
sustainability

Article

A Feasible Solution for Rebalancing Large-Scale Bike
Sharing Systems

Mohammed Elhenawy 1 , Hesham A. Rakha 2 , Youssef Bichiou 2, Mahmoud Masoud 1,*, Sebastien Glaser 1 ,
Jack Pinnow 1 and Ahmed Stohy 3

����������
�������

Citation: Elhenawy, M.; Rakha, H.A.;

Bichiou, Y.; Masoud, M.; Glaser, S.;

Pinnow, J.; Stohy, A. A Feasible

Solution for Rebalancing Large-Scale

Bike Sharing Systems. Sustainability

2021, 13, 13433. https://doi.org/

10.3390/su132313433

Academic Editor: Anders Wretstrand

Received: 23 October 2021

Accepted: 30 November 2021

Published: 4 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centre for Accident Research and Road Safety, Queensland University of Technology,
Brisbane, QLD 4059, Australia; Mohammed.Elhenawy@qut.edu.au (M.E.);
Sebastien.Glaser@qut.edu.au (S.G.); j.pinnow@qut.edu.au (J.P.)

2 Center for Sustainable Mobility, Virginia Tech Transportation Institute, Blacksburg, VA 24060, USA;
hrakha@vt.edu (H.A.R.); ybichiou@vtti.vt.edu (Y.B.)

3 Department of Computer and Systems, Engineering Minya University, El Menia 61519, Egypt;
ahmedstohy6@gmail.com

* Correspondence: mahmoud.masoud@qut.edu.au

Abstract: City bikes and bike-sharing systems (BSSs) are one solution to the last mile problem.
BSSs guarantee equity by presenting affordable alternative transportation means for low-income
households. These systems feature a multitude of bike stations scattered around a city. Numerous
stations mean users can borrow a bike from one location and return it there or to a different location.
However, this may create an unbalanced system, where some stations have excess bikes and others
have limited bikes. In this paper, we propose a solution to balance BSS stations to satisfy the expected
demand. Moreover, this paper represents a direct extension of the deferred acceptance algorithm-
based heuristic previously proposed by the authors. We develop an algorithm that provides a
delivery truck with a near-optimal route (i.e., finding the shortest Hamiltonian cycle) as an NP-hard
problem. Results provide good solution quality and computational time performance, making the
algorithm a viable candidate for real-time use by BSS operators. Our suggested approach is best
suited for low-Q problems. Moreover, the mean running times for the largest instance are 143.6,
130.32, and 51.85 s for Q = 30, 20, and 10, respectively, which makes the proposed algorithm a
real-time rebalancing algorithm.

Keywords: bike-sharing system; black hole algorithm; game theory; heuristic algorithm;
multiple trucks; static rebalancing

1. Introduction

Big urban areas often suffer from traffic congestion, excessive carbon mono/dioxide
emissions (CO, CO2), and wasteful use of fuel, all of which are factors that tend to lead
to decreases in productivity. In 2007, the U.S. lost approximately USD 87.2 billion due
to decreases in productivity and fuel waste. These losses reached USD 115 billion in
2009 [1,2]. Trip times are also affected by driving in congested conditions, with findings
from 1993 showing a 1.2 min/km driving delay on arterial roads [3].

As a result, people nowadays are encouraged to use public transport and leave their
vehicles at home. In larger cities, public transport typically stops at transit stations in close
proximity to the city center. Riders, therefore, need other transportation modes to reach
their final destinations. This is generally termed “the last mile problem”. This problem is
defined as “the short distance between home and the nearest public transit or between a transit
station and the workplace, which may be too far for a walk” [4,5]. A bike-sharing system (BSS)
that is efficiently operated and well-maintained can address this issue, enabling riders to
reach their final destination without contributing to roadway congestion. These systems
are particularly important considering the impact COVID-19 has had on conventional

Sustainability 2021, 13, 13433. https://doi.org/10.3390/su132313433 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-2634-4576
https://orcid.org/0000-0002-5845-2929
https://orcid.org/0000-0003-0658-7765
https://orcid.org/0000-0003-0078-1719
https://doi.org/10.3390/su132313433
https://doi.org/10.3390/su132313433
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su132313433
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su132313433?type=check_update&version=2

Sustainability 2021, 13, 13433 2 of 19

transport (i.e., buses, subways, and trains) in big cities, as people are less willing to travel
on conventional transport because they cannot mitigate risks associated with COVID-19
exposure. However, travel is still a necessity as part of many people’s daily lives. Given the
large amount of control people have over risk mitigation when using BSSs, these systems
are favored over conventional transport. As a result, the pandemic will likely increase
demand on BSSs.

The Bureau of Transportation published a technical report in April 2016 that reported
3375 BSS stations distributed among 104 U.S. cities, though only 77% of those stations were
connected to other scheduled public transportation systems [6]. These numbers demonstrate
BSSs’ potential for reducing congestion. However, BSS rebalancing is a common recurring
problem for many systems. Each day, an operator must visit all stations to redistribute
(i.e., rebalance) bikes from full to empty stations to meet the projected daily demand.
The bikes demand is reflected by the availability of bikes at each station in the BSS. Efficient
BSS redistribution needs an accurate prediction of the bike count in a BSS. However,
bike count prediction is challenging because the prediction models have to consider the
variability of the demand patterns at the BSS stations. This variability is mainly because of
the interaction between users and the BSS, as shown in Figure 1. Recently, many research
papers have adopted machine learning and statistical models to solve the bike count
prediction problem [7–11]. In this paper, we assume the demand is given and we know
exactly the required number of bikes to drop off and pick-up at each station.

Sustainability 2021, 13, 13433 2 of 20

are particularly important considering the impact COVID-19 has had on conventional

transport (i.e., buses, subways, and trains) in big cities, as people are less willing to travel

on conventional transport because they cannot mitigate risks associated with COVID-19

exposure. However, travel is still a necessity as part of many people’s daily lives. Given

the large amount of control people have over risk mitigation when using BSSs, these

systems are favored over conventional transport. As a result, the pandemic will likely

increase demand on BSSs.

The Bureau of Transportation published a technical report in April 2016 that reported

3375 BSS stations distributed among 104 U.S. cities, though only 77% of those stations

were connected to other scheduled public transportation systems [6]. These numbers

demonstrate BSSs’ potential for reducing congestion. However, BSS rebalancing is a

common recurring problem for many systems. Each day, an operator must visit all

stations to redistribute (i.e., rebalance) bikes from full to empty stations to meet the

projected daily demand. The bikes demand is reflected by the availability of bikes at each

station in the BSS. Efficient BSS redistribution needs an accurate prediction of the bike

count in a BSS. However, bike count prediction is challenging because the prediction

models have to consider the variability of the demand patterns at the BSS stations. This

variability is mainly because of the interaction between users and the BSS, as shown in

Figure 1. Recently, many research papers have adopted machine learning and statistical

models to solve the bike count prediction problem [7–11]. In this paper, we assume the

demand is given and we know exactly the required number of bikes to drop off and pick-

up at each station.

Figure 1. Model interactions [12].

This redistribution problem is a generalized version of the traveling salesman

problem (TSP), which involves determining the shortest route that visits all stations and

returns to the original station. The TSP is an NP-hard problem where finding an exact

optimal solution for large systems is currently impossible given limited time and

computational resources (i.e., algorithms with exponential time complexity are

guaranteed to find an exact solution).

In this paper, we propose a fast and accurate algorithm for solving the static bicycle

rebalancing problem (SBRP) using multiple trucks. Our developed algorithm has three

stages: network clustering, tour construction, and tour improvement. A set of

approximate solutions are built in the first stage of the algorithm and are then improved

using a local search in the second stage. In the third stage, a global search by means of

black hole algorithm (BHA) is performed to provide more accurate solutions.

Figure 1. Model interactions [12].

This redistribution problem is a generalized version of the traveling salesman problem
(TSP), which involves determining the shortest route that visits all stations and returns
to the original station. The TSP is an NP-hard problem where finding an exact optimal
solution for large systems is currently impossible given limited time and computational
resources (i.e., algorithms with exponential time complexity are guaranteed to find an
exact solution).

In this paper, we propose a fast and accurate algorithm for solving the static bicycle
rebalancing problem (SBRP) using multiple trucks. Our developed algorithm has three
stages: network clustering, tour construction, and tour improvement. A set of approximate
solutions are built in the first stage of the algorithm and are then improved using a local
search in the second stage. In the third stage, a global search by means of black hole
algorithm (BHA) is performed to provide more accurate solutions.

In the first stage, we use the BHA to divide the network into non-overlapping sub-
networks, but overlapping at the depot only, such that each subnetwork is compact in

Sustainability 2021, 13, 13433 3 of 19

size. In addition, each subnetwork should be as balanced as possible where the sum of the
demand of the subnetwork is close to zero.

In the second stage, each subnetwork’s respective SBRP is constructed using two
sets of disjointed players. After the first and second set of players construct their prefer-
ences for each other, the deferred acceptance algorithm is used to find stable assignments
between them.

