the SVM Model for classifica-
tion.

[16] Image Pixels Analysis Abnormal Feeding Monitoring The adjacent pixels conflict with each
other when large numbers of poultry
chickens are observed on a larger scale.

[17] Image Feces Observations Early Detection of Infection and
Abnormal Feeding Monitoring

Light controlling needs to be made sta-
ble to analyze abnormal feeding be-
havior with a small number of poultry
chickens

[26] Image Pixels Analysis Flock Activity Monitoring Unable to observe the large number of
poultry chickens in large poultry farms

[27] Image Object Detection Crowd Monitoring Does not provide the the healthiness
and is unable to scale for a large num-
ber of poultry chickens

[28] Image IR Camera Images Feeder Crowd Monitoring Challenging to maintain light-
controlled environment for observing
IR Camera Images

[29] Image Computer Vision (ANN) Weight Prediction Weight prediction is not viable for
large poultry farms.

[30] Image Thermal Camera Analysis Temperature Detection Provides a naive approach to diagnos-
ing disease within poultry farms based
on temperature.

[31] Image Video Surveillance through
Image Processing

Walk Speed Analysis Challenging to track and observe the
individual chickens’ moving speed in
large poultry farms.
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Table 1. Cont.

Reference Analysis Methodology Objective Limitation

[4,32] Wearable IoT RFID Sensing Devices Flock Activity Monitoring Only provides the tracking and mon-
itoring and does not provide better
accuracy to classify healthiness of
the poultry chickens.

[33] Wearable IoT RFID Sensing Devices Nest Activity Monitoring Only provides the tracking and mon-
itoring of the poultry chickens inside
and outside of the nest.

[34] Wearable IoT RFID Sensing Devices Keel Bone Fractures and Egg
Laying Behavior

Does not provide the technique to
classify between sick and healthy
chickens in the poultry farms.

[35] Wearable IoT RFID Sensing Devices Feeding and Nesting Behavior Only provides the tracking and mon-
itoring technique.

[36] Wearable IoT RFID Sensing Devices Location Tracking Only provides the tracking and mon-
itoring technique.

[37] Wearable IoT Stretchable Transistors Real Time Monitoring Provides the real-time monitoring
and tracking of the poultry chicken
by transmitting continuous data.

Chicken Monitoring and Tracking

Sound Analysis

Image Processing

Wearable Sensing Devices

Other Advancements

Growth Detection [19-23]

Disease Diagnoses [3] [24] [25]

Flock Activity Monitoring [16] [26]

Disease Detection [5] [20]

Crowd Detection  [30]

Chicken Counting [28]

Weight Detection [29]

Thermal Camera Monitoring [30] [31]

Nest Monitoring [32]

Egg Laying Disease Detection [33]

Activity Monitoring [4] [34] [35]

Stretchable Transistors  [37]

Growth Detection [36]

Figure 2. The distribution of the advancements to observe the poultry chicken behavior by addressing different approaches.

2.1. Sound Analysis

The social interactions of the poultry chickens can be observed with the sound anal-
ysis of the poultry chickens. The sound analysis techniques such as energy distribution,
frequency, amplitude, and frequency distributions can help in estimating the health of the
chicken. The growth rate is important in analyzing the healthy and sick growth behaviors.
The behavior of pecking is highly related with the eating behavior of the poultry chickens.
Moreover, 90% of the feed intake was accurately detected through pecking sounds [19].
Another experiment detected the feed intake of poultry chickens by 86% through pecking
sounds [20] while the feeding behavior of the poultry chickens were detected with an
accuracy of 95% using pecking sounds [21].

The growth of the poultry chickens is also analyzed by observing the peak frequencies
made by the chicken. The peak frequency decreased with the increase in the growth of the
poultry chicken [22,23] and hence provides the detection of the growth rate of the poultry
chicken. Disease diagnoses can also be analyzed through sound analysis. The healthy and
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sick chickens in the poultry farms have different sounds based on their health. The analysis
and classification of healthy and unhealthy chickens has been made with 100% accuracy
using a supervised learning neural network [24].

