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Abstract: The application of deep learning (DL) for solving construction safety issues has achieved
remarkable results in recent years that are superior to traditional methods. However, there is
limited literature examining the links between DL and safety management and highlighting the
contributions of DL studies in practice. Thus, this study aims to synthesize the current status
of DL studies on construction safety and outline practical challenges and future opportunities.
A total of 66 influential construction safety articles were analyzed from a technical aspect, such
as convolutional neural networks, recurrent neural networks, and general neural networks. In
the context of safety management, three main research directions were identified: utilizing DL
for behaviors, physical conditions, and management issues. Overall, applying DL can resolve
important safety challenges with high reliability; therein the CNN-based method and behaviors
were the most applied directions with percentages of 75% and 67%, respectively. Based on the
review findings, three future opportunities aiming to address the corresponding limitations were
proposed: expanding a comprehensive dataset, improving technical restrictions due to occlusions,
and identifying individuals who performed unsafe behaviors. This review thus may allow the
identification of key areas and future directions where further research efforts need to be made
with priority.

Keywords: construction safety; unsafe behaviors; physical safety management; safety management
issues; deep learning

1. Introduction

Construction is a large, dynamic, and complex field offering a large number of job
opportunities for millions of people worldwide [1]. In addition, construction sites also
contain various risks (e.g., struck-by accidents [2] and fall accidents [3]), and the accident
rate continues to rise over time. According to global statistical data, the construction
industry’s accidental death and injury rates are three and two times higher than those
of other industries, respectively [4]. The number of fatal injuries in this industry in the
United States increased by 16%, from 781 in 2011 to 908 in 2014 [5], and its injuries and
accidents in 2015 were 50% higher than those in any other industry [3]. These percentages
reached 40% of the total accidents in Japan, 25% in the United Kingdom, and 50% in
Ireland [6]. Although various countries have put effort into construction safety-related
laws, regulations, and management systems over the past decades, their safety performance
in construction is still unsatisfactory [7]. Thus, it is essential to apply an appropriate method
to assist safety management in the construction industry.

To prevent occupational accidents, Sarkar and Maiti (2020) [8] investigated and re-
ported several existing approaches, such as survey-based qualitative analysis, conventional
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statistical analysis, and data-driven machine-learning-based analysis. By reviewing pub-
lications examining the application of machine learning (ML) approaches in accident
analysis, they also illustrated that ML outperforms its traditional counterpart, owing to
its several potential benefits, including the capability to deal with large dimensional data,
flexibility in recreating data generation structures regardless of complexity, and predictive
and interpretive potential by extracting relationships/rules among attributes in data [8]. In
support of this observation, Xu and Saleh (2021) [9] argued that ML has the potential to
provide new insights and opportunities to address critical challenges in safety applications.
However, one of the challenges of ML is that ML problems become extremely difficult for
high-dimensional data [10]. Compared to traditional ML, deep learning (DL) algorithms
can deal with high-dimensional input data, and they become highly efficient in resolving
the issue of data sources such as images and videos when equipped with convolutional
layers [9]. Moreover, the rapid development of graphics processing units (GPUs) has
dramatically improved the computing capacity for processing ML algorithms, leading
to an increase in the number of DL applications [11]. Therefore, Xu and Saleh (2021) [9]
emphasized that in all applications to date, DL has considerably outperformed shallow ML
algorithms. In this context, researchers in the construction industry have made consider-
able efforts to keep up with the pace of DL applications [12]. The amount of research on DL
in construction has grown exponentially over the past few years, and the applications have
spread over many construction areas since their inception [13]. For example, Akinosho
et al., (2020) [12] proved that DL was applied to prevalent construction challenges, such as
structural health monitoring, construction site safety, building occupancy modeling, and
energy demand prediction [12]. In the context of construction safety, DL has also proven its
potential for safety management. DL can be used to extract different types of data such as
images, videos, text, and signals to reduce construction accident cases by detecting on-site
damage conditions [14], detecting unsafe behaviors [15], and analyzing construction safety
documents [16].

DL is a subset of ML, and can theoretically deal with all categories of ML [9]. For
example, different types of DL techniques used in real-time object detection help develop
new helmet detection systems with higher accuracy and less training time [17]. Zhong
et al., (2020) [18] demonstrated that DL can be used to automatically extract unstructured
safety data from accident reports. As a result, managers become better positioned to make
informed and timely decisions about how to ensure construction safety [18]. With these
prominent and widespread applications of DL in construction safety, researchers need to
understand what typical types of data can be used for different methods (e.g., convolu-
tional neural networks, recurrent neural networks, etc.) for gaining high performance.
Moreover, with the extremely rapid advancement of DL algorithms, the review of recent
literature can play an important role in understanding the research status of DL studies and
exploring an opportunity of its application for further enhancement of construction safety.
However, there is limited literature examining the theoretical links between DL and safety
management. For example, several review studies, such as [19,20], have mainly focused on
construction safety without the detailed review on DL techniques. Hou et al., (2021) [21]
carried out a review of the relevant papers on applications of DL for safety management in
the architecture, engineering, and construction (AEC) industry; however, a comprehensive
linkage between safety and DL methods (e.g., data types and quantities, DL algorithms and
their performance, safety factors) was not fully investigated. Moreover, how the results of
DL studies can be applied in safety management practice was not clearly presented and
discussed by Hou et al., (2021) [21]. By addressing those issues, researchers and managers
in the field of construction safety may better understand what type of method has achieved
highly accurate results along with the type and amount of data has been used for a certain
safety task, as well as the actions managers can take from the result of DL models for
improving safety management. This study aims to fill these gaps by comprehensively
reviewing DL studies in the construction safety area.
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Specifically, this literature review is performed to (1) identify and summarize the
current status of recent DL studies in the construction safety area for showing how DL
could be applied in previous studies; (2) analyze the links of data type and quantity, and DL
models applied and newly proposed with three main research directions of construction
safety (e.g., behaviors, physical conditions, and management issues) for understanding
how to apply DL models in different safety-related tasks; (3) review the contributions of
DL results in safety management practice; and (4) outline practical challenges and future
opportunities associated with the applications for improving and fully exploiting the DL
contributions in safety. This review may thus allow the identification of key areas and future
directions where further research efforts need to be made with priority. The remainder of
this paper is organized as follows. The paper firstly presents the research methodology used
in this review (Section 2). An overview of DL algorithms commonly used for construction
safety is then presented from a technical aspect (Section 3). Subsequently, this paper
summarizes the current status of safety-related papers for an in-depth understanding of
DL applications for safety management (Section 4). Along with a comprehensive review,
this study discusses the contributions, practical challenges, and future opportunities of
applying DL approaches to practice (Sections 5 and 6). Finally, the major findings are
summarized to present the significance of this study (Section 7).

2. Research Methodology

With the purpose of analyzing the current status of DL studies in safety performed
to understand how well the DL methods have been applied for safety management as
well as how distinct DL models could address safety issues with different specific types
of data, this study adopts a content-analysis-based review method, a systematic and
structured technique “for compressing many words of text into fewer content categories
based on explicit coding rules” to identify key research themes for literature review [22].
Content analysis is a research tool utilized to determine the presence of certain words,
themes, or concepts within several given qualitative data (i.e., text). Using content analysis,
researchers can analyze and quantify the presence, meanings and relationships of certain
words, themes, or concepts [23]. This method has been well-recognized and widely used
for reviewing and synthesizing literature, and rationalizing outcomes in the research
field of engineering/construction management [22,24–26]. The review process based on
this method consists of three phases: literature search, title- and abstract-based literature
selection, and full-paper-based literature selection, as described in Figure 1. In the literature
search, an exhaustive search was carried out with keywords regarding DL and construction
safety that aimed to find all articles related to the field of review. The title- and abstract-
based literature selection was then conducted to filter papers applying DL to handle safety
issues based on reading titles and abstracts. After that, an overall screening was performed
in the phase of full-paper-based literature selection that aimed to identify the articles
relevant only to construction safety and DL by reading the full paper. Therefore, the most
significant DL studies on construction safety were collected and reviewed to guarantee the
provision of fit and quality research materials for this study.