In the final step, the constructed tours are improved by performing a local search using
the 2-opt algorithm. By limiting players’ preference lists, the proposed algorithm easily
adapts to different sets of constraints. Accordingly, if demand predictions are known, the
algorithm can solve dynamic rebalancing problems. Moreover, it is suitable for real-time
applications where each subnetwork is solved independently, and both the local search
algorithm and a matching algorithm can be executed in polynomial time.

This paper is organized as follows: The first and second sections present the intro-
duction and the related work, respectively. In the third section, the methods used in this
research are discussed. The problem statement is introduced in the fourth section. The
proposed algorithm and the experimental work are presented in the fifth and sixth sections,
respectively. Conclusions are drawn in the last section.

2. Related Work

Rebalancing BSS bike distribution is critical in guaranteeing customer satisfaction and
system effectiveness [13,14]. Redistribution has been studied extensively in the literature
and several efficient algorithms that maintain an equilibrium of bikes at each station have
been proposed.

There are three types of rebalancing: static, dynamic, and incentivized. A fleet of
trucks is typically used to redistribute bikes in static and dynamic rebalancing models.
Static rebalancing, or SBRP, as it is commonly referred to in literature, is typically performed
during periods of low demand, such as nighttime. This is because SBRP assumes the
number of bikes needed at each station is constant or changes only slightly. In the dynamic
bicycle repositioning problem (DBRP), the rebalancing outcome is affected because bike
movement has a significant impact on bike demand at each station. It follows that demand
predictions are necessary to solve DBRP. Incentivized rebalancing encourages users to
participate in system rebalancing by suggesting slight changes to their planned journey
through control signals, providing alternate routes that improve rebalancing, or even
offering credits to return bikes to a station. In recent years, BSSs have evolved beyond
the need for stations/docks, with users being able to deposit and pick up bikes anywhere
within defined city boundaries. This type of bike-sharing, known as a free-floating bike-
sharing system (FFBSS), offers benefits over standard BSSs, such as reduced bike theft and
lower capital cost. Efficient rebalancing of this system is a crucial part of its success [15].

First proposed by Hernández-Pérez and Salazar-González [16], the problem is consid-
ered a one-commodity pick-up and delivery traveling salesman problem (1-PDTSP) and
is known to be NP-hard. A good approach to problems of this complexity class is to use
heuristic optimization techniques that determine a “good” near optimum tour (i.e., route).

These methods utilize stochastic search elements, which implement rules that guide
the search towards favorable solutions. The aim is to converge on the optimum solution
after many iterations. The solution obtained is not guaranteed to be the global optimum,
and these types of solutions are therefore referred to as suboptimal.

Heuristic optimizations follow four common steps [17]: (i) choose an arbitrary ini-
tial solution, (ii) iteratively construct new and/or improved solutions using a mecha-
nism/generation rule, (iii) evaluate the solutions using the objective function and re-
port/retain the best among them, and (iv) once the stopping criterion is met, terminate
the iterative search. Examples of heuristic algorithms include ant colony optimization
(ACO), tabu search (TS), simulated annealing (SA), and genetic algorithms (GAs). These
methods take inspiration from natural phenomena to solve NP-hard or NP-complete prob-

Sustainability 2021, 13, 13433 4 of 19

lems that have robustness or uncertainty issues, moderate or large sizes, or non-analytical
optimization models.

Hernández-Pérez and Salazar-González solved the 1-PDTSP for instances of up to
75 locations using a branch-and-cut algorithm [16]. For solving larger instances (i.e., up
to 500 locations) in a reasonable time, they proposed two heuristics: a greedy algorithm
improved with the k-optimality criterion and a branch-and-cut procedure for finding an op-
timal local solution [18]. Shi et al. solved instances with 20–500 locations by utilizing a mod-
ified GA that incorporated a local search procedure instead of the mutation operation [19].
A scalable 1-PDTSP solution was proposed by Schuijbroek et al. [20]. Their approach used
the maximum spanning star approximation to cluster stations. Furthermore, a cluster was
assigned to each vehicle, and the redistribution tour was constructed to meet the required
service level. Benchimol et al. [21] used integer programming to solve a variation of the
SBRP and routing problem by allowing a single vehicle to visit the same location more than
once. Li et al. [22] considered the multi-commodity (i.e., different bicycles) rebalancing
problem and solved it using two-step logic. In the first step, the truck tour was constructed
using a hybrid generic search. The pick-up/drop-off plan was then formulated using
a greedy heuristic algorithm. Rainer-Harbach et al. [23] solved a multiple trucks with
different capacities variation of the 1-PDTSP. In this variation, the start and end of the
redistribution tours could not store bikes and were at separate locations. The problem
was decomposed into two sub-problems: pick-up/drop-off planning and routing. Once
vehicle routing schedules were constructed, the optimal pick-up/drop-off plan linked to
that tour was determined through an integer programming model. An iterated tabu search
heuristic was used by Ho and Szeto [24] to solve the SBRP. They made two assumptions in
their formulation: (i) the truck could make multiple stops at the depot during rebalancing
because the depot had sufficient bikes and capacity and (ii) the depot served as both the
pick-up and drop-off node.

The DBRP was solved in real-time by Contardo et al. [25]. Their method utilized
Benders decomposition and Dantzig–Wolfe techniques in conjunction with the most recent
demand prior to repositioning decisions. The approach was not suitable when considering
demand, which changes quickly. Shu et al. [26] predicted user demand over the entire
horizon and attempted to find improved DBRP solutions by using a Poisson distribu-
tion. The DBRP was addressed by Ghosh et al. [27] who considered changing daytime
demands. The problem was decomposed into two subproblems—vehicle routing and bike
repositioning—through the use of abstraction mechanisms and Lagrangian dual decom-
position. Zhang et al. considered a multi-truck, multi-commodity DBRP as a time–space
network flow model. The resulting non-linear objective function was transformed into
an equivalent mixed-integer programming model, which minimized the total unmet de-
mand and route. This was solved with a novel heuristic for 200 stations and 5 vehicles in
47.12 s [28]. Wang and Szeto extended the SBRP by considering a green approach, which
minimized the total CO2 emissions from repositioning vehicles in a mixed-integer linear
programming model [29]. Shui and Szeto improved on this by considering the dynamic
variant. This model minimized the total unmet demand and fuel and CO2 emission cost by
using a rolling horizon approach and an enhanced artificial bee colony algorithm [30].

Pal and Zhang considered the FFBSS problem by solving a large scale static complete
rebalancing problem (SCRP) that allowed the same vehicle to make multiple visits to a
node. A variable neighborhood descent algorithm was used with a hybrid nested large
neighborhood search to solve an SCRP with 3000 bikes, 450 stations, and 30 vehicles
in a mean total time of approximately 4.2 h [15]. Du et al. proposed an integer linear
programming model to optimize an FFBSS with malfunctioning bike collection. A greedy
genetic heuristic was used to solve an instance with 450 stations, 1000 functioning and
100 malfunctioning bikes, and 13 trucks in a mean solve time of 4.2 h [31]. The dynamic
case has seen significantly less attention. Caggiani et al. proposed a framework for dealing
with dynamic FFBSSs by performing spatio-temporal clustering on historical data, followed
by a non-linear autoregressive neural network to predict demand. This was input into a

Sustainability 2021, 13, 13433 5 of 19

spatio-temporal microsimulation, which determined optimal repositioning flows and bike
distribution patterns. [32]. Ruijing et al. considered the incentivized FFBSS rebalancing
model. A stochastic simulation optimization model, which adopted a rank and search
methodology, was used to maintain expected satisfactory service levels while maximizing
total expected daily profit. Their findings suggested that an optimal incentive-based
rebalancing plan could achieve higher bike utilization [33].

3. Methods

This section introduces the modeling techniques used in this paper.

3.1. Black Hole Algorithm (BHA)

The black hole algorithm (BHA) is a black hole-inspired metaheuristic algorithm [34,35].
The algorithm begins by randomly choosing many solutions within the search space.
The objective function is used to evaluate these solutions; the optimal solution is labeled
the “black hole” and all others are labeled “stars”. During each iteration, stars are moved
toward the black hole and each new star’s cost is reevaluated. The solution is improved on
if a star’s cost is better than the black hole’s. When this happens, the star becomes the new
black hole, and the old black hole becomes a star. Stars are removed from the population of
solutions and are subsequently replaced by a randomly generated star if they become close
to the black hole. This process continues to iterate until the stopping criterion is met.

3.2. Deferred Acceptance Algorithm (DAA)

Introduced by Gale and Shapley [36], the deferred acceptance algorithm finds a stable
assignment for two equal sets of size N, one consisting of men and the other women, each
of whom has an ordered list of their preferred partners to marry from the opposite sex.
A stable assignment is formed when there is no incentive for any couple to leave their
assigned mate for another. The algorithm has an average complexity and worst case of
O(N log N) and O

(
N2), respectively [37,38]. During the first stage, men propose to the first

woman on their preference list. Each woman accepts the best proposal on her preference
list, rejecting all others. These proposals are said to be in a state of deferred acceptance.
In the second stage, each man previously rejected proposes to their second preference. Each
woman then accepts the better of their deferred acceptance state offers and best proposal
during the current stage, rejecting all other offers. Men continue proposing until each man
holds a deferred proposal, at which point each woman accepts the proposal they currently
hold, and the algorithm terminates.