Another experiment was conducted to diagnose whether the poultry chicken was
infected with Newcastle, bronchitis virus, or avian influenza or not using sound analy-
sis [25]. The sound (noise) analysis has been carried out to detect avian influenza in poultry
chickens [3]. The extracted sound data are trained for the binary classification model using
Support Vector Machine.

2.2. Image Processing

Image processing provides an inexpensive and cost-effective autonomous analysis of
the poultry behavior that includes the detection of health conditions, weight prediction,
and tracking and monitoring. The chickens’ activities in the flock can also be recorded
and analyzed later for identifying different patterns and behaviors. Image processing
provides an inexpensive and cost-effective autonomous analysis of the poultry behavior
that includes the detection of health conditions, weight prediction, and tracking and
monitoring. The chickens’ activities in the flock can also be recorded and analyzed later
for identifying different patterns and behaviors. The monitoring of flock activity can
be achieved by comparing the adjacent set of different pixels [16,26]. The detection of
abnormal feeding activity within the flock can be treated as an early health warning
of the poultry chickens [16]. The monitoring of the poultry chicken behavior and the
early detection of infection can be accomplished by analyzing the feces of the poultry
chickens [17]. The image processing techniques were applied to clean the dataset to perform
the data analysis. The study proposed that its monitoring and classification mechanism to
identify the Campylobacter-free chicken flocks is much better than conventional on-farm
microbiological methods. The study claims to provide the monitoring results within 7 to
10 days. The implementation of a convolutional neural network (CNN) is proposed on a
computer vision system for the crowd monitoring of poultry chickens around feeders with
an accuracy of 99.17% [27].

The crowd observed around the feeder is categorized as not crowded, low crowded,
and fairly crowded. The number of poultry chickens has been calculated using an IR
camera in a controlled lighting environment [28]. The image colors were cropped and
converted into grey-scale and then further converted into binary images. The number of
poultry chickens were counted as white pixels with an accuracy of 71.23%. The disease
prediction and classification is achieved with posture features modeling through an SVM
Model with an accuracy of 99.47% [5].

The weight of the poultry chicken is predicted using the computer vision techniques
through an Artificial Neural Network (ANN) [29]. The maximum error of the weight
predicted was less than 50 g when weighed individually. The thermal camera is proposed
to manage the heat stress within the poultry chickens [30]. The prediction of the chickens’
health was performed by applying the Support Vector Machine classification model over
the temperature dataset collected. The temperature dataset of the chickens was collected
by using thermal cameras within the control environment in the poultry farms. The study
claims that climate changes, including temperature and humidity, play an important role
in the reduced feed intake, growth, weight, semen, and fertility of the chickens.

The thermal camera is also used for the video surveillance to label the data and
depth camera to model the chicken’s health [31]. The mobility features (walk speed) were
extracted and statistical analysis was carried out for the feature investigations. The study
claims that the earliest infection detection time possible by the authors is on the forth day
based on the elongation and variance of the circle.

2.3. Wearable Sensing Devices

Wearable sensing devices such as RFID microchips and accelerometers are used to
track and monitor the location. An RFID microchip produces a signal to the RFID reader
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when found in the magnetic field. Through the RFID mechanism, the location of the poultry
chickens can be obtained, and hence, the entire movement of the poultry chicken within
the flock can be observed. The integration of the Internet of Things design along with the
wearable sensing devices help in observing the poultry chickens’ movement in a real time.
An RFID reader is placed in a poultry nest, and the RFID tags were placed over the poultry
chickens in order to observe the frequency of the chickens going in or out of the nest [33].
The solution is also enhanced by adding the egg detection sensor to observe the egg laying
behavior and can find the abnormalities as early warnings.