2.1. Literature Search

The first step of the review was an exhaustive search in Scopus and Google Scholar.
Keywords and Boolean operators, AND and OR, were used to ensure that all relevant
literature was captured from 2014 to 2021. According to Akinosho et al., (2020) [12], DL
became popular with the achievements of CNNs in the 2012 ImageNet Large Scale Visual
Recognition Challenge (ILSVRC2012), and its applications in the construction industry
have achieved significance since around 2014. Thus, the chosen dates were based on the DL
revolution. The search strings used were “deep learning” OR “computer vision” OR “CNN”
OR “RNN” OR “neural networks” AND “construction safety” OR “construction hazard”
OR “construction accident” OR “safety management”. Initially, 387 documents were
identified. To limit the scope of the search results, these documents were further screened
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by including only journal articles published in English and the remaining 145 papers.
Moreover, we chose articles with the highest level of relevance to the research scope,
namely, engineering, computer science, materials science, and management. After this
screening, a total of 126 documents, including articles and conference papers, were selected
as the literature sample.
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2.2. Title- and Abstract-Based Literature Selection

This stage of document screening was conducted to identify articles relevant to con-
struction safety and DL for further analysis. These documents from the literature search
were manually screened by reading and exploring the titles and abstracts to identify and
extract relevant articles. Publications that did not include keywords regarding construction
safety and deep learning in titles or abstracts were screened out. The total number of
documents remaining after this phase was approximately 98.

2.3. Full-Paper-Based Literature Selection

This phase aims to remove irrelevant papers by examining the contents of the articles.
The remaining documents from the previous phase were screened by reading the full
paper to identify articles relevant only to construction safety and DL. For example, articles
(e.g., [27]) that only mentioned “deep learning” but did not focus on DL methods, were
removed. Several articles, such as [28], were also removed, as they did not focus on safety
in construction, although the term “construction safety” was found in its abstract. Similar
articles that applied DL in manufacturing, structural assessment, and crack and defect
detection were removed as they did not focus on safety issues in the construction industry.
After the third screening, a total of 66 papers remained for an in-depth review and analysis.

2.4. Results

According to the final paper selection, a total of 66 papers in journals shown in Figure 2
were identified for further analysis. Figure 3 shows the number of publications by year,
which proves the development of DL applications in construction safety in recent years.
The number of studies using DL increased from 2018 to 2021 and is likely to continue to rise
in the coming years. Figures 4–7 present an overview of the reviewed papers. In addition
to extracting information related to DL models and safety factors, which is the purpose of
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this study, we also present the type of data and accident types to provide a comprehensive
overview of what types of accidents researchers have attempted to reduce. Overall, these
figures show that the CNN-based method and behaviors were the most applied directions
with percentages of 75% and 67%, respectively; images were the most used data in these
models (73%), and struck-by and other general accidents were two types of accidents DL
studies have focused on with the percentages of 36% and 38%, respectively.
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3. Overview of Deep Learning Architectures

DL is a set of ML algorithms that attempt to learn features at multiple levels with
different levels of abstraction [29]. The grades in these learned models correspond to
different levels of concepts, where the same lower-level concepts can support many higher-
level concepts [29]. Thus, a DL architecture can be defined as an artificial neural network
(ANN) with two or more hidden layers to enhance prediction accuracy [29,30]. Three
important reasons for the popularity of DL today are the drastic increase in the abilities
of chip processing (e.g., GPU units), the significant increase in the size of data used for
training, and the recent algorithm advances in ML and signal/information processing stud-
ies [29,31]. These advances have enabled DL methods to exploit complex, compositional
nonlinear functions, and effectively use both labeled and unlabeled data [29]. Therefore,
unlike the architectures of shallow ML, DL networks are capable of processing nonlinear
information [32] and provide training for both supervised and unsupervised categories [33].
With the outstanding ability in processing various types of data, including images, videos,
text, speech, and signals, DL networks and techniques have been implemented widely in
various fields such as image classification [34], object detection [35], object tracking [36],
activity recognition [37], information extraction [38], text classification [39], and speech
recognition [40].

According to Khallaf and Khallaf (2021) [13], DL is called “deep” due to the number of
layers available in the network model. Generally, the DL architecture is composed of three
types of layers: an input layer, hidden layers, and an output layer; the typical architecture
of DL is shown in Figure 8. Data are received in an input layer, features are extracted
from the datasets via hidden layers depending on the purpose of their application, and
the resulting features are passed to the output layer for prediction. In the network, the
output of the previous layer is used as the input of the next layer. There are different types
of DL architectures [13], and for safety management, the most commonly used types of DL
include convolutional neural networks (CNNs), recurrent neural networks (RNNs), and
general neural networks (GNNs).

3.1. Convolutional Neural Networks

For DL, the term “deep” is derived from the many hidden layers in the ANN struc-
ture [41]. Unfortunately, this structure is receptive to translation and shift deviation, which
may adversely affect the performance of classification [42]. To eliminate these drawbacks,
an extended ANN version, the CNN, was developed, which can ensure spatial translation
and shift invariance [43]. The CNN is a supervised DL architecture mainly used for image
analysis applications [30,44,45]. Similar to the ANN, the network consists of multiple
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hidden layers between an input layer and an output layer (Figure 9). However, the hidden
layers comprise convolutional, pooling, and fully connected layers. The convolution filter
acts as a feature extractor by learning hidden patterns from different input signals [41]
and generating relevant feature maps through kernels or filters [30]. The calculation of
convolution is defined as

Ox,y =
Cin−1

∑
c=0

K−1

∑
j=0

K−1

∑
i=0

Ix+s×i,y+s×j × wi,j + bx,y (1)

where Ix+s×i,y+s×j is the value of the input feature at the point of (x + s × i, y + s × j), Cin is
the number of input channels, K is the kernel size, s is the stride of convolutional layer, wi,j
is the weight in the kernels, bx,y is the bias, and Ox,y is the value of the output feature at
the point of (x, y). This convolutional layer thus allows the detection of low-level features,
such as lines and edges, as well as high-level features such as shapes and objects [46].
In this process, the convolutional layer can enhance the input data features and reduce
noise [32]. The convolutional layer is likely connected to a pooling layer with a nonlinear
mapping function (e.g., rectified linear unit (ReLU)) [47]. The appropriate pooling layer
has a positive effect on reducing the input dimension without losing information [47].
Different types of pooling methods exist, such as global pooling, average pooling, and
max pooling [30]. In particular, for extracting features from images, the performance of the
maximum pooling method is better than that of average pooling [48]. Maximum pooling
splits the input image into multiple rectangular regions based on the size of the filter, and
its output is the maximum value for each region [49]. The output of the max pooling layer
can be calculated as

Nout
x,y = Max

m,n∈[0,i−1]
(Nin

x+m,y+n) (2)

where the max pooling layers take the maximum value from the region i × i of input
as the output, Nin

x+m,y+n is the value of the input at the point of (x + m, y + n), and Nout
x,y

is the value of output at the point of (x, y). This process is known as downsampling
or subsampling [30]. After these layers, the fully connected layer commonly connects
all neurons from the previous layer to every single neuron [32]. Thus, this layer sets a
weighted sum of all the previous layer outputs to determine a specific target output [41].
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The variations of CNN methods include region-based CNN (R-CNN), fast R-CNN,
faster R-CNN, and you only look once (YOLO). As discussed above, DL methods with
convolutional networks are widely used for image processing tasks. Among the various
applications of CNNs, object detection frameworks combining both classification and
localization to detect and draw boxes around objects in images have markedly developed in
recent years [50]. According to Koirala et al., (2019) [50], early object detection frameworks
based on CNN used a sliding window approach at evenly spaced locations over the
image, where many patches are generated to classify each patch as containing an object
or not. Thus, feeding all available patches for multiscale detection to a CNN slowed
the object detection framework [50]. R-CNN replaced the sliding window method by
using a group of boxes for the image and then analyzing each box if either of the boxes
contained a target [51]. The entire target identification method through R-CNN uses the
following three models: a linear SVM classifier for object identification, CNN employed
for characteristic extraction, and a regression model required to tighten the bounding
boxes [52]. Therefore, the drawbacks of R-CNN are multiple stages of training, taking up
disk space and training time consuming cumbersome steps [53]. Therefore, a fast R-CNN
was developed to improve the detection speed of R-CNN [50]. In place of using three
different models of R-CNN, fast R-CNN [54] employs a model to extract characteristics
from different regions. However, the drawback of the fast R-CNN method is that it is based
on a selective search [55]; for example, 2000 sections are excerpted per image [52]. Thus, this
approach may increase the running time of the fast R-CNN method [52]. In contrast, faster
R-CNN creatively utilizes the convolution network to create the proposed box and shares
the convolution network with the object detection network, which reduces the number
of proposed frames, for example, from approximately 2000 to approximately 300 [56].
However, despite the speed of faster R-CNN-based detection model being improved
compared to that of fast R-CNN, it is still too slow to apply to real-time video streaming [50].
To address this limitation, YOLO was developed to generate a one-step process involving
detection and classification [57]. YOLO’s idea differs from other traditional systems in
that bounding box predictions and class predictions are performed simultaneously [57],
making YOLO one of the fastest object detection methods [50].
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3.2. Recurrent Neural Networks