3.3. The 2-Opt Local Search Algorithm

The 2-opt algorithm is a tour-improving algorithm which iteratively improves a
solution once one is established by the deferred acceptance algorithm. It follows that the
2-opt solution quality depends on the deferred acceptance algorithm’s initial solution.
The 2-opt algorithm has a complexity of O

(
N2). The algorithm consists of three stages:

(i) perform a local search via removal of two edges from the solution; (ii) reconnect the
two created paths to form a new, valid solution; and (iii) replace the original solution if
the new solution minimizes the objective function. These three steps are repeated until no
improvements can be made.

4. Problem Statement for a Subnetwork

Before starting the problem, we define the term “NotSpot”, adopted from [39], as a
bike station patrons who want to return or pick up a bike considered unusable because
the station is full or empty. Similarly, a bike station is considered a NotSpot if there are
more or less than a certain threshold of bikes. We define these thresholds as tFull and tEmpty.
In addition, while beyond the scope of the paper, it should be noted that historical data for
a given station can be used to estimate the tEmpty and tFull thresholds for that station.

Sustainability 2021, 13, 13433 6 of 19

Given a fully connected network G = (V, E), where V is the set of N NotSpots in the
bike system, including the depot, and E is the set of all links connecting the vertices in the
network, we partition this network into p subnetworks (i.e., g1 = (v1, e1) . . . gp = (vp, ep)),
where p is also the number of trucks. Because we assume there is only one depot, all
subnetworks overlap only at the depot.

To each node i in each subnetwork, we assign an integer βi, which represents the
number of needed/pick-up bikes. If βi is negative, then −βi bikes are removed from a
NotSpot. Consequently, station i becomes a pick-up station. If βi is positive, then βi bikes
need to be dropped at a NotSpot, and station i becomes a drop-off station. The cost γij is
assigned for the link between i and j.

In this paper, the adapted heuristics aim to generate a good/suboptimal truck tour
that rebalances the NotSpot stations. The input data consists of a list of NotSpots and the
depot, the distances matrix of each subnetwork, and the demand of the NotSpots. Each
subnetwork will be served by only one truck with a maximum capacity Q.

The tour is considered optimum by minimizing the total traveling distances
(∑j∈ ∀ links in gl

γj) and total residuals (∑i∈vl
|Ri|) as follows in Equation (1):

Min

(
∑
j∈el

γj + ∑
i∈vl

|Ri|
)

(1)

where {
ACi > 0 i f βi < 0

Q− ACi > 0 i f βi > 0

Ri, Q, and ACi are the residuals at NotSpot i, the maximum capacity of the truck,
and the available bike spots on the truck before serving NotSpot i, respectively. This is
performed for each subgraph (l ∈ [1, p]). These constraints guarantee no empty or full
trucks will arrive at pick-up and drop-off NotSpot stations, respectively. A complete
formulation of the problem can be found in [40].

This problem is 1-PDTSP because we assume that only one type of bike is present in
the BSS and that the tour starts and ends at the depot. Furthermore, the truck begins the
tour below or at maximum bike carrying capacity. However, in the experimental work, we
assumed that the truck always leaves the depot empty.

5. The Proposed Algorithm

The proposed algorithm has three stages. The first stage is the network clustering. In
this phase, the BHA is used to divide the whole network into subnetworks, overlapping
at the depot only, such that the subnetworks are compact and as balanced as possible.
The second phase, the most important phase, is the tour construction. In this stage, we
construct the tour for each subnetwork independently. The tour construction is modeled
as a cooperative game and then we recursively apply the deferred acceptance algorithm
M times, where M is the number of NotSpots in the subnetwork, to match two disjoint
sets: the NotSpot stations and the partial tours. Matching is performed to ensure that,
post-construction phase, each tour contains all NotSpot stations, with each NotSpot station
appearing once in the tour. The 2-opt algorithm improves the constructed tours in the final
phase, and the best tour is selected as the problem’s solution. Following, we will describe
the details of the network clustering, tour construction, and improvement.

5.1. Network Clustering Using the BHA

In this stage, we use the BHA to divide the whole network G into a set of subnetworks
{ g1, g2, . . . , gp

}
, where g1 ∪ g2, . . . ,∪ gp = G and gi ∩ gj = {depot} for i 6= j. The number

Sustainability 2021, 13, 13433 7 of 19

of subnetworks equals the number of trucks. In addition, all subnetworks have almost
equal sizes. The cost of each subnetwork is computed using Equation (2):

cost =
p

∑
l=1

(
N

∑
i=1

βi
p
− ∑

j∈gl

β j

)2

+ C
p

∑
l=1

(
dl

1 + dl
2 + ∑

j∈ ∀ links in gl

γj

)
(2)

where

C constant ∈ [0, 1];
dl

1 is the distance from the depot to the first NotSpot in the sub-vector;
dl

2 is the distance from the last NotSpot in the sub-vector to the depot.

We start by randomly creating many station sequences. Each sequence is simply a
vector of random permutation of all NotSpots. We evaluate each sequence by dividing the
vector of randomly permuted NotSpots into p contiguous sub-vectors where the length of
each sub-vector equals the size of the corresponding subnetwork. The BHA assigns all but
the lowest cost sequence as stars, with the lowest cost sequence being assigned the black
hole role. Each star is then subject to the following:

1. Calculate the distance between the star STk and the black hole using
D(BH, STk) = ∑N

i=1 1BH(i) 6=STk(i), where 1BH(i) 6=STk(i) is the indicator function,

2. 1BH(i) 6=Sk(i) =

{
1 BH(i) 6= STk(i)
0 BH(i) = STk(i)

, and BH(i) and STk(i) are the station IDs at

the position i in the black hole solution (vector/sequence) and star solution (vec-
tor/sequence), respectively.

3. Replace the star STk with a randomly generated star if D(BH, STk) ≤ 3.
4. Identify the set of positions q on star tour STk such that (i) 6= STk(i) ∀ i, where

i = 1, . . . , N.
5. Randomly choose one element of the set q and change STk, as shown in Figure 2.

Sustainability 2021, 13, 13433 8 of 20

Figure 2. Illustration of the modification of the ��� solution to converge towards the black hole solution.

Following the application of the four BHA steps to each star, costs are considered,

and the lowest cost black hole is chosen for the next iteration. This continues until the

stopping criterion is satisfied.

5.2. Tour Construction Using the Deferred Acceptance Algorithm

The tour construction phase works on each subnetwork �� = (���
, ���

)

independently. The proposed algorithm has the goal of constructing good � tours,

where � is the number of NotSpots in the subnetwork �� . Each tour is considered a

Hamiltonian path that consists of a depot and M NotSpots.

The tour construction is considered a cooperative game between two disjointed sets

of players. One player’s set comprises � partial tours. Each of these tours is characterized

by the current load ���� for the truck once the last NotSpot in the partial tour has been

served. Each partial tour has the goal of finding the next NotSpot i to serve. Consequently,

the cost function, shown in Equation (3), is used to build an ascending list for each partial

tour.

(�� − ��)
� + � × � (3)

where � is a constant between 0.1 and 1.0, � is defined previously as the maximum

truck capacity, �� is the number of available bikes on the truck after serving NotSpot �,

C is a constant ∈ [0, 1], and � is the distance in meters between the last station in the

partial tour and NotSpot � . The partial tour’s preference list order is such that the

preferred NotSpot has the smallest value of Equation (2). Furthermore, it only contains

NotSpots NOT shown in its current path.

The second player’s set contains � NotSpots. Preference lists for each NotSpot i are

constructed to include only partial tours that do not yet contain i. The partial tours’

preference list is ordered so that the first and last preferences are the tours that minimize

and maximize the residual at NotSpot i, respectively. That is, the top tour in this player’s

list is the best at achieving station demand (has the lowest absolute residual) and the last

tour is the worst (has the highest absolute residual).

After building preference lists for each player, the deferred acceptance algorithm is

used to find a stable assignment between the partial tours and the NotSpots. Following

Figure 2. Illustration of the modification of the STk solution to converge towards the black hole solution.

Figure 2 shows an illustration of BHA’s modification process. In this example, the
network consists of 11 NotSpots and we want to divide it into three subnetworks of size 4, 4,

Sustainability 2021, 13, 13433 8 of 19

and 3, respectively. At the start of the modification, the best solution is the black hole, which
groups nodes {9, 11, 1, 5}, nodes {2, 3, 4, 10}, and nodes {7, 8, 6} as three non-overlapping
subnetworks. The example shows that when comparing the black hole and a star STk, four
locations on STk are found that are different from the black hole. Subsequently, one of these
four locations is randomly chosen by the BHA to be made identical to the black hole’s
location, while ensuring the modified STk contains only one location for each NotSpot.

Following the application of the four BHA steps to each star, costs are considered, and
the lowest cost black hole is chosen for the next iteration. This continues until the stopping
criterion is satisfied.

5.2. Tour Construction Using the Deferred Acceptance Algorithm

The tour construction phase works on each subnetwork gl =
(
Vgl , Egl

)
independently.