The behavior of the poultry chickens laying eggs can also provide an analysis of the
relationship between keel bone fractures and laying eggs [34]. The tracking movement
of the poultry chickens were observed using an RFID mechanism with an accuracy of
62.6% [32]. The weighing sensors along with the RFID devices can help in understanding
the behavior of the poultry chickens such as the speed of the movement, food acquisition,
and resting time within the flock [4]. The study also classified the poultry chickens as
active, normal, or sick using the K-means clustering method. The feeding and nesting
behavior can also be observed using the RFID microchips [35]. The poultry chickens’
health, cleanliness, and growth were diagnosed with a tag worn by tracking the location in
a field [36].

2.4. Other Advancements

The study [37] used the stretchable transistors to provide the health monitoring of
the chicken. The electronic skin concept was proposed named as ‘eskin’ by the authors
predicted the health of the poultry chickens through transistors pasted over the skin of the
poultry chickens and that transmit continuous data.

2.5. Machine Learning and IoT Systems

The recent advancements depend on machine learning models in developing real-
world IoT systems. The IoT-based decision and support systems rely on machine learning
models due to the limited computational and processing resources within IoT peripheral
systems. Real-world IoT systems also help the machine learning models with new data
to train models for best performances. Transferring all the information over the cloud
and processing it opens new challenges for researchers. This helps them in addressing
the transmission and processing issues of big data over the cloud. The IoT–Fog–Cloud
ecosystem [38] is discussed that provides the implementation of a distributed fog layer for
data processing. The study [38] also discussed the big data and heterogeneity challenges in
order to design automatic components for fog resiliency.

The prediction of museum visitor’s attendance is carried out using a learning model [39].
The study [39] investigated the impact of weather conditions on the museum visitors and
observed that some factors such as time of the day, day of the week, and vacations also have
significant impact while predicting the number of museum visitors. A microservice frame-
work is proposed to develop IoT-based, context-aware decision systems with automatic
functions [40]. The study [40] proposed the microservice framework to address the latency
issue along with big data, device heterogeneity, and fog resiliency challenges. Machine
learning helps to provide a simulated learning environment for the new developers or
workers to have robust, effective, and realistic learning platforms [41]. The proposed
simulated learning [41] provides the technological advancements for learners to combine
and relate real and virtual learning environments with a sense of presence.

The study [6] collected a dataset of the poultry chickens by deploying wearable
accelerometer over individual chickens. The device stores the three-axis data of chickens,
which represents the actions performed by poultry chickens such as dustbathing, preening,
and pecking. The dataset of these activities was formed for the healthy chicken, as well as
for sick chickens. The researchers deliberately embossed the Ectoparasites residing over the
skin of the chickens, causing stress. Moreover, such chickens are responsible for spreading
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the Ectoparasites among other poultry chickens. Hence, it impacts the poultry farms that
cause the infection of the overall chicken flock [42].

The dataset provided in the study [6] has been extrapolated by using a deep generative
modeling technique. The problem is to perform deep generation from a tabular dataset
to adopt the probability distribution. Through CTGAN [8], the synthetic dataset has
been generated in the proposed study to solve the class imbalance problem of the dataset
distribution. The generation of the synthetic dataset has been used to evaluate the upper
limit performance of machine learning models [43]. Another study generated the synthetic
dataset to maintain the reliability of the data privacy in healthcare [44].

2.6. Limitations with Sound and Image Analysis

Sound analysis can be implemented for the early detection of the poultry chicken
behaviors by identifying the frequencies of the chickens’ noise (sound) vibrations. Through
these observations, the growth and well-being of the poultry chickens can be predicted.
The tracking of thousands of poultry chickens in commercial farms through sound analysis
faces real-world challenges. It is impossible to identify the exact poultry chicken that made
the sound vibration due to sound isolation. The sound detection of each individual chicken
in commercial farms is still in the experimental stage. Another complicated challenge
in adopting the tracking of poultry chickens using sound analysis is the environmental
noise. The environmental noise disturbances make it difficult to track chickens using sound
analysis in commercial farms. The cancellation of the environmental noise using voice
recognition through Artificial Intelligence (AI) is still an open area for advancement.