The neurons of a fully connected network or a CNN are fully connected in different
layers but disconnected in the same layer; each layer processes signals independently and
then propagates to the next layer [48]. In this regard, this architecture cannot resolve the
problem of relationships between input data [32]. RNNs can be considered as another
class of DL networks that are used for sequential data for supervised and unsupervised
learning [29]. An RNN can “remember” past information and utilize the knowledge
learned from the past to make its present decision [58]. In RNNs, the output of the previous
step is stored and utilized to calculate the current output (Figure 10), which means that the
network’s input contains both the data from the input layer and the output of the previous
hidden layers [32]. The output of the RNN model can be calculated as

ht = f (Uxt + Wht−1 + bh) (3)

Ot = so f tmax(Vht + bo) (4)

where U is the weights matrix of the input xt to the hidden layers, W is the duplicated
recurrent weight matrix, V represent sts the hidden to output weight matrix, f is a nonlinear
activation function, and bh and bo are the biases added to the hidden and output layers,
respectively. Thus, the RNN is extremely powerful for modeling sequence data (e.g., speech
or text) [29].
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Despite the promising performance of RNN, vanishing gradient is a significant prob-
lem in the conventional RNN because it makes the gradient easily vanish (e.g., the previous
information is lost through multiple layers), and the model learning process becomes
much more difficult [59]. One solution to solve this problem is to use long short-term
memory (LSTM) networks, which can store sequences for a long time, as well as using
gated recurrent units (GRUs) [60,61]. The LSTM algorithm combines a memory block with
three gates: input, output, and forget gates [41]. The input gate determines what new infor-
mation is saved and updated in the cell state, the output gate determines what information
is utilized based on the cell state, and the forget gate is used to delete the unimportant
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information from the cell state. Thus, the difference from RNN is that LSTM can determine
what information is useful through the cell, which can avoid the disappearance of the
gradient to some extent [48]. The learning capacity of the LSTM cell is also superior to
that of a conventional recurrent cell [62]. However, additional parameters increase the
computational burden [62]. To reduce the number of parameters, the GRU combines the
input and forget gates of the LSTM model into an update gate, and the output gate in the
LSTM model is called a reset gate [63]. Thus, the GRU is an extension of LSTM, which
achieves a performance comparable to that of LSTM but uses fewer parameters and makes
training faster [64].

3.3. General Neural Networks

In addition to the two common methods of DL (i.e., CNN and RNN), bidirectional
encoder representations from transformers (BERT) [39] (Figure 11) and other deep learning
models for natural language processing (NLP) (Figure 12) and computer vision (CV) [65]
(Figure 13) have also been applied in safety management. Unlike recent language repre-
sentation models, BERT is designed to pretrain deep bidirectional representations from
unlabeled text by jointly conditioning on both left and right contexts in all layers [66].
BERT’s execution for tasks consists of two phases: pretraining for language understanding
and fine-tuning for a specific task such as text classification and text summarization [67]. A
pretrained language model can be defined as a black box containing previous knowledge
of natural language [68]. The BERT by Devlin et al., (2018) [66] used encoders in a trans-
former as a substructure for pretraining models for NLP tasks. Specifically, the BERT-based
model is pretrained using two unsupervised tasks: (1) the masked language model (LM)
predicts some randomly masked tokens in the input to train the bidirectional encoder and
(2) next sentence prediction (NSP) predicts the following sentence of the input sentence
to understand sentence relationships, so the pretrained BERT model can be more suitable
for other NLP applications [69]. BERT can be fine-tuned using a dense layer of neural
networks for different classification tasks [68]. The advantages of BERT include its ability
to address contextual information extraction owing to its bidirectional ability and faster
training capabilities [67]. With the above characteristics, the BERT model demonstrated
state-of-the-art performance in many NLP tasks [70]. BERT is known to achieve exceptional
results in 11 natural language understanding (NLU) tasks [66]. However, BERT still has
specific drawbacks, including the use of BERT-large, made up of 24-layered transformer
encoder blocks, and producing a total of 340 million parameters, which may tend to be
computationally expensive [67].

Sustainability 2021, 13, x FOR PEER REVIEW 12 of 38 
 

mation is utilized based on the cell state, and the forget gate is used to delete the unim-
portant information from the cell state. Thus, the difference from RNN is that LSTM can 
determine what information is useful through the cell, which can avoid the disappearance 
of the gradient to some extent [48]. The learning capacity of the LSTM cell is also superior 
to that of a conventional recurrent cell [62]. However, additional parameters increase the 
computational burden [62]. To reduce the number of parameters, the GRU combines the 
input and forget gates of the LSTM model into an update gate, and the output gate in the 
LSTM model is called a reset gate [63]. Thus, the GRU is an extension of LSTM, which 
achieves a performance comparable to that of LSTM but uses fewer parameters and makes 
training faster [64]. 

3.3. General Neural Networks 
In addition to the two common methods of DL (i.e., CNN and RNN), bidirectional 

encoder representations from transformers (BERT) [39] (Figure 11) and other deep learn-
ing models for natural language processing (NLP) (Figure 12) and computer vision (CV) 
[65] (Figure 13) have also been applied in safety management. Unlike recent language 
representation models, BERT is designed to pretrain deep bidirectional representations 
from unlabeled text by jointly conditioning on both left and right contexts in all layers 
[66]. BERT’s execution for tasks consists of two phases: pretraining for language under-
standing and fine-tuning for a specific task such as text classification and text summariza-
tion [67]. A pretrained language model can be defined as a black box containing previous 
knowledge of natural language [68]. The BERT by Devlin et al. (2018) [66] used encoders 
in a transformer as a substructure for pretraining models for NLP tasks. Specifically, the 
BERT-based model is pretrained using two unsupervised tasks: (1) the masked language 
model (LM) predicts some randomly masked tokens in the input to train the bidirectional 
encoder and (2) next sentence prediction (NSP) predicts the following sentence of the in-
put sentence to understand sentence relationships, so the pretrained BERT model can be 
more suitable for other NLP applications [69]. BERT can be fine-tuned using a dense layer 
of neural networks for different classification tasks [68]. The advantages of BERT include 
its ability to address contextual information extraction owing to its bidirectional ability 
and faster training capabilities [67]. With the above characteristics, the BERT model 
demonstrated state-of-the-art performance in many NLP tasks [70]. BERT is known to 
achieve exceptional results in 11 natural language understanding (NLU) tasks [66]. How-
ever, BERT still has specific drawbacks, including the use of BERT-large, made up of 24-
layered transformer encoder blocks, and producing a total of 340 million parameters, 
which may tend to be computationally expensive [67]. 

 
Figure 11. An example of BERT architecture. Figure 11. An example of BERT architecture.



Sustainability 2021, 13, 13579 12 of 37Sustainability 2021, 13, x FOR PEER REVIEW 13 of 38 
 

 
Figure 12. General NLP model based on DL. 

 
Figure 13. General CV model based on DL. 