The proposed algorithm has the goal of constructing good M tours, where M is the number
of NotSpots in the subnetwork gk. Each tour is considered a Hamiltonian path that consists
of a depot and M NotSpots.

The tour construction is considered a cooperative game between two disjointed sets of
players. One player’s set comprises M partial tours. Each of these tours is characterized by
the current load Hi−1 for the truck once the last NotSpot in the partial tour has been served.
Each partial tour has the goal of finding the next NotSpot i to serve. Consequently, the cost
function, shown in Equation (3), is used to build an ascending list for each partial tour.

(αQ− Hi)
2 + C× D (3)

where α is a constant between 0.1 and 1.0, Q is defined previously as the maximum truck
capacity, Hi is the number of available bikes on the truck after serving NotSpot i, C is a
constant ∈ [0, 1], and D is the distance in meters between the last station in the partial tour
and NotSpot i. The partial tour’s preference list order is such that the preferred NotSpot
has the smallest value of Equation (2). Furthermore, it only contains NotSpots NOT shown
in its current path.

The second player’s set contains M NotSpots. Preference lists for each NotSpot i
are constructed to include only partial tours that do not yet contain i. The partial tours’
preference list is ordered so that the first and last preferences are the tours that minimize
and maximize the residual at NotSpot i, respectively. That is, the top tour in this player’s
list is the best at achieving station demand (has the lowest absolute residual) and the last
tour is the worst (has the highest absolute residual).

After building preference lists for each player, the deferred acceptance algorithm is
used to find a stable assignment between the partial tours and the NotSpots. Following
this, each partial trip has its matched NotSpot stacked on its end, and the current number
of bikes in the truck is updated.

Lastly, the partial trip is inspected for the number of NotSpots it contains. ALL NotSpots
must be included, otherwise the preference list for each player is reconstructed and another
game is played. The algorithm is terminated if all NotSpots ARE included. A flowchart of
the proposed algorithm can be seen below in Figure 3.

5.3. Tour Construction Example

We consider a fully connected undirected graph containing a depot and three NotSpot
stations for the purpose of illustrating the tour construction algorithm. We assume a square
is formed from the vertices, the sides of which are 1000 m long, where the link between
S1 and S2 has a length of 1200 m, as shown in Figure 4. We set Q, α, and C as 10, 0.5, and
0.002, respectively. Furthermore, we assume the truck leaves the depot with four bikes.

The following steps are taken to construct the tour algorithm:

1. Build S1, S2, S3, such that each contains a depot and one of the three NotSpot stations.
Update H for each tour, as shown in Equation (4).

Sustainability 2021, 13, 13433 9 of 19

2. Use Equation (3) to determine the preference list for each z. Set α to 0.5. This gives
preference to stations which reduce the truck capacity to half.

Depot→ S1(HS1 = 10)
Depot→ S2(HS2 = 6)
Depot→ S3(HS3 = 0)

(4)

3. Build preference lists for each i such that the z which minimizes Ri is the first prefer-
ence. See Figure 5.

Sustainability 2021, 13, 13433 9 of 20

this, each partial trip has its matched NotSpot stacked on its end, and the current number

of bikes in the truck is updated.

Lastly, the partial trip is inspected for the number of NotSpots it contains. ALL

NotSpots must be included, otherwise the preference list for each player is reconstructed

and another game is played. The algorithm is terminated if all NotSpots ARE included. A

flowchart of the proposed algorithm can be seen below in Figure 3

Figure 3. Flowchart of the deferred acceptance algorithm.

5.3. Tour Construction Example

We consider a fully connected undirected graph containing a depot and three

NotSpot stations for the purpose of illustrating the tour construction algorithm. We

assume a square is formed from the vertices, the sides of which are 1000 m long, where

the link between �1 and �2 has a length of 1200 m, as shown in Figure 4. We set Q, �,

and � as 10, 0.5, and 0.002, respectively. Furthermore, we assume the truck leaves the

depot with four bikes.

The following steps are taken to construct the tour algorithm:

1. Build S1, S2, S3, such that each contains a depot and one of the three NotSpot stations.

Update � for each tour, as shown in Equation (4).

2. Use Equation (3) to determine the preference list for each �. Set � to 0.5. This gives

preference to stations which reduce the truck capacity to half.

�����à �1 (��� = 10)

�����à �2 (��� = 6)

�����à �3 (��� = 0)

(4)

Figure 3. Flowchart of the deferred acceptance algorithm.

Sustainability 2021, 13, 13433 10 of 20

Figure 4. Example graph (number in parentheses is the NotSpot demand).

3. Build preference lists for each � such that the � which minimizes �� is the first

preference. See Figure 5.

4. Using the deferred acceptance algorithm, match � with �. Given the result, each �

is expanded. This can be seen in Equation (5) and Figure 6.

�����à �1 à �3

�����à �2 à �1

�����à �3 à �2

(5)

5. Update �� then expand each �.

6. Ensure each � is included in �; go to step 2 if there are less than 3 stations.

Figure 5. The preference list for the two sets of players.

Figure 6. Illustration of the matching: when offers are made by the partial tours, the first and second

partial tours select S3, with the third selecting S2. The first partial tour is accepted by S3 (S3′s first

Figure 4. Example graph (number in parentheses is the NotSpot demand).

Sustainability 2021, 13, 13433 10 of 20

Figure 4. Example graph (number in parentheses is the NotSpot demand).

3. Build preference lists for each � such that the � which minimizes �� is the first

preference. See Figure 5.

4. Using the deferred acceptance algorithm, match � with �. Given the result, each �

is expanded. This can be seen in Equation (5) and Figure 6.

�����à �1 à �3

�����à �2 à �1

�����à �3 à �2

(5)

5. Update �� then expand each �.

6. Ensure each � is included in �; go to step 2 if there are less than 3 stations.

Figure 5. The preference list for the two sets of players.

Figure 6. Illustration of the matching: when offers are made by the partial tours, the first and second

partial tours select S3, with the third selecting S2. The first partial tour is accepted by S3 (S3′s first

Figure 5. The preference list for the two sets of players.

Sustainability 2021, 13, 13433 10 of 19

4. Using the deferred acceptance algorithm, match i with z. Given the result, each z is
expanded. This can be seen in Equation (5) and Figure 6.

Depot→ S1→ S3
Depot→ S2→ S1
Depot→ S3→ S2

(5)

Sustainability 2021, 13, 13433 10 of 20

Figure 4. Example graph (number in parentheses is the NotSpot demand).

3. Build preference lists for each � such that the � which minimizes �� is the first

preference. See Figure 5.

4. Using the deferred acceptance algorithm, match � with �. Given the result, each �

is expanded. This can be seen in Equation (5) and Figure 6.

�����à �1 à �3

�����à �2 à �1

�����à �3 à �2

(5)

5. Update �� then expand each �.

6. Ensure each � is included in �; go to step 2 if there are less than 3 stations.

Figure 5. The preference list for the two sets of players.

Figure 6. Illustration of the matching: when offers are made by the partial tours, the first and second

partial tours select S3, with the third selecting S2. The first partial tour is accepted by S3 (S3′s first
Figure 6. Illustration of the matching: when offers are made by the partial tours, the first and second
partial tours select S3, with the third selecting S2. The first partial tour is accepted by S3 (S3′s first
choice), and the third partial tour is accepted by S2. The second partial tour makes an offer to S1 in
the second stage. S1 accepts and the game results in a stable match.

5. Update Hi then expand each z.
6. Ensure each i is included in z; go to step 2 if there are less than 3 stations.

5.4. Tour Improvement Using 2-Opt Local Search Algorithm

After tour construction, there exist M different tours, each of which contains M
NotSpots. The cost of every M constructed tour is evaluated during tour improvement
using Equation (6).

subnetwork cos t = C× ∑
j∈ Egl

Dj + ∑
i∈Vgl

R2
i (6)

where Dj is the length of link j in meters, Ri is the residual at NotSpot i, and C is the same
constant used in Equation (2).

For each constructed tour, the 2-opt algorithm is run, and we evaluate the cost of each
new tour, selecting the one that lowers the cost function. At the end of this phase, we select
the tour with the lowest cost out of the M tours. A flowchart of the proposed algorithm
can be seen below in Figure 7.

If we assume that, then an edge D f on the path of the truck can be represented using
the Equation (7)

D f =

|Vgl |

∑
i=1

xi f ϕi f (7)

where ϕij is the matrix representing the distance between the different vertices and xij is an
integer that takes the value of 1 if the edge between i and j is considered and 0 otherwise.
For each subnetwork, the 2-opt local search algorithm attempts to solve the following
problem formulation:

Minimize : C×∑
|Vgl |
i=1 ∑

|Vgl |
j=1 xij ϕij + ∑i∈Vgl

R2
i (8)

Sustainability 2021, 13, 13433 11 of 19

Sustainability 2021, 13, 13433 11 of 20

choice), and the third partial tour is accepted by S2. The second partial tour makes an offer to S1 in

the second stage. S1 accepts and the game results in a stable match.