Image and video monitoring and tracking for poultry chickens help in diagnosing
disease, crowds, weight, and predicting the flock’s activities and behaviors. However, the
commercial aspects for the adoption of image analysis is challenging due to the accuracy
of identifying thousands of poultry chickens in commercial farms.

In the proposed study, the available dataset [6] was generated deeply while proposing
the classification of sick and healthy poultry chickens. This classification is based on
chicken movement data. Supervised machine learning and deep learning classification
models are used with better accuracy. The proposed study contributes to the scientific
community by presenting the performance comparison of different machine learning and
deep learning models.

3. Proposed Methodology

The wearable sensing devices help increase the observations of individual chickens
with accuracy [45]. The sensing devices track and monitor the individual chickens over a
given time period. The recent advancements in the sensing devices make these devices
affordable to track and collect the monitoring observations for sensor-driven data analysis.
The recent studies contributed in data collection techniques of livestock and poultry using
wearable sensing devices [45–48].

3.1. Data Definitions

The 20-weeks dataset collected by the study [6] consists of the 24 unique poultry
chickens placed in four different flocks. The data provides the number of (a) dustbathing,
(b) pecking, and (c) preening of each chicken per day located in six different flocks. Table 2
provides the data attributes available and Figure 3 illustrates the pairwise distribution of
the available dataset [6].

The studies [49–51] track and analyze the following activities in the poultry chicken.
The activities including pecking, preening, and dustbathing shows the correlation with
each other. Feeding/pecking is an activity observed in the poultry chicken that strikes
the beak at the ground and is commonly observed behavior within poultry chickens.
Preening is observed in the poultry chickens where the feathers are groomed or nibbled
using the beak [52]. Through preening, the poultry chickens clean their feathers and is
considered as an important regular activity. This observation is made by observing the



Sustainability 2021, 13, 13396 9 of 16

beak movement of the chicken. Dustbathing involves chickens sitting or lying down with
up raised feathers [52]. In this act, the poultry chicken tends remove the possible parasites
from its feathers by moving over the sand or dust. Dustbathing is rare common behavior
performed by the poultry chickens.

Table 2. The poultry chicken movement data attributes from the available dataset [6].

Attribute Type Description

Week INTEGER Week number on which the observation is taken.
Date DATE Date on which the observation is taken.
Flock INTEGER Poultry chicken belonging to the specific flock.
Bird INTEGER Unique observation of a particular poultry chicken.

Pecking LONG Number of Pecking (frequency) observed of a particular poultry chicken per day.
Preening LONG Number of Preening (frequency) observed of a particular poultry chicken per day.

Dustbathing LONG Number of Dustbathing (frequency) observed of a particular poultry chicken per day.
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Figure 3. The pairplot of the actual data set with respect to pairwise relation between dustbathing,
preening, and pecking.

The ectoparasites (arthropods) reside on the skin surface of the chicken’s body and
are responsible for the stress of the poultry chickens. These ectoparasites spread from
chicken to chicken within the poultry flock and hence spread the disease [7]. Most of
the ectoparasites’ effects observed for sickness include the health and productivity of the
laying eggs chickens. The spread of arthropods can infect the complete flock and can
affect the health of respective poultry chickens within the flock. The study [6] induced the
ectoparasites to collect the movement observations of sick and healthy poultry chickens.
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3.2. Synthetic Data Generation

Generative Adversarial Networks (GANs) use deep learning supervised modeling to
learn data patterns of the supplied dataset in order to regenerate the missing or eliminated
data records from the original dataset. Conditional Tabular Generative Adversarial Net-
works (CTGAN) [8] provides the implementation to deeply generate the tabular dataset.