4. Deep Learning Applications for Construction Safety Management 
According to Reason’s model [71], on-site safety management is the last layer of man-

agement for preventing accidents and requires considerable emphasis. In this context, we 
focus on construction safety aspects based on a safety management system (SMS). An SMS 
integrates activities and functions to identify accidents and manage risks in the workplace 
[72]. Construction safety management can be divided into preconstruction and construc-
tion phases [73]. In the preconstruction phase, the potential safety accidents are normally 
identified based on the experience of safety officers or project managers and eliminated 
through safety training and safety planning [74]. During construction, hazards are pre-
vented by monitoring workers and the environment at construction sites [75]. Therefore, 
in general, a safety management system approach focuses on three main aspects: behav-
iors, physical conditions, and management issues [76,77]. Figure 5 shows the percentage 
of publications based on these safety factors. The common types of behaviors on construc-
tion sites identified [77,78] are (1) pose and gesture, (2) action, (3) interaction, (4) activity, 
and (5) personal protection equipment (PPE) and safety compliance. We then presented 
factors that influence the physical conditions on construction sites [76], including (1) site 
condition (SC), (2) work environment (WE), and (3) site layout (SL). Finally, management 
issues were discussed [79,80] based on the following subcategories: (1) safety manage-
ment plan, (2) accident investigation and analysis, and (3) hazard identification and risk 
management. The general applications of DL in construction safety are shown in Figure 
14. 

Figure 12. General NLP model based on DL.

Sustainability 2021, 13, x FOR PEER REVIEW 13 of 38 
 

 
Figure 12. General NLP model based on DL. 

 
Figure 13. General CV model based on DL. 

4. Deep Learning Applications for Construction Safety Management 
According to Reason’s model [71], on-site safety management is the last layer of man-

agement for preventing accidents and requires considerable emphasis. In this context, we 
focus on construction safety aspects based on a safety management system (SMS). An SMS 
integrates activities and functions to identify accidents and manage risks in the workplace 
[72]. Construction safety management can be divided into preconstruction and construc-
tion phases [73]. In the preconstruction phase, the potential safety accidents are normally 
identified based on the experience of safety officers or project managers and eliminated 
through safety training and safety planning [74]. During construction, hazards are pre-
vented by monitoring workers and the environment at construction sites [75]. Therefore, 
in general, a safety management system approach focuses on three main aspects: behav-
iors, physical conditions, and management issues [76,77]. Figure 5 shows the percentage 
of publications based on these safety factors. The common types of behaviors on construc-
tion sites identified [77,78] are (1) pose and gesture, (2) action, (3) interaction, (4) activity, 
and (5) personal protection equipment (PPE) and safety compliance. We then presented 
factors that influence the physical conditions on construction sites [76], including (1) site 
condition (SC), (2) work environment (WE), and (3) site layout (SL). Finally, management 
issues were discussed [79,80] based on the following subcategories: (1) safety manage-
ment plan, (2) accident investigation and analysis, and (3) hazard identification and risk 
management. The general applications of DL in construction safety are shown in Figure 
14. 

Figure 13. General CV model based on DL.

4. Deep Learning Applications for Construction Safety Management

According to Reason’s model [71], on-site safety management is the last layer of
management for preventing accidents and requires considerable emphasis. In this context,
we focus on construction safety aspects based on a safety management system (SMS).
An SMS integrates activities and functions to identify accidents and manage risks in the
workplace [72]. Construction safety management can be divided into preconstruction and
construction phases [73]. In the preconstruction phase, the potential safety accidents are
normally identified based on the experience of safety officers or project managers and elim-
inated through safety training and safety planning [74]. During construction, hazards are
prevented by monitoring workers and the environment at construction sites [75]. Therefore,
in general, a safety management system approach focuses on three main aspects: behaviors,
physical conditions, and management issues [76,77]. Figure 5 shows the percentage of
publications based on these safety factors. The common types of behaviors on construction
sites identified [77,78] are (1) pose and gesture, (2) action, (3) interaction, (4) activity, and
(5) personal protection equipment (PPE) and safety compliance. We then presented factors
that influence the physical conditions on construction sites [76], including (1) site condition
(SC), (2) work environment (WE), and (3) site layout (SL). Finally, management issues
were discussed [79,80] based on the following subcategories: (1) safety management plan,
(2) accident investigation and analysis, and (3) hazard identification and risk management.
The general applications of DL in construction safety are shown in Figure 14.

4.1. Behaviors

Unsafe worker behavior is a significant cause of workplace accidents [81]. It has been
proven that 88% accidents are caused by workers’ unsafe behavior [82]. According to
Fam et al., (2012) [83], unsafe behavior occurs when an employee fails to respect safety
rules, standards, instructions, procedures, and specified project criteria. In general, unsafe
behaviors are factors related to workers’ awareness, unsafe actions, and noncompliance
attitudes that cause dangerous consequences (e.g., injury). Due to the varying levels of
abstraction and complexity of human behaviors, Edwards et al., (2016) [78] proposed
a five-level classification system for workers’ behaviors, which included pose, gesture,
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action, interaction, and activity. Likewise, Guo et al., (2021) [77] proposed a six-level
hierarchical framework of safety behavior with the contribution of the safety compliance
factor. According to a series of these studies and based on the applications of DL in
construction safety, the unsafe behaviors causing accidents in construction are categorized
as (1) pose and gesture, (2) action, (3) interaction, (4) activity, and (5) personal protection
equipment (PPE) and safety compliance. Table 1 summarizes the DL studies on behaviors
in the construction industry.
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Table 1. Construction safety studies about behaviors.

Categories Type of Data Numbers of Data
Training–Validation–Testing Method Accuracy Value Object/Action Accident Type References

Pose and
gesture

Images 4483–641–1281 CNN Accuracy: 0.93 Excavator’s pose (Struck-by) [84]

Images N/A–N/A–3241 CNN
Accuracy: 0.94
Precision: 0.96

Recall: 0.98

Worker’s standing, walking, squatting, sitting, or
bending. (Struck-by) [85]

Images 2116–235–1008 RNN Accuracy: 0.96 Ergonomic postures WMSDs [86]

Images 10,000–N/A–N/A CNN Accuracy: 0.91 Workers’ and excavators’ status Struck-by [87]

Images N/A CNN Accuracy: 0.83 Workers’ standing still, bending,
ladder-climbing/stepping/standing Fall [88]

Videos N/A CNN + RNN F1-score: 0.83 Ergonomic postures WMSDs [89]

Signal 2196 (training and testing) RNN Accuracy: 0.99
F1-score: 0.99 Ergonomic postures WMSDs [90]

Signal 32,396 (60%–N/A–40%) RNN Accuracy: 0.95 Workers’ standing, bending, squatting, walking,
twisting, kneeling, and using stairs WMSDs [91]

Images N/A CNN Accuracy: 0.96 Ergonomic postures WMSDs [92]

Action
Videos 160–N/A–40 CNN + RNN Accuracy: 0.92 Ladder-climbing actions Fall [15]

Images 1461–N/A–450 CNN Precision: 0.75
Recall: 0.9 Worker traversing supports Fall [93]

Interaction

Videos 10 (80%–10%–10%) RNN N/A Worker–equipment interactions Struck-by [94]

Videos 5 (70%–10%–20%) RNN Accuracy: 0.9 Excavators and dump truck interactions during
earthmoving tasks Struck-by [95]

Images 2169 (training and validation)–241 CNN Precision: 0.87 Worker–equipment interactions Struck-by [96]

Images 3652–N/A–913 CNN Precision: 0.66
Recall: 0.65 Worker–tool interactions General accident [97]

Images 4114–N/A–398 CNN Precision: 0.91 Worker–equipment interactions Struck-by [98]

Images 6000–N/A–N/A CNN Precision: 0.96
Recall: 0.93 Worker–excavator interactions (Struck-by) [99]

Images 523,966–N/A–50,000 CNN
Accuracy: 0.96
Precision: 0.98

Recall: 0.98
F1-score: 0.98

Worker–equipment interactions Struck-by [2]

Images N/A CNN Recall: 0.5 Components’ or crews’ relationships General accident [100]

Videos 8000–N/A–2000 RNN Accuracy: 0.95 Worker–equipment interactions Struck-by [37]

Videos 210–70–84 CNN + RNN Accuracy: 0.93 Hand signals for instructing tower crane operations (Struck-by) [101]

Images N/A CNN Precision: 1
Recall: 0.82 Worker–equipment interactions Struck-by [102]
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Table 1. Cont.