5.4. Tour Improvement Using 2-Opt Local Search Algorithm

After tour construction, there exist � different tours, each of which contains �

NotSpots. The cost of every M constructed tour is evaluated during tour improvement

using Equation (6).

subnetwork cost = C × � ��

�∈ ���

+ � ��
�

�∈���

 (6)

where �� is the length of link � in meters, �� is the residual at NotSpot �, and C is the

same constant used in Equation (2).

For each constructed tour, the 2-opt algorithm is run, and we evaluate the cost of each

new tour, selecting the one that lowers the cost function. At the end of this phase, we select

the tour with the lowest cost out of the � tours. A flowchart of the proposed algorithm

can be seen below in Figure 7

Figure 7. Flowchart of the 2-opt local search algorithm.

If we assume that, then an edge �� on the path of the truck can be represented using

the Equation (7)

�� = � ������

����
�

���

 (7)

where ��� is the matrix representing the distance between the different vertices and ���

is an integer that takes the value of 1 if the edge between � and � is considered and 0

otherwise. For each subnetwork, the 2-opt local search algorithm attempts to solve the

following problem formulation:

Minimize: C × ∑ ∑ ������

����
�

���

����
�

���
+ ∑ ��

�
�∈���

 (8)

Subject to:

� ���

����
�

���

= 1 (9)

Figure 7. Flowchart of the 2-opt local search algorithm.

Subject to:
|Vgl |

∑
i=1

xij = 1 (9)

|Vgl |

∑
j=1

xij = 1 (10)

xij = 0 or 1 (11)

NBBk 6= NBBk+1 (12){
ACk > 0 i f βk < 0

Q− ACk > 0 i f βk > 0
(13)

where k represents the index of the current station served in the path, NBBk represents the
number of bikes in the truck before serving station k, and ACk is the number of available
bike spots on the truck before serving NotSpot k.

6. Experimental Work

This section is divided into three subsections. In the first subsection, we use simulation
data to test our proposed algorithm. In the second subsection, we choose several medium-
sized benchmark instances that have known solutions. Then we solve these instances
using our algorithm and compare the result to the best-known solutions from the literature.
Finally, in the third subsection, we solve large benchmark instances, which vary in size
from 150 to 564 nodes. The solutions to the different problems presented in this paper
were performed using an OptiPlex 9020 Dell desktop, which has 8 GB RAM and an Intel®

Core™ i7-4790 CPU @ 3.60 GHz. MATLAB 2015b was used to code the proposed algorithm.
The proposed algorithm has the advantage of only having two hyperparameters: C and α.
We set C equal to 0.02 and varied α from 0.1 to 1.0.

6.1. Simulation Data

We created a set of random instances to evaluate the proposed algorithm’s perfor-
mance. We randomly generated five instances, each consisting of 90 vertices. The vertices
were randomly spread out in a square area equal to 10,000 by 10,000 m. The depot was

Sustainability 2021, 13, 13433 12 of 19

located at the center of the square. The demand of each station was randomly drawn
from the set {−10,−9, . . . ,−1, 1, 2, . . . , 10}. We solved the rebalancing problem for each
instance at a different Q = {10, 20, 30}. We assumed there were three equal capacity
trucks and that they started empty at the depot. Because of the randomness in the first
stage of the algorithm, we ran the algorithm 20 times for each instance and for each Q.
Table 1 shows the value of the demand imbalance, the vehicle capacity, the mean and
standard deviation of running time in seconds, the mean and standard deviation of the
total distance traveled by the trucks to rebalance the whole network, and the median and
median absolute deviation of the whole network absolute residual. As shown in Table 1,
the first and fourth simulated instances had an imbalance of 32 and 35, respectively, where
a positive value means that the network needs bikes and a negative value means that the
network has surplus bikes. In both networks, the proposed algorithm found the routes that
minimized the residual as much as possible in less than 3 min. The other three networks
had negative demand/pick-up bikes. For example, the last network had 65 extra bikes. Our
algorithm found solutions for Q equals 30 and 20 in less than 3 min. Moreover, absolute
residuals were very small. It is worth noting that the solution for this network using Q = 10
has 35 residual bikes. This is because the network has 65 extra bikes and the total capacity
of the three trucks is 30 bikes. In other words, the trucks completed their tours and returned
to the depot fully loaded with 10 bikes each. Figure 8 shows one of the solutions for the
first instance. The top panel shows the three tours (Figure 8a) and the bottom panels show
each truck tour separately (Figure 8b–d). There was a significant overlap between the three
tours because the whole network is divided based on an objective function in the distance
and demand.

Table 1. The evaluation of the proposed algorithm using five randomly generated instances.

∑
i∈V

βi

Mean of
Running
Time (s)

Standard
Deviation of

Running Time (s)

Distance (km)
p
∑
l=1

∑
i∈Vgl

Ri

Mean Standard
Deviation Median

Median
Absolute
Deviation

S1_30

32

137.87 3.69 127.24 6.86 32 0.00

S1_20 132.76 5.92 133.80 7.68 32 0.00

S1_10 120.05 10.99 154.84 10.04 32 0.00

S2_30

−55

171.79 3.14 132.13 3.66 2 1.05

S2_20 152.06 4.71 140.38 7.97 3 1.25

S2_10 113.20 9.23 163.22 9.23 25 0.00

S3_30

−22

171.03 3.65 119.73 8.85 1 1.20

S3_20 155.16 3.77 129.21 7.69 3 1.01

S3_10 128.13 13.24 155.71 9.93 6 1.62

S4_30

35

117.13 5.70 134.44 7.37 35 0.00

S4_20 99.39 6.69 141.08 6.27 35 0.00

S4_10 51.91 7.99 177.38 9.02 35 0.00

S5_30

−65

174.43 2.99 134.21 7.53 3 0.97

S5_20 153.95 3.85 148.84 7.90 6 1.02

S5_10 86.25 7.38 174.55 9.96 35 0.00

Sustainability 2021, 13, 13433 13 of 19

Sustainability 2021, 13, 13433 13 of 20

Table 1. The evaluation of the proposed algorithm using five randomly generated instances.

 � ��

�∈�

Mean of

Running Time

(s)

Standard

Deviation of

Running Time

(s)

Distance (km) � � ��

�∈���

�

���

Mean
Standard

Deviation
Median

Median

Absolute

Deviation

S1_30

32

137.87 3.69 127.24 6.86 32 0.00

S1_20 132.76 5.92 133.80 7.68 32 0.00

S1_10 120.05 10.99 154.84 10.04 32 0.00

S2_30

−55

171.79 3.14 132.13 3.66 2 1.05

S2_20 152.06 4.71 140.38 7.97 3 1.25

S2_10 113.20 9.23 163.22 9.23 25 0.00

S3_30

−22

171.03 3.65 119.73 8.85 1 1.20

S3_20 155.16 3.77 129.21 7.69 3 1.01

S3_10 128.13 13.24 155.71 9.93 6 1.62

S4_30

35

117.13 5.70 134.44 7.37 35 0.00

S4_20 99.39 6.69 141.08 6.27 35 0.00

S4_10 51.91 7.99 177.38 9.02 35 0.00

S5_30

−65

174.43 2.99 134.21 7.53 3 0.97

S5_20 153.95 3.85 148.84 7.90 6 1.02

S5_10 86.25 7.38 174.55 9.96 35 0.00

(a)

(b)

Sustainability 2021, 13, 13433 14 of 20

(c)

(d)

Figure 8. A solution for the first randomly generated instance. Panel (a) shows the three established

routes for the trucks. Panels (b–d) show the constructed routes for each truck in addition to the

demand.

6.2. Medium-Sized Benchmark Instances

The algorithm was tested on real medium-sized instances with adequate (i.e., not

close to zero) demand. Instances were gathered from Ciudad de Mexico, Mexico; Dublin,

Ireland; Minneapolis, United States; and Denver, United States, which had total respective

demands of −87, −64, −87, and −35. We assumed that the number of subnetworks was

given by the BSS operator and depends on the number of available trucks. Moreover, we

chose almost equal-sized subnetworks. In this experimental work, we divided Dublin,

Denver, Ciudad de Mexico, and Minneapolis into two, two, three, and four subnetworks,

respectively. Recall that the first stage is not deterministic, and each run of the algorithm

returns a different clustering of the whole network. We ran the algorithm 20 times and

found the 20 solutions for each instance. Table 2 shows the best-known solution in the

literature for the four instances along with the summary statistics of the running time,

distance, and absolute bike residuals of the proposed algorithm. In general, the distance

of the proposed algorithm is larger than the best-known solutions for large �. However,

for small �, the proposed algorithm is better. Note also that the mean running times for

the largest instance in this table are 143.6, 130.32, and 51.85 s for � = 30, 20, and 10,

respectively, which makes the proposed algorithm a real-time rebalancing algorithm.

Figure 8. A solution for the first randomly generated instance. Panel (a) shows the three estab-
lished routes for the trucks. Panels (b–d) show the constructed routes for each truck in addition to
the demand.