The 10,000 records of the synthetic dataset have been generated using CTGAN [8] with
1000 epochs. The synthetic data capture the probability distribution of the actual dataset
and hence address the challenges of class imbalance in the dataset. Figure 4 shows the
comparison of the actual data with the synthetic data generated. The generated synthetic
data are used for the supervised machine learning and deep learning techniques to classify
the sick and healthy poultry chickens.
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Figure 4. The actual data comparison with the synthetic data generated using CTGAN [8].

3.3. Machine Learning and Deep Learning Classification Techniques

The machine learning classification algorithms provide the precise labeling technique
over the input data that helps in predicting the most similar data to the classified label.
These classification models tend to learn and provide more accurate classification results
over the period of time. The classification algorithms provide the discrete resulting value
to label the data. The input labeled data is divided into the training data and testing data.
The model training has been carried out by feeding the labeled training dataset that is later
used to validate the labeled testing data. The descriptive and predictive modeling can also
be achieved by the classification models. The generalized working of the classification
model where ‘x’ is the input data that is supplied to the classification model for the training
and provides the class label ‘y’ to the input data ‘x’.

The machine learning classification models have been trained using the actual and
synthetic dataset. The supervised learning algorithms such as Nearest Neighbor, Decision
Tree, Random Forest, Naive Bayes, and Support Vector Machine are applied as the experi-
ments in this study to classify the poultry chicken using an IoT-based predictive service.
Figure 5 shows the training and evaluation of the Decision Tree classifier to predict the
health of the poultry chicken by the proposed IoT based predictive service framework as
presented in Figure 6.
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Figure 5. The training and evaluation of the Decision Tree classifier to predict health of the poultry chicken.
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Figure 6. The proposed IoT based Predictive Service to predict the health of the poultry chickens in real time.

Deep learning extends the machine learning modeling using multiple layers to extract
the data attributes from a supplied dataset. Deep learning models contribute towards
the cast range of emerging domain areas such as natural language processing, speech
recognition, computer vision, bioinformatics, video surveillance, and many more. Earlier,
gradient boosting models such as XGBoost [53] provided better performance for tabular
datasets. In 2019, Google’s TabNet [10] outperformed the leading tree based models. One
of the important quality that the feature preprocessing is not required in TabNet. The
implementation is easy and only requires hyper-parameter tuning. TabNet implements the
instance-wise feature selection at each decision step. The implementation allows the single
row feature visualization, known as local interpretability, and feature visualization for a
complete dataset, known as global interpretability.

3.4. Performance Evaluators

The trained classification models have been evaluated using the standard performance
indicators used to calculate the accuracy of the proposed IoT-based classification service.
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The performance indicator includes Precision (1), Recall (2), F1-Score (3), and Accuracy (4)
as follows:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F1-Score =
2 × Precision × Recall

Precision + Recall
=

2 × TP
2 × TP + FP + FN

(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

4. Results and Discussion

The experiments conducted in the study are performed over the actual and synthetic
dataset. The synthetic dataset of 10,000 records is created by configuring 1000 epochs
for deep generative CTGAN [8]. For sick and healthy poultry chicken classification, the
generative models employed to augment the poultry chicken movement data are an
important contribution of the proposed study. The generated synthetic dataset provides
the sparsity in the original dataset [6] because of the lack of or limited data. The experiment
trained the machine learning and deep learning classification models for an approach
to propose an IoT-based predictive service framework for poultry farms for real-time
detection of the chickens’ degradation.

The performance of each of the supervised machine learning and deep learning
classification models is calculated using the performance evaluation indicators such as
Precision (1), Recall (2), F1-Score (3), and Accuracy (4). The ensemble learning was applied
for each of the classification model along with 10 k-cross-validations.

Table 3 summarizes the performance of the selected classification models with their
sensitivity error percentage. TabNet [10] outperforms the other machine learning classifica-
tion models. Decision Tree and Random Forest performed well since these classification
models provide the best predictive modeling for binary class modeling.