Categories Type of Data Numbers of Data
Training–Validation–Testing Method Accuracy Value Object/Action Accident Type References

Activity

Images 96–N/A–N/A CNN
Precision: 0.52

Recall: 0.45
F1-score: 0.48

Mixed activities of workers and equipment General accident [35]

Images 703–235–N/A CNN Accuracy: 0.86 Scaffolding activity Fall [103]

Videos 7–N/A–3 CNN + RNN mAP: 0.73 Earthmoving activity (Struck-by) [36]

Images N/A CNN Accuracy: 0.84 Concrete pouring (General accident) [104]

Safety
compliance

Images 944–240–288 CNN mAP: 0.72 PPE (hard hat, vest) Fall and struck-by [105]

Images 81,000–N/A–19,000 CNN Precision: 0.96
Recall: 0.95 PPE (hard hat) Fall and struck-by [106]

Images 6029–N/A–6000 CNN Precision: 0.94
Recall: 0.83 PPE (hard hat, glasses, dust mask, safety belt) Fall and struck-by [107]

Images 1587–N/A–1587 CNN mAP: 0.84 PPE (hard hat) (General accident) [108]

Images 2583–N/A–726 CNN Accuracy: 0.9 PPE (hard hat, vest) Fall and struck-by [109]

Images N/A CNN Precision: 0.9
Recall: 0.93 PPE (hard hat, harness, anchorage) Fall [110]

Images 693–N/A–130 CNN Precision: 0.99
Recall: 0.95 PPE (harness) Fall [111]

Images 8000–N/A–N/A CNN Precision: 0.83
Recall: 0.83 Noncertified work of workers (General accident) [112]

Images 1366–N/A–N/A CNN mAP: 0.55 PPE (hard hat) Struck-by [113]

Images 7000–N/A–200 CNN Precision: 0.91
Recall: 0.9 PPE (hard hat) (General accident) [114]

Images 64,115–2693–N/A CNN mAP: 0.86 PPE (hard hat) Fall and struck-by [115]

Images 1587–N/A−1587 CNN mAP: 0.87 PPE (hard hat) (General accident) [116]

Images 100,000–N/A–N/A CNN mAP: 0.89 PPE (hard hat, vest) Struck-by [117]

Images 9800–N/A–9000 CNN
Accuracy: 0.94
Precision: 0.96

Recall: 0.96
PPE (hard hat) Struck-by [118]

Images 13,000–N/A–1300 CNN mAP: 0.93 PPE (hard hat) Fall and struck-by [119]

Images 20,554–N/A–1501 CNN mAP: 0.94 PPE (hard hat) (General accident) [120]

Images 5000–N/A–1000 CNN mAP: 0.96 PPE (hard hat) (General accident) [121]

Images N/A CNN mAP: 0.58 PPE (hard hat) Fall [122]

Note: The mAP represents mean average precision, and WMSDs represent work-related musculoskeletal disorders. The accident types in parentheses were judged by the authors’ assessment and not specified in
the paper.
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4.1.1. Pose and Gesture

Posture-related safety risks have been a significant concern in construction projects
that need to be addressed [90]. Pose and gesture are defined as the spatial arrangement of a
human body at a single temporal instance, or a temporal pose series or action primitives on
a subaction scale [77]. The worker’s safety risk level can be assessed based on the worker’s
current posture by calculating the similarity of the workers’ posture to the identified
hazardous postures [88]. Several methods can be employed to represent human posture:
images, text descriptions, or skeleton data [88]. The goal of human pose estimation is to
specify the position of human joints from images or skeleton data provided using motion-
capturing hardware [123]. Text description is a user-friendly way to facilitate human
understanding, but it removes the objective and quantitative features of the postures [88].
Based on this, researchers have utilized DL methods for detecting unsafe postures using
different types of data (e.g., videos [92], images [86], and signals [91]).

DL has been widely and successfully applied for detecting unsafe workers’ postures
with different typical statuses, including standing still, climbing down, standing on the
ladder, and bending. For example, based on posture-location fusion evaluation, Chen
et al., (2019) [88] proposed deep CNN architectures to extract human skeletons from sensor
images for evaluating the ladder-climbing posture of construction workers with an accuracy
of 83%. Likewise, Son et al., (2019) [85] illustrated the ability to accurately and rapidly
detect workers in construction sites under different poses in image by using a CNN-based
model with an accuracy of 94.3%. In addition, with the development of RNN-based DL,
Kim and Cho (2020) [91] obtained the best-performing accuracy of 82.39% from the model
using the LSTM network when compared with other conventional ML algorithms in the
motion recognition of workers, including standing, bending, squatting, etc. Among these
gestures, recent research has focused on ergonomic posture, which poses the highest risk
for musculoskeletal disorders (MSDs). For example, Yang et al. (2020) [90] investigated
the feasibility of identifying varying physical loading conditions by analyzing the lower
body movements of workers while moving concrete bricks. With a high accuracy of 98.6%,
the findings contribute to the literature on classifying ergonomically at-risk workers and
preventing work-related musculoskeletal disorders (WMSDs) in physically demanding
occupations, thus enhancing the health and safety of the construction workplace. Similarly,
Zhao and Obonyo (2020) [89] and Yu et al. (2019) [92] proposed a DL-based ergonomic
assessment tool to provide automatic and detailed ergonomic assessments of workers
based on images.

According to Luo et al., (2020) [84], similar to human poses, the posture of construction
machines can be represented by key points. Thus, in addition to the worker’s postures,
DL was also applied to detect the poses of construction machines. For example, Luo
et al., (2020) [84] developed a CNN-based model to automatically estimate the poses of
excavators in images captured at construction sites. The experimental results demonstrated
the promising performance of the proposed methodology framework for automatically
evaluating different full-body poses of construction equipment with high accuracy and
fast speed. Likewise, Luo et al., (2020) [87] developed a real-time smart surveillance
system based on the YOLOv2 detection approach that can detect people and the status
of excavators in hazardous areas. The results proved that the developed systems could
provide immediate feedback concerning unsafe behavior and thus enable appropriate
actions to be taken to prevent reoccurrence.

4.1.2. Action

Falls are highly frequent accidents in the construction industry, and occupational
injuries and fatalities caused by falls from height pose a severe public problem world-
wide [124]. According to prevention strategies for falling accidents in construction pro-
posed by Huang and Hinze (2003) [3] and Chi et al., (2005) [125], fatal occupational falls
on-site were closely associated with serious on-site risk factors, including poor work
practices and bodily actions. Thus, it is essential to achieve and improve unsafe action
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recognition to ensure the safety of construction. In the study by Guo et al., (2021) [77],
action is defined as a series of gestures that form a contextual event, or more specifically,
action in construction is a single activity executed by a subject, such as ladder-climbing,
walking, and running. In particular, the actions’ pattern and pace vary from individual
to individual as well as from time to time [126]. Thus, it can be determined that different
action categories can have similar postures, and one action category can have a variety of
postures [127]. According to Gong et al., (2011) [127], action is classified as either action at a
single moment as depicted in an image or action in a time period as shown in a sequence of
images. Based on this, studies have used DL to recognize actions on construction sites from
images/videos. Ding et al., (2018) [15] developed a new hybrid DL model that integrates
a CNN and LSTM to automatically recognize workers’ unsafe actions from videos. By
extracting the visual features from videos using a CNN model and sequencing the learning
features using LSTM models, the results revealed that the accuracy of the model exceeded
the current state-of-the-art descriptor-based methods for the detection of safe/unsafe ac-
tions conducted by workers on-site. Likewise, an automatic computer-vision approach
that utilizes an R-CNN-based model was proposed by Fang et al. (2019) [93] to detect
individuals traversing structural supports from photographs during construction. By
automatically identifying the presence of people and recognizing the relationship between
people and concrete/steel supports, the results demonstrated that the developed model
could accurately detect people traversing concrete/steel supports during construction;
thus, the proposed approach could be used by site managers to automatically identify
unsafe behavior and provide feedback to individual workers about their likelihood of
falling from heights.

4.1.3. Interaction

In several cases, whether an action is safe depends on the status of other objects [77].
As a proof of this concept, Zhang et al., (2020) [99] proved that constant interaction and the
state of random movement increase the risks of worker injury [99]. One of the accidents
caused by inappropriate interactions between entities on construction sites is struck-by
accidents, which led to 804 fatalities from 2011 to 2015 [37]. Therefore, to recognize unsafe
behavior, current researchers not only recognize involved objects (e.g., workers, crane, and
load) in terms of their identity, location, and movement direction, but more importantly,
attempt to understand the interactions between these objects. Interaction is a pairwise or
reciprocal action committed by two or more entities. In the concept of construction safety,
entities can be defined as human (workers, managers, etc.) or objects (excavators, dump
trucks, etc.). Each entity has a single action that reflects its state compared to the other
entity. For example, earthmoving activities involve interactions between dump trucks
and excavators.

Recognizing ongoing activities and related working groups is crucial as it allows the
comprehension of jobsite context, which in turn enables the interpretation of worker inten-
tions, their movement prediction, and the detection of inappropriate interactions that are
counterproductive and may cause harmful consequences [37]. To consider the applications
of DL in the interaction assessment of on-site entities, there are three different interaction
types: human-to-human interaction, human-to-object interaction, and object-to-object in-
teraction. Human-to-human interaction is an action committed by two people or groups
of people (workers and managers), human-to-object interaction is an action committed
directly by people to an object or multiple objects, and object-to-object interaction is an
action committed by two objects or groups of objects. The interaction between construction
workers and equipment is a crucial reason for on-site safety hazards [96]. Therefore, the
risks posed by this interaction have received significant attention in current DL studies. For
example, various studies have identified and evaluated the spatial relationship between
construction workers and equipment to prevent struck-by hazards from images based on
DL algorithms such as faster R-CNN [97,99,102] and YOLO [2]. Moreover, by extracting
information from images, studies proposed CNN-based models for not only automatically
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predicting potential safety hazards by detecting construction workers and equipment
and identifying hazardous zones [96], but also tracking and analyzing spatial-temporal
interactions on construction sites for real-time detection [98]. Likewise, to demonstrate
that the sequence-to-sequence method could better predict trajectories and avoid error
accumulation compared to conventional predictions, Cai et al. (2020) [94] and Cai et al.
(2019) [37] proposed an LSTM method using construction videos that integrates both per-
sonal movement and workplace contextual information (e.g., movements of neighboring
entities, workgroup information, and potential destination information). Studies have
also focused on monitoring the equipment’s interactions and crew relationships using DL
methods. For example, based on data of historical motion from camera videos and activity
attributes, Luo et al., (2021) [95] proposed an RNN framework, called GRU, for predicting
future construction excavator and truck poses and monitoring when either one-to-one or
group interactions of construction machines exist during earthmoving tasks. Similarly,
Xiong et al., (2019) [100] developed an automated hazard identification system (AHIS)
based on the CNN method to detect visual relationships between objects, including site
components or crews. The results demonstrated that the proposed visual relationship
detection method had the potential to enrich the semantic representation of operation facts,
which could lead to better automation in construction hazard detection.

4.1.4. Activity

The information on basic actions may not be sufficient for safety analysis and schedule
assessment; therefore, in recent years, researchers have attempted to recognize actions
with a higher level of abstraction and complexity [77]. Guo et al., (2021) [77] showed
that various on-site human activities are characterized by a complex spatial and temporal
composition of objects and actions. According to the definition proposed by Turaga et al.,
(2008) [128], activity is a complex series of actions performed by several people who could
interact with each other in a constrained manner over longer durations compared to action.
Therefore, activity in construction safety can be defined as a group of actions and/or
interactions that are executed to describe high-level work such as roofing, formwork, and
scaffolding activities. Each action and interaction can be considered as a subactivity event
in such scenarios [78]. In the context of construction safety, DL has been applied in activity
recognition with different events such as scaffolding activity [103], earthmoving activity
(27), and concrete pouring activity [104].

Scaffolding-related falls are an important potential threat at the job site, causing a
significant number of accidents annually [129]. According to Khan et al., (2021) [103], the
fatality rate due to falls from scaffolds, ladders, working platforms, and roof edges, was
60%. Therefore, the detection of unsafe activities during scaffolding activities has received
attention from researchers. For example, in a study conducted by Khan et al., (2021) [103],
a deep neural network, mask R-CNN, was proposed for monitoring mobile scaffold safety
and detecting workers’ unsafe behaviors from image dataset, including 703 training and
235 validation data with an overall accuracy of 0.86. DL was also applied to monitor
other construction activities. By using the temporal and spatial CNN for recognizing
basic actions during concrete pouring tasks, a hierarchical statistical method proposed by
Luo et al., (2019) [104] proved the ability to recognize workers’ activities with an average
accuracy of 0.84. Similarly, Lin et al., (2021) [36] analyzed consecutive image sequences to
automatically identify irregular operations during earthmoving work and its visualization.
Therein, faster R-CNN was adapted with transfer learning to detect workers and pieces of
construction equipment on the jobsite, and a hybrid model integrating CNN and LSTM
was employed for action recognition. The results illustrated that the proposed framework
could aid field managers in efficiently identifying potential abnormal activities, providing
opportunities for further investigations and appropriate adjustments.
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4.1.5. PPE and Safety Compliance

Safety rules are intended to outline safety guidelines for people and activities occurring
in the workplace to ensure construction safety. Safety compliance involves following these
rules in construction, adhering to safety procedures, and carrying out work safely. One of
the regulations on construction sites is the use of protective equipment. Personal protective
equipment, also termed as “PPE”, is equipment designed to protect people against personal
injury while performing tasks at the workplace. PPE includes helmets for avoiding head
injuries, hand gloves for hand protection, safety glasses for eye protection, vests, boots,
harnesses, and respirators [130]. A survey conducted by the US Bureau of Labor Statistics
(BLS) suggested that 84% of workers who had suffered head injuries were not wearing
head protection equipment [131]. Fang et al. (2018) showed that 75.1% of decedents from
fall from height did not use personal fall arrest systems (PFAS) [110]. The “fatal four” (i.e.,
fall, struck-by object, electrocution, and caught-in/between) accounted for nearly 60% of
all fatalities in construction in 2017, and the majority of these fatalities could have been
prevented by wearing appropriate PPE [109]. However, there are often cases in which
construction workers ignore regulations [113], and not all construction workers are aware
of the importance of wearing hard hats [106]. In practice, many workers tend to take off
their hard hats because of religious values [132] or discomfort due to weight and to cool
off at high temperatures [106]. In addition, some frequent accidents are closely related to
workers who are not certified to perform specific tasks. To support this observation, Fang
et al. (2018) [112] showed that fewer accidents occur when workers are qualified and their
qualifications are appropriately certified.

Previous studies have utilized DL methods to detect behaviors that do not follow con-
struction safety rules, thereby preventing serious injuries. As discussed above, one of the
most significant actions in noncompliance with construction safety regulations is the failure
to wear appropriate PPE. In this regard, detecting workers with non-PPE has received
considerable attention in recent studies. For example, by extracting information from
images, various researchers have proposed PPE detection algorithms to identify the proper
use of hard hats on human objects using DL methods such as faster R-CNN [106,111,114],
YOLO [105,107,115,117,119–122], and CNN-based algorithms [109,110,113,118]. In addi-
tion, according to Wu et al. (2019) [108], the colors of hard hats can signify different roles on
construction sites, providing an accessible way to improve construction safety management.
Thus, in addition to detecting hard hats, researchers identified their corresponding colors
that can achieve a mean average precision (mAP) of at least 0.84 [108,116]. Moreover,
accidents are less likely when workers are qualified and their qualifications are properly
certified [133]. Hence, DL was also applied to check whether a site worker is working
within the constraints of their certification [112]. A faster R-CNN model was used to detect
common objects based on the latest face detection and face recognition methods. The
experimental results demonstrated the reliability and accuracy of the DL-based method
to detect workers carrying out work for which they are not certified to facilitate safety
inspections and monitoring.

4.2. Physical Conditions

According to the accident causation model [82], unsafe conditions and unsafe actions
are considered as two direct causes of accidents. Therefore, safety performance can be
improved if one can moderate people’s unsafe behavior and improve their work con-
ditions [134]. According to Li et al., (2018) [25], a hazardous working environment is a
workplace with unusual hazards that violate the prevailing safety standards, thus being
considered unsuitable for work [25]. In the context of construction safety, unsafe conditions
can include poor lighting, temporary structure instability, unsecured equipment, etc., which
can cause unfortunate accidents at construction sites. According to the extant literature [76],
the common types of physical conditions identified include: (1) site condition (SC), (2) work
environment (WE), and (3) site layout (SL). These conditions were also research directions
of previous DL studies, and a summary of these studies is presented in Table 2.
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Table 2. Construction safety studies about physical conditions.

Categories Type of
Data

Numbers of Data
Training–Validation–

Testing
Method Accuracy

Value Object/Action Accident
Type References

Work
environment

(WE)

Images 4000–N/A–667 CNN Accuracy: 0.97 Guardrail Fall [14]

Images N/A CNN Accuracy: 0.9 Crane cracks (General
accident) [135]

Signal N/A CNN N/A Diaphragm wall
deformation

(General
accident) [136]

Signal 55–N/A–15 RNN N/A Brake pedal aperture for
automatic wheel loader

(General
accident) [137]

Images 10,000–N/A–N/A CNN Accuracy: 0.95
Precision: 0.76

Construction machines at
nighttime Struck-by [138]

Site layout
(SL)

Images 240 (90%–N/A–10%) CNN mAP: 0.99 Dense multiple
construction vehicles

(General
accident) [139]

Images N/A GNN Accuracy: 0.95
Safety-rule violations of

complex construction
scenes

(General
accident) [65]

Site
condition

(SC)
Signal 600 (80%–N/A–20%) RNN Accuracy: 0.99

Prediction of water
inflow into drill and blast

tunnels

(General
accident) [140]

Note: The mAP represents mean average precision. The accident types in parentheses were judged by the authors’ assessment and not
specified in the paper.

4.2.1. Work Environment (WE)

The nature of the construction working environment poses both health and safety risks
to workers. According to a report by the Occupational Safety and Health Administration
(OSHA), approximately 40% of all construction fatalities are caused by falls from heights,
followed by struck-by objects, electrocution, and caught-in/between [141]. To support this,
Kolar et al. (2018) [14] showed that “fall protection, construction” was at the top of the list
of the most frequently violated OSHA standards. In addition, the results from the study
of Arditi et al., (2007) [142] indicated that the safety risks at nighttime could be five times
higher than those in the day time due to several significant factors, including the lower
illumination conditions and the fatigue of workers and machine operators. Therefore,
managing, monitoring, and improving the work environment, including guarding systems,
structural defects, functional defects, lighting, and noise, etc., play an important role in
reducing accidents at construction sites. Passive falling prevention approaches, such as
guardrails, warning lines, and fall arrest systems, often act as on-site measures for reducing
the risk of falling [14].

With the development of DL, researchers have developed models for monitoring con-
struction safety under different work environments. For example, Kolar et al. (2018) [14]
developed a safety guardrail detection model based on a CNN to check whether the
guardrail system is set up appropriately. The results showed that the proposed model
could obtain a high accuracy of 0.97, so their model has the potential to improve con-
struction site situations. Similarly, studies have also demonstrated that the CNN-based
model can reduce the number of injuries and fatalities by detecting structural defects such
as crane cracks [135] and concrete diaphragm wall (CDW) deflections [136]. In addition,
by considering the poor lighting conditions that can affect the visibility of monitoring
construction safety, Xiao et al., (2021) [138] proposed a vision-based method for automati-
cally tracking construction machines at night by integrating DL illumination enhancement.
The results showed that with a multiple-object tracking accuracy (MOTA) of 0.95 and a
multiple-object tracking precision (MTOP) of 0.76, the proposed methodology could also
be used to help accomplish automated monitoring tasks during construction at nighttime
to improve safety performance.
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4.2.2. Site Layout (SL)

Construction is characterized by its dynamics, such as multiple construction workers,
diverse types of equipment and materials, and continuously changing working environ-
ments [19]. Quickly changing and complex workplace conditions were identified as the
direct cause of more than 30% of construction accidents [143]. Therefore, proper site layout
management, including arrangement, storage, and positioning of agents (e.g., construction
vehicles, heavy machines, materials, etc.), is an urgent requirement to avoid hazardous
issues such as site congestion and failure to properly locate utilities. However, activities
involving multiple pieces of equipment and workers taking place often in a unique, com-
plex, and dynamic environment always create challenges for monitoring proper site layout.
Thus, the development of DL has proven the ability to assist in effectively managing safe
layout in construction sites. For example, Wang et al. (2019) [65] used a DL-based ap-
proach for automatic safety assessment based on object relationships learned from labeled
images of complex construction scenes with safety rule violations. Similarly, Guo et al.,
(2020) [139] proposed a CNN-based end-to-end approach for precisely detecting dense
multiple construction vehicles using images from unmanned aerial vehicle (UAV). The
results illustrated that the proposed method was of great significance to ensure the safety
of construction sites by accurately identifying many dense vehicles with an AP of 0.99.

4.2.3. Site Condition (SC)

Site conditions, including weather, temperature, and geographical conditions, consid-
erably affect safety during the construction process. Awolusi et al. (2018) [144] showed that
both health and safety risks of workers are posed by the construction work environment.
This is partly because most of the activities are performed outdoors, significantly exposing
workers to weather elements [144]. In addition, Mahmoodzadeh et al., (2021) [140] proved
that other natural environmental conditions, such as groundwater inflows during tunnel
construction, were among the most common and challenging issues faced by constructors
and designers in karst regions. The sudden and unexpected significant water inflow at
the heading often damages construction machinery and leads to worker fatalities [140].
For example, a large-scale water inflow accident occurred in the Yesanguan tunnel of the
Yichang–Wanzhou railway in China on 5 August, 2007 [145]. Therefore, applying DL to
the prediction of the influence of natural conditions has made important contributions
to safety management. For example, by proposing an LSTM-based prediction model,
Mahmoodzadeh et al., (2021) [140] proved that their proposed model could predict water
inflow into tunnels with higher accuracy than other ML techniques; thus, this model could
ensure safety and help with scheduling during the underground construction process.

4.3. Management Issues

Safety management, a method of applying on-site safety policies, procedures, and
practices convolving a construction project, is one of the most frequently used techniques to
regulate construction activities and control risks [146]. Various studies related to construc-
tion safety confirmed that most accidents at construction sites could have been reduced and
prevented by establishing a proper and consistent safety management process or program
of planning, education/training, and inspection [147]. In general, common safety manage-
ment activities in the construction industry include monitoring, controlling safety rules,
planning, training, and managing the practice process to ensure safety at the construction
site. According to the extant literature [79,80] and based on the context of considering
DL applications on construction safety, the categories of safety management identified
include (1) safety management plan, (2) accident investigation and analysis, and (3) hazard
identification and risk management. Table 3 lists previous studies regarding applications
of DL in handling safety management issues in the construction industry.
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Table 3. Construction safety studies about management issues.

Categories Type of Data
Numbers of Data

Training–Validation–
Testing

Method Accuracy
Value Object/Action Accident

Type References

Safety
management

plan

Images 10,000–N/A–1500 CNN Accuracy: 0.95 Workers and
excavators

(General
accident) [148]

Images 19,404–4000–18,264 CNN mAP: 0.55

Moving object
detection

(workers and
equipment)

Struck-by [149]

Images 2324–26–231 CNN Recall: 0.86
mAP: 0.83

Construction
equipment Struck-by [150]

Images 34,510 (66%–17%–17%) CNN + RNN
Precision: 0.99

Recall: 1
F1-score: 0.99

Construction
activity scenes

(General
accident) [151]

Videos 4–N/A–8 CNN + RNN Accuracy: 0.79
Recognizing

people’s
identity

(General
accident) [152]

Images 2094–523–654 CNN mAP: 0.91 Construction
equipment

(Struck-
by) [153]

Accident
investigation
and analysis

Text 95–N/A–50 RNN F1-score: 0.84

Information
extraction from

accident
reports

General
accident [38]

Text 2624–N/A–657 GNN
Accuracy: 0.87
Precision: 0.51

Recall: 0.54

Text
classification of

near-misses
safety reports

General
accident [39]

Text 3000 CNN
Precision: 0.8
Recall: 0.68

F1-score: 0.71

Hazard record
analysis

General
accident [154]

Text 90,000
(90%–N/A–10%) RNN F1-score: 0.87

Automatically
learning injury

precursors

General
accident [16]

Text 2000 CNN Precision: 0.65
Recall: 0.61

Classifying
and visualizing

accident
narratives

General
accident [18]

Images 2000–N/A–N/A CNN Precision: 0.89
Recall: 0.93

A gate scenario
and an

earthmoving
scenario

General
accident [155]

Hazard iden-
tification and

risk
management

Images 40,000 CNN N/A Identifying
hazards

General
accident [156]

Images 6000–N/A–1000 CNN Accuracy: 0.93

Worker
localization
and hazard
detection

General
accident [157]

Note: The mAP represents mean average precision. The accident types in parentheses were judged by the authors’ assessment and not
specified in the paper.