6.2. Medium-Sized Benchmark Instances

The algorithm was tested on real medium-sized instances with adequate (i.e., not
close to zero) demand. Instances were gathered from Ciudad de Mexico, Mexico; Dublin,

Sustainability 2021, 13, 13433 14 of 19

Ireland; Minneapolis, United States; and Denver, United States, which had total respective
demands of −87, −64, −87, and −35. We assumed that the number of subnetworks was
given by the BSS operator and depends on the number of available trucks. Moreover, we
chose almost equal-sized subnetworks. In this experimental work, we divided Dublin,
Denver, Ciudad de Mexico, and Minneapolis into two, two, three, and four subnetworks,
respectively. Recall that the first stage is not deterministic, and each run of the algorithm
returns a different clustering of the whole network. We ran the algorithm 20 times and
found the 20 solutions for each instance. Table 2 shows the best-known solution in the
literature for the four instances along with the summary statistics of the running time,
distance, and absolute bike residuals of the proposed algorithm. In general, the distance of
the proposed algorithm is larger than the best-known solutions for large Q. However, for
small Q, the proposed algorithm is better. Note also that the mean running times for the
largest instance in this table are 143.6, 130.32, and 51.85 s for Q = 30, 20, and 10, respectively,
which makes the proposed algorithm a real-time rebalancing algorithm.

Table 2. The evaluation of the proposed algorithm using medium-size benchmark instances.

City ∑
i∈V

βi
P N Q

Best Known
Solution

Value [40,41]
Run Time (s) Distance

(km)

p

∑
l=1

∑
i∈Vgl

Ri

Distance
(km) Mean Standard

Deviation Mean Standard
Deviation Median

Median
Absolute
Deviation

Dublin −64 2 45

30 33.55 18.84 0.82 35.52 0.79 4 0.00

20 39.39 8.82 1.02 39.54 1.15 24 0.00

11 51.74 6.20 1.28 46.17 1.06 42 0.00

Denver −35 2 51

30 51.58 41.21 0.80 56.42 0.35 0 0.43

20 53.28 40.73 1.35 57.19 0.61 1 0.56

10 67.03 36.02 1.58 61.09 0.76 15 0.00

Ciudad de
Mexico

−87 3 90

30 88.23 112.23 4.44 95.80 2.03 1 1

20 116.42 98.62 6.01 101.53 2.80 27 0

17 109.57 94.55 7.94 106.48 2.99 36 0.00

Minneapolis −92 4 116

30 137.84 143.60 3.87 226.05 8.78 1 0.86

20 186.45 130.32 7.63 235.23 7.00 13 0.96

10 298.89 51.85 5.48 288.61 16.69 52 0.00

In terms of absolute bike residuals, we highlight that the residual in the table is a
result of an imbalance in the total demand. In the Denver instance, for example, the total
demand is −35. This means there were 35 more pick-up bikes than drop-off bikes. For this
instance, rebalancing with two trucks—each of which had a 10-bike maximum capacity
and was carrying 10 bikes at the end of the tour—yields a best solution with a residual of
15 bikes.

6.3. Large-Size Benchmark Instances

We tested the proposed algorithm using benchmark instances that varied in size, from
150 to 564 stations. The main goal of this subsection is to show the ability of the proposed
algorithm to solve large instances in short computational times and hence its suitability for
real-time applications. Recall that the running time reported above is the clustering time
(first stage) plus the summation of the time needed to solve each subnetwork independently.
Consequently, significant further improvements in computational times can be achieved
by parallelizing the individual subnetwork route improvements by a factor of at least 1.5.
Table 3 (following the Conclusions) shows the worst running time to be 1 h and is taken
by the Bruxelles instance at Q = 30. This is the time needed if we sequentially solve the

Sustainability 2021, 13, 13433 15 of 19

problem, meaning we perform for a cluster and then solve for each cluster in order. One
advantage of the proposed algorithm is that we can perform the clustering and then solve
for the subnetworks in parallel. If we compute the clustering time and the time needed
to solve each subnetwork of the Bruxelles instance at Q = 30, we find that the clustering
time for this example is 488.56 s and the maximum time taken to solve one subnetwork
is 598.38 s. This means that if we performed the clustering and then solved the different
subnetworks independently (i.e., in parallel) using different cores, the running time drops
by almost 30% of the sequential running time. This makes the proposed algorithm suitable
for real-time applications and dynamic rebalancing. Currently, the use of a sequential
algorithm produces solutions in a computational time that is 37% less than that of the best
heuristics available in the literature. As mentioned, this can be increased by a factor of 1.5 if
the code is run in parallel, given the fact that each sub-tour is optimized independently.
It should be noted that the gap between the proposed algorithm and the best solutions
are 69%, on average, for these large instances. However, further improvements, which are
beyond the scope of this paper, are being made to the algorithm to reduce this gap.

Table 3. The comparison of the proposed algorithm and BHA based heuristic using large-size benchmark instances.

Heuristic The Proposed Algorithm

City N ∑
i∈V

βi Q p

Distance

p

∑
l=1

∑
i∈Vgl

Ri Distance

p

∑
l=1

∑
i∈Vgl

Ri

Mean Standard
Deviation Median

Median
Absolute
Deviation

Mean Standard
Deviation Median

Median
Absolute
Deviation

Brisbane 150 189

30

3

311.63 11.77 * * 256.74 13.97 189 0.00

20 318.05 10.35 * * 241.37 13.15 189 0.00

17 329.54 11.18 * * 246.50 10.75 189 0.00

Milano 184 161

30

4

247.34 6.23 161.0 0.00 249.01 5.05 161 0.00

20 299.54 12.33 165.0 3.10 269.92 2.23 161 0.00

18 334.27 11.87 * * 279.92 3.54 161 0.00

Lille 200 −84
30

5
563.05 25.81 123.0 0.00 326.96 7.60 3 1.38

20 573.39 18.14 138.0 0.00 357.42 9.84 10 1.80

Toulouse 240 −357

30

6

327.40 21.02 177.0 0.00 407.94 6.87 177 0.00

20 389.05 8.76 237.0 0.00 447.89 12.31 237 0.00

13 514.63 10.34 279.0 0.00 496.39 13.56 297 0.00

Sevilla 258 −402
30

6
365.29 17.11 222.0 0.00 471.78 11.31 222 0.00

20 499.72 22.23 282.0 0.00 518.85 9.77 282 0.00

Valencia 276 −412
30

6
465.59 9.31 232.0 0.00 476.01 7.75 232 0.00

20 520.09 16.03 292.0 0.00 516.24 7.98 292 0.00

Bruxelles 304 −54

30

6

594.59 15.83 1.2 0.80 609.40 11.78 4 1.19

20 843.78 46.12 7.0 1.20 687.62 17.60 8 1.84

16 1041.00 26.55 15.0 3.48 746.56 16.56 10 1.59

Lyon 336 −234
30

8
879.48 9.69 2.0 0.99 684.15 10.38 17 1.60

20 779.95 25.10 74.0 0.00 742.87 12.66 75.5 1.65

Barcelona 410 −1048

30

10

1388.40 20.30 748.0 0.00 949.60 19.72 748 0.00

20 1515.30 18.80 860.0 4.66 1073.4 21.03 848 0.00

19 1620.80 9.28 881.0 0.00 1085.7 23.17 858 0.00

London 564 −329
30

14
1606.90 40.08 7.5 2.00 1211.8 21.42 75 10.62

29 1601.70 31.28 7.5 1.80 1233.7 18.80 82 10.91

* Instances where the BHA based heuristic failed to find a Hamiltonian path where the truck at least partially satisfies the demand of
every NotSpot.

Sustainability 2021, 13, 13433 16 of 19

6.4. Comparison with Another Heuristic

For the sake of completeness, we compare the prosed algorithm with the BHA based
heuristic. We used the black hole to partition the whole network as explained in subsec
5.1 (i.e., Network Clustering Using the BHA). Then, for each subnetwork gl we use BHA
to minimize the total traveling distances (∑j∈ ∀ links in gl

γj) and total residuals (∑i∈vl
|Ri|)

and hence find a good solution to rebalance subnetwork gl . We should highlight that
the BHA allows stars/solutions where an empty or full truck arrives at a pick-up and
drop-off NotSpot. The BHA assigns an infinity cost to such a star, keeps it in the solutions
population, and processes it as a regular star in the hope it may yield a good solution.
As shown in the comparison results in Table 4, for some instances the BHA based heuristic
failed to find a Hamiltonian path where the truck at least partially satisfies the demand of
every NotSpot. Moreover, our proposed algorithm yielded a better solution for most of the
big instances.

Table 4. The evaluation of the proposed algorithm using large-size benchmark instances.