Table 3. The performance evaluation of machine learning and deep learning models to classify the poultry chicken through
IoT Service.

Classification Model Accuracy Precision Recall F1-Score

Decision Tree 0.807 (+/− 0.077) 0.804 (+/− 0.076) 0.805 (+/− 0.078) 0.804 (+/− 0.077)
Logistic Regression 0.785 (+/− 0.153) 0.787 (+/− 0.135) 0.788 (+/− 0.149) 0.783 (+/− 0.150)

K Nearest Neighbour 0.778 (+/− 0.061) 0.778 (+/− 0.045) 0.779 (+/− 0.049) 0.775 (+/− 0.053)
Gaussian Naive Bayes 0.806 (+/− 0.081) 0.811 (+/− 0.082) 0.807 (+/− 0.085) 0.803 (+/− 0.079)

Random Forest 0.819 (+/− 0.074) 0.812 (+/− 0.080) 0.822 (+/− 0.092) 0.819 (+/− 0.061)
Support Vector Machine 0.699 (+/− 0.234) 0.725 (+/− 0.246) 0.715 (+/− 0.220) 0.698 (+/− 0.233)
TabNet (Deep Learning) 0.956 (+/− 0.107) 0.979 (+/− 0.047) 0.964 (+/− 0.134) 0.953 (+/− 0.082)

The TabNet model classifies the sick and healthy poultry chicken with the best per-
forming accuracy of 97% of the proposed study. The Decision Tree and Random Forest
machine learning classifiers performed well on the actual and synthetic dataset and ob-
tained more accurate results with an accuracy of 81%. The K-Nearest Neighbor where K = 2
provides a 77% accuracy to predict the healthy and sick poultry chicken. Gaussian Naive
Bayes classification performed slightly better than Nearest Neighbor with an accuracy of
80%. The Support Vector Machine classification model performed the least amongst all of
the classification techniques with an accuracy of 70%. The Logistic Regression classification
also predicted the health of the poultry chicken with 78% accuracy.
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The proposed study contributes in providing the performance comparison among
machine learning and deep learning classification models. The study discusses the viability
of the wearable IoT sensing device towards adoption in the poultry industry.

IoT Sensing Devices and Industrial 4.0 Viability

The wearable sensing devices such as the accelerometer and RFID microchips are
considered as a viable solution in tracking and monitoring each of the poultry chickens in
the commercial farms. These sensing devices can easily observe the activities and locations
of each individual chicken within the flock. The tracking and monitoring using sensing
devices can help in observing the nesting, perching, feeding, and drinking behaviors of
the poultry chickens. In addition, the anomaly detection of the location and movements of
the poultry chickens can also be observed and adopted as an early detection system for
chickens’ well-being.

5. Conclusions

The demand of the real-time adaptive systems in the poultry industry provides the
motivation to propose a systematic approach to create an IoT-based predictive service
framework that observes the poultry chickens’ movement data and more accurately pre-
dicts the health of the chickens in real-time. The study implements deep generative models
to extrapolate the IoT-based sensing data of poultry chickens to address the class imbalance
problem. The study predicted the health of poultry chicken by modeling different machine
learning and deep learning classification techniques as an IoT service. It has been observed
that the deep learning tabular data classification model TabNet outperforms with hte best
classifying accuracy. The Decision Tree and Random Forest machine learning classifiers
provided more accurate predictions of the poultry chickens. Moreover, the proposed study
discussed other advancements and their limitations in the adoption by the poultry indus-
try. The study opens different approaches that can be used for the implementation or an
extension of the proposed framework to develop an IoT-based predictive service. It will
help animal welfare specifically towards the development of a precision livestock farming
system for the poultry industry.

The study will be extended to propose a real-time predictive IoT service to classify
the diseases of poultry chicken with the help of Bayesian Network modeling. The hybrid
approach aggregating the machine learning classification models along with the Bayesian
Network modeling will provide more accurate prediction for diseases in poultry chickens.
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