4.3.1. Safety Management Plan

With the presence of cost and time pressures and the frequent need to perform un-
planned work (e.g., rework), people tend to take risks to make their work more
efficient [158–160]. The upshot of this case is that people tend to commit unsafe actions,
especially when they know they are not being supervised [152]. Therefore, safety manage-
ment plans regarding publishing safety policies, objectives, and requirements; proposing
plans; making decisions; and monitoring safety play an important role. The purpose of
health and safety monitoring is to ensure effective measurement and management of con-
struction workers’ safety practices against existing safety plans and standards [19]. Visual
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information related to construction activity scenes is becoming increasingly important
for construction management [161,162]. The scene of construction activity in images can
be defined as an integral overview of the activity in pictures that synchronously contain
objects (e.g., workers, equipment, and materials), their interrelationships (e.g., cooper-
ation between objects or coexistence of objects), and other vital scenario elements (e.g.,
earthmoving and concrete pouring) [151]. Thus, with the development of DL, automati-
cally manifested construction activity scenes [151] provide managers with information for
making decisions and safety management plans [148].

Recent research has focused on providing site managers the status of construction sites
by detecting construction objects to assist in planning safety management at construction
sites. For example, various studies proposed DL models such as faster R-CNN [148,149],
YOLO [150], LSTM [151], and the CNN-based method [153] to provide supervisors with
more insight into the real-time status of large-scale construction jobsites so they could
assist supervisors in inspecting construction safety and processes [148,150,153]. In addition,
as discussed above, workers sometimes have the proclivity to commit unsafe actions,
especially when they know they are not being supervised [152], so it is important to
provide direct feedback to people committing unsafe actions so that they can modify their
future behavior. In a notable study by Wei et al., (2019) [152], a novel DL approach was
developed to automatically determine a person’s identity, which can be utilized by site
managers to automatically recognize individuals engaging in unsafe behavior; therefore, it
can be used to provide immediate feedback about their actions and possible consequences.

4.3.2. Accident Investigation and Analysis

Accidents and incidents should be analyzed for better implementation and continuous
improvement of safety management systems [79]. Collecting and organizing accident
reports, regulations, and laws, and then presenting them publicly, are considered good
practices for improving the safety management of construction sites [38]. Safety reports
are an extremely valuable information source that can be used by site managers to learn
about the conditions and events contributing to the occurrence of accidents [158,163].
Therefore, it enhances managers’ safety awareness and urges them to prevent accidents
or related construction work issues [38]. Nowadays, using DL, accident documents are
processed to provide useful information for safety management under two main tasks:
information extraction and text classification. Information extraction is the task of finding
structured information from unstructured or semistructured text [164], which is essential
for handling continuously growing data published on the online, especially in the Big
Data era [165]. For example, Feng and Chen (2021) [38] adopted the BiLSTM-CRF model
to automatically extract information from accident reports, so this model could help to
raise workers’ security awareness and prevent hazards and accidents. Similarly, Baker
et al., (2020) [16] compared two state-of-the-art DL architectures, CNN and hierarchical
attention networks (HAN) based on GRU, to automatically learn injury precursors from
raw construction accident reports. The results illustrated that HAN outperformed CNN
almost everywhere with a mean performance of 0.87; thus, the HAN model can extract
useful information, which not only allows the exploration of empirical relationships for
postanalysis and project statistics, but can also be used proactively during typical work
planning, job risk analyses, prejob meetings, and audits. Another application of DL is
text classification, which is a fundamental task in the natural language processing area
where one needs to assign one or multiple predefined labels to a text sequence [166].
For example, previous studies proposed DL-based models to classify and analyze the
narrative surrounding accidents and to better understand their causal nature from accident
reports [18,39,154]. In addition, Xiao et al., (2021) [155] proposed a DL-based method for
the collection and automatic generation of video highlights from construction videos. The
proposed CNN-based approach was validated through two case studies: a gate scenario
and an earthmoving scenario. With a score of 0.89 for precision and 0.93 for recall, the
proposed model proved that it could offer potential benefits to construction management in



Sustainability 2021, 13, 13579 24 of 37

terms of significant reduction in video storage space and efficient indexing of construction
video footage, which was beneficial for project management tasks such as safety control.

4.3.3. Hazard Identification and Risk Management

Dynamic and complex construction environments have caused significant risks during
construction. Unfortunately, studies across the world have reported that a substantial por-
tion (approximately 50%) of hazards remain unrecognized [167–169]. These unrecognized
hazards expose construction workers to unanticipated risks and potential injuries [168].
Therefore, identifying hazards and managing risks play an important role in construction
safety management. DL has been used to identify risks with notable achievements. For
example, Fang et al., (2020) [156] integrated computer vision algorithms with ontology mod-
els to develop a knowledge graph that can automatically and accurately recognize hazards
while complying with safety regulations, even when they are subjected to change. Therein,
mask R-CNN was adopted in their research for entity detection. The results showed that
the proposed approach could successfully detect falls from height (FFH) hazards in varying
contexts from images. Similarly, a mask RCNN-based framework was developed by Jeelani
et al., (2021) [157] for an automated system that detects hazardous conditions and objects
in real-time with over 93% accuracy; therefore, this model can assist workers and safety
managers in identifying risks in complex and dynamic construction environments.

5. Overall Research Trends in Safety Management: Summary of Contributions
and Limitations

In this study, three safety management factors, including behaviors, physical condi-
tions, and management issues, were identified in the context of applying DL models to
construction safety. This section provides an overview of the research trends from technical
and managerial aspects (e.g., data types, algorithms, and safety issues) (Figures 15 and 16).
Table 4 shows the accuracy of the studies using DL for construction safety. Overall, a
CNN is the most commonly used method applied in these studies from the major data of
the images, and unsafe behaviors is the main research direction with high performance,
gaining a variety of contributions to safety management.
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Figure 16. The link between types of data and safety factors.

Table 4. Accuracy of DL studies.

Safety Factors Methods Accuracy Value (Min–Max)
Value Mean Value References

Behaviors

CNN

Accuracy 0.83–0.96 0.91 [2,15,84,85,87,88,92,101,103,104,109,118,148]

Precision 0.52–0.99 0.88 [2,35,85,93,96–99,102,106,107,110–112,114,118]

Recall 0.45–0.98 0.84 [2,35,85,93,97,99,100,102,106,107,110–
112,114,118]

F1-score 0.48–0.98 0.76 [2,35,89]

mAP 0.55–0.96 0.81 [36,105,108,113,115–117,119–122]

RNN

Accuracy 0.90–0.99 0.95 [15,37,86,90,91,95]

F1-score 0.83–0.99 0.91 [89,90]

mAP 0.73 [36]

Physical
conditions

CNN

Accuracy 0.9–0.97 0.94 [14,135,138]

Precision 0.76 [138]

mAP 0.99 [139]

RNN Accuracy 0.99 [140]

GNN Accuracy 0.95 [65]

Management
issues

CNN

Accuracy 0.79–0.95 0.89 [148,152,157]

Precision 0.65–0.99 0.83 [18,151,154,155]

Recall 0.61–1.0 0.82 [18,150,151,154,155]

F1-score 0.71–0.99 0.85 [151,154]

mAP 0.55–0.91 0.76 [149,150,153]

RNN

Accuracy 0.79 [152]

Precision 0.99 [151]

Recall 1 [151]

F1-score 0.84–0.99 0.90 [16,38,151]

GNN

Accuracy 0.87 [39]

Precision 0.51 [39]

Recall 0.54 [39]

mAP: mean average precision.
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5.1. Recognition of Unsafe Behavior

The advancement of DL has opened up significant opportunities for examining unsafe
behaviors in construction. Among the five categories of behaviors that DL has focused