City N ∑
i∈V

βi Q p Distance
[42,43]

Mean of
Running
Time (s)

Running
Time

Gain (%)

Gap
(%)

Standard
Deviation

of
Running
Time (s)

Distance
p

∑
l=1

∑
i∈Vgl

Ri

Mean Standard
Deviation Median

Median
Absolute
Deviation

Brisbane 150 189

30

3

115.95 150.04 91.64 121.4 21.20 256.74 13.97 189 0.00

20 146.93 152.21 91.54 64.3 19.16 241.37 13.15 189 0.00

17 160.39 133.67 92.57 53.7 17.67 246.50 10.75 189 0.00

Milano 184 161

30

4

168.93 733.54 59.25 47.4 50.47 249.01 5.05 161 0.00

20 219.56 461.41 74.37 22.9 74.46 269.92 2.23 161 0.00

18 236.39 431.76 76.01 18.4 86.68 279.92 3.54 161 0.00

Lille 200 −84
30

5
178.13 2871.90 -59.55 83.6 112.40 326.96 7.60 3 1.38

20 215.0 2192.40 -21.80 66.2 148.62 357.42 9.84 10 1.80

Toulouse 240 −357

30

6

190.15 452.34 74.87 114.5 18.03 407.94 6.87 177 0.00

20 231.06 399.48 77.80 93.8 30.70 447.89 12.31 237 0.00

13 308.98 206.37 88.53 60.7 48.12 496.39 13.56 297 0.00

Sevilla 258 −402
30

6
227.91 859.48 67.25 107.0 56.39 471.78 11.31 222 0.00

20 281.49 765.18 57.49 84.3 43.64 518.85 9.77 282 0.00

Valencia 276 −412
30

6
292.26 1427.10 20.72 62.9 57.68 476.01 7.75 232 0.00

20 370.06 1388.70 22.85 39.5 81.55 516.24 7.98 292 0.00

Bruxelles 304 −54

30

6

315.49 3654.00 −103.00 93.2 132.26 609.40 11.78 4 1.19

20 379.14 3263.40 −81.30 81.4 182.24 687.62 17.60 8 1.84

16 426.99 3072.40 70.68 74.8 284.84 746.56 16.56 10 1.59

Lyon 336 −234
30

8
364.08 1663.60 7.58 87.9 37.13 684.15 10.38 17 1.60

20 437.59 1525.10 15.27 69.8 90.17 742.87 12.66 75.5 1.65

Barcelona 410 −1048

30

10

545.63 370.48 79.42 75.9 37.81 949.60 19.72 748 0.00

20 774.82 187.18 89.60 38.5 43.52 1073.40 21.03 848 0.00

19 805.51 182.25 89.87 34.8 49.52 1085.70 23.17 858 0.00

London 564 −329
30

14
705.23 2454.70 -36.37 71.8 77.44 1211.80 21.42 75 10.62

29 725.47 2264.90 -25.83 70.0 68.50 1233.70 18.8 82 10.91

7. Conclusions

This study proposed a real-time heuristic algorithm for the static rebalancing of a BSS.
The proposed algorithm has three stages. The first stage is based on the BHA, where the BSS
network is divided into subnetworks overlapping at the depot only. In the second stage,

Sustainability 2021, 13, 13433 17 of 19

we modeled the rebalancing of each subnetwork as a cooperative game, and the deferred
acceptance algorithm was used to construct a good initial solution for each subnetwork
independently. In the third stage of the algorithm, the initial solutions for each subnetwork
were improved using the 2-opt algorithm.

The proposed algorithm was tested using randomly generated instances, each consist-
ing of 90 stations. When we divided the network into three subnetworks, we solved the
rebalancing problem in less than 3 min. Moreover, the algorithm was used to solve medium-
sized real benchmark instances with sizes varying from 45 to 116 stations. We compared
the quality of our solution to the best-known solutions for these instances. Based on this
comparison, we concluded that at Q = 30 or 20, we obtained lower quality solutions but
solved the problem in less than 3 min. For small Q, we found the solution in less than
2 min, and the tours were better than the best-known solutions in terms of distance.

We also solved large benchmark instances whose sizes varied from 150 to 565 stations.
A good solution was found in approximately 1 h. Furthermore, we compared the proposed
algorithm solution of large benchmark instances with the solutions obtained using BHA
based heuristic and the best-known solutions. The comparison showed a promising
performance of the proposed algorithm. We should highlight that the advantage of our
solution is that modeling the rebalancing problem as a game and allowing each player to
have his own preference list will enable us to solve the problem even if each player has
his own objective function Finally, we demonstrated that the proposed algorithm could be
enhanced further by parallelizing the solution process of the subnetworks. In the future,
we will examine ways to improve solution quality while also generalizing to large instances
and addressing more complex constraints such as time BBS with time windows.

Author Contributions: Conceptualization, M.E., Y.B. and H.A.R.; methodology, M.E., Y.B., H.A.R.
and M.M.; software, M.E., M.M. and A.S.; validation, M.E., Y.B., H.A.R. and M.M.; formal analysis,
M.E. and Y.B.; investigation, M.E., M.M. and S.G.; resources, M.M. and S.G.; data curation, A.S.;
writing—original draft preparation, M.E., J.P. and A.S.; writing—review and editing, A.S., J.P. and
M.M.; visualization, A.S.; supervision, H.A.R. and S.G.; project administration, J.P. and A.S.; funding
acquisition, H.A.R. All authors have read and agreed to the published version of the manuscript.

Funding: This effort was funded by the U.S. Department of Transportation award 69A3551747123 as
part of the University Mobility and Equity Center. Also, This research was partially supported by the
Motor Accident Insurance Commission (MAIC) Queensland.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The instances used in this paper are available at https://github.com/
mohammed-QUT/A-Feasible-Solution-for-Rebalancing-Large-Scale-Bike-Sharing-Systems.git.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Schrank, D.; Lomax, T.; Eisele, B. 2012 Urban Mobility Report. Available online: https://static.tti.tamu.edu/tti.tamu.edu/

documents/umr/archive/mobility-report-2012.pdf (accessed on 29 November 2021).
2. Schrank, D.L.; Lomax, T.J. 2009 Urban Mobility Report; Texas Transportation Institute, Texas A&M University: College Station, TX,

USA, 2009.
3. Arnott, R.; Small, K.J.A. The economics of traffic congestion. Am. Sci. 1994, 82, 446–455.
4. Shaheen, S.A.; Guzman, S.; Zhang, H. Bikesharing in Europe, the Americas, and Asia: Past, present, and future. Transp. Res. Rec.

2010, 2143, 159–167. [CrossRef]
5. Almannaa, M.H.; Elhenawy, M.; Masoud, M.; Rakha, H.A. A New Mathematical Approach to Solve Bike Share System Station

Imbalances Based On Portable Stations. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC),
Auckland, New Zealand, 27–30 October 2019; IEEE: Manhattan, NY, USA, 2019; pp. 1721–1726.

6. Hu, W. Times TNY, Editor 2020. Available online: https://www.nytimes.com/2020/03/14/nyregion/coronavirus-nyc-bike-
commute.html (accessed on 29 November 2021).

7. Firestine, T. Bike-Share Stations in the U.S. Technical Report. 2016. Available online: https://www.bts.gov/sites/bts.dot.gov/
files/legacy/Bike-Share%20Data_1.PDF (accessed on 29 November 2021).

https://github.com/mohammed-QUT/A-Feasible-Solution-for-Rebalancing-Large-Scale-Bike-Sharing-Systems.git
https://github.com/mohammed-QUT/A-Feasible-Solution-for-Rebalancing-Large-Scale-Bike-Sharing-Systems.git
https://static.tti.tamu.edu/tti.tamu.edu/documents/umr/archive/mobility-report-2012.pdf
https://static.tti.tamu.edu/tti.tamu.edu/documents/umr/archive/mobility-report-2012.pdf
http://doi.org/10.3141/2143-20
https://www.nytimes.com/2020/03/14/nyregion/coronavirus-nyc-bike-commute.html
https://www.nytimes.com/2020/03/14/nyregion/coronavirus-nyc-bike-commute.html
https://www.bts.gov/sites/bts.dot.gov/files/legacy/Bike-Share%20Data_1.PDF
https://www.bts.gov/sites/bts.dot.gov/files/legacy/Bike-Share%20Data_1.PDF

Sustainability 2021, 13, 13433 18 of 19

8. Ashqar, H.I.; Elhenawy, M.; Almannaa, M.H.; Ghanem, A.; Rakha, H.A.; House, L. Modeling bike availability in a bike-sharing
system using machine learning. In Proceedings of the 2017 5th IEEE International Conference on Models and Technologies for
Intelligent Transportation Systems (MT-ITS), Naples, Italy, 26–28 June 2017; pp. 374–378.

9. Ashqar, H.I.; Elhenawy, M.; Rakha, H.A. Modeling bike counts in a bike-sharing system considering the effect of weather
conditions. Case Stud. Transp. Policy 2019, 7, 261–268. [CrossRef]

10. Almannaa, M.H.; Elhenawy, M.; Rakha, H.A. Dynamic linear models to predict bike availability in a bike sharing system. Int. J.
Sustain. Transp. 2020, 14, 232–242. [CrossRef]

11. Ashqar, H.I.; Elhenawy, M.; Rakha, H.A.; Almannaa, M.; House, L. Network and station-level bike-sharing system prediction: A
San Francisco bay area case study. J. Intell. Transp. Syst. 2021, 1–11. [CrossRef]

12. Regue, R.; Recker, W. Proactive vehicle routing with inferred demand to solve the bikesharing rebalancing problem. Transp. Res.
Part E Logist. Transp. Rev. 2014, 72, 192–209. [CrossRef]

13. Fricker, C.; Gast, N. Incentives and redistribution in homogeneous bike-sharing systems with stations of finite capacity. Eur. J.
Transp. Logist. 2016, 5, 261–291. [CrossRef]

14. Chemla, D.; Meunier, F.; Wolfler Calvo, R. Bike sharing systems: Solving the static rebalancing problem. Discret. Optim. 2013, 10,
120–146. [CrossRef]

15. Pal, A.; Zhang, Y. Free-floating bike sharing: Solving real-life large-scale static rebalancing problems. Transp. Res. Part C Emerg.
Technol. 2017, 80, 92–116. [CrossRef]

16. Hernández-Pérez, H.; Salazar-González, J.J. A branch-and-cut algorithm for a traveling salesman problem with pickup and
delivery. Discret. Appl. Math. 2004, 145, 126–139. [CrossRef]

17. Lee, K.Y.; El-Sharkawi, M.A. Modern Heuristic Optimization Techniques: Theory and Applications to Power Systems; John Wiley & Sons:
Hoboken, NJ, USA, 2008; Volume 39.

18. Hernández-Pérez, H.; Salazar-González, J.J. Heuristics for the one-commodity pickup-and-delivery traveling salesman problem.
Transp. Sci. 2004, 38, 245–255. [CrossRef]

19. Shi, X.; Zhao, F.; Gong, Y. Genetic algorithm for the one-commodity pickup-and-delivery vehicle routing problem. In Proceedings
of the 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems, Shanghai, China, 20–22 November
2009; IEEE: Manhattan, NY, USA, 2009; pp. 175–179.

20. Schuijbroek, J.; Hampshire, R.C.; Van Hoeve, W.J. Inventory rebalancing and vehicle routing in bike sharing systems. Eur. J. Oper.
Res. 2017, 257, 992–1004. [CrossRef]

21. Benchimol, M.; Benchimol, P.; Chappert, B.; De La Taille, A.; Laroche, F.; Meunier, F.; Robinet, L. the stations of a self service “bike
hire” system. RAIRO-Oper. Res. 2011, 45, 37–61. [CrossRef]

22. Li, Y.; Szeto, W.; Long, J.; Shui, C.S. A multiple type bike repositioning problem. Transp. Res. Part B Methodol. 2016, 90, 263–278.
[CrossRef]

23. Rainer-Harbach, M.; Papazek, P.; Hu, B.; Raidl, G.R. Balancing bicycle sharing systems: A variable neighborhood search approach.
In Proceedings of the European Conference on Evolutionary Computation in Combinatorial Optimization, Vienna, Austria, 3–5
April 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 121–132.

24. Ho, S.C.; Szeto, W.Y. Solving a static repositioning problem in bike-sharing systems using iterated tabu search. Transp. Res. Part E
Logist. Transp. Rev. 2014, 69, 180–198. [CrossRef]

25. Contardo, C.; Morency, C.; Rousseau, L.-M. Balancing a Dynamic Public Bike-Sharing System; Cirrelt: Montreal, QC, Canada, 2012;
Volume 4.

26. Shu, J.; Chou, M.C.; Liu, Q.; Teo, C.-P.; Wang, I.-L. Models for effective deployment and redistribution of bicycles within public
bicycle-sharing systems. Oper. Res. 2013, 61, 1346–1359. [CrossRef]

27. Ghosh, S.; Varakantham, P.; Adulyasak, Y.; Jaillet, P. Dynamic repositioning to reduce lost demand in bike sharing systems.
J. Artif. Intell. Res. 2017, 58, 387–430. [CrossRef]

28. Zhang, D.; Yu, C.; Desai, J.; Lau, H.; Srivathsan, S. A time-space network flow approach to dynamic repositioning in bicycle
sharing systems. Transp. Res. Part B Methodol. 2017, 103, 188–207. [CrossRef]

29. Wang, Y.; Szeto, W.Y. Static green repositioning in bike sharing systems with broken bikes. Transp. Res. Part D Transp. Environ.
2018, 65, 438–457. [CrossRef]

30. Shui, C.S.; Szeto, W.Y. Dynamic green bike repositioning problem–A hybrid rolling horizon artificial bee colony algorithm
approach. Transp. Res. Part D Transp. Environ. 2018, 60, 119–136. [CrossRef]

31. Du, M.; Cheng, L.; Li, X.; Tang, F. Static rebalancing optimization with considering the collection of malfunctioning bikes in
free-floating bike sharing system. Transp. Res. Part E Logist. Transp. Rev. 2020, 141, 102012. [CrossRef]

32. Caggiani, L.; Camporeale, R.; Ottomanelli, M.; Szeto, W.Y. A modeling framework for the dynamic management of free-floating
bike-sharing systems. Transp. Res. Part C Emerg. Technol. 2018, 87, 159–182. [CrossRef]

33. Wu, R.; Liu, S.; Shi, Z. Customer incentive rebalancing plan in free-float bike-sharing system with limited information.
Sustainability 2019, 11, 3088. [CrossRef]

34. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184. [CrossRef]
35. Zhang, J.; Liu, K.; Tan, Y.; He, X. Random black hole particle swarm optimization and its application. In Proceedings of the 2008

IEEE International Conference Neural Networks and Signal Processing, Nanjing, China, 7–11 June 2008; pp. 359–365.
36. Gale, D.; Shapley, L.S. College admissions and the stability of marriage. Am. Math. Mon. 2013, 120, 386–391. [CrossRef]

http://doi.org/10.1016/j.cstp.2019.02.011
http://doi.org/10.1080/15568318.2019.1611976
http://doi.org/10.1080/15472450.2021.1948412
http://doi.org/10.1016/j.tre.2014.10.005
http://doi.org/10.1007/s13676-014-0053-5
http://doi.org/10.1016/j.disopt.2012.11.005
http://doi.org/10.1016/j.trc.2017.03.016
http://doi.org/10.1016/j.dam.2003.09.013
http://doi.org/10.1287/trsc.1030.0086
http://doi.org/10.1016/j.ejor.2016.08.029
http://doi.org/10.1051/ro/2011102
http://doi.org/10.1016/j.trb.2016.05.010
http://doi.org/10.1016/j.tre.2014.05.017
http://doi.org/10.1287/opre.2013.1215
http://doi.org/10.1613/jair.5308
http://doi.org/10.1016/j.trb.2016.12.006
http://doi.org/10.1016/j.trd.2018.09.016
http://doi.org/10.1016/j.trd.2017.06.023
http://doi.org/10.1016/j.tre.2020.102012
http://doi.org/10.1016/j.trc.2018.01.001
http://doi.org/10.3390/su11113088
http://doi.org/10.1016/j.ins.2012.08.023
http://doi.org/10.4169/amer.math.monthly.120.05.386

Sustainability 2021, 13, 13433 19 of 19

37. Ng, C.; Hirschberg, D.S. Lower bounds for the stable marriage problem and its variants. SIAM J. Comput. 1990, 19, 71–77.
[CrossRef]

38. Wilson, L.B. An analysis of the stable marriage assignment algorithm. BIT Numer. Math. 1972, 12, 569–575. [CrossRef]
39. Goodyear, S. Mapping the Imbalances of New York’s Popular, Troubled Bike-Share. Available online: http://www.citylab.com/

commute/2014/03/mapping-imbalances-new-yorks-popular-troubled-bike-share/8699/ (accessed on 29 November 2021).
40. Dell’Amico, M.; Hadjicostantinou, E.; Iori, M.; Novellani, S.J.O. The bike sharing rebalancing problem: Mathematical formulations

and benchmark instances. Omega 2014, 45, 7–19. [CrossRef]
41. Erdoğan, G.; Battarra, M.; Calvo, R.W. An exact algorithm for the static rebalancing problem arising in bicycle sharing systems.

Eur. J. Oper. Res. 2015, 245, 667–679. [CrossRef]
42. Dell, M.; Iori, M.; Novellani, S.; Stützle, T.J.C.; Research, O. A destroy and repair algorithm for the bike sharing rebalancing

problem. Comput. Oper. Res. 2016, 71, 149–162.
43. Elhenawy, M.; Rakha, H. A heuristic for rebalancing bike sharing systems based on a deferred acceptance algorithm.

In Proceedings of the 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems
(MT-ITS), Naples, Italy, 26–28 June 2017; IEEE: Manhattan, NY, USA, 2017; pp. 188–193.

http://doi.org/10.1137/0219004
http://doi.org/10.1007/BF01932966
http://www.citylab.com/commute/2014/03/mapping-imbalances-new-yorks-popular-troubled-bike-share/8699/
http://www.citylab.com/commute/2014/03/mapping-imbalances-new-yorks-popular-troubled-bike-share/8699/
http://doi.org/10.1016/j.omega.2013.12.001
http://doi.org/10.1016/j.ejor.2015.03.043

	Introduction
	Related Work
	Methods
	Black Hole Algorithm (BHA)
	Deferred Acceptance Algorithm (DAA)
	The 2-Opt Local Search Algorithm

	Problem Statement for a Subnetwork
	The Proposed Algorithm
	Network Clustering Using the BHA
	Tour Construction Using the Deferred Acceptance Algorithm
	Tour Construction Example
	Tour Improvement Using 2-Opt Local Search Algorithm

	Experimental Work
	Simulation Data
	Medium-Sized Benchmark Instances
	Large-Size Benchmark Instances
	Comparison with Another Heuristic

	Conclusions
	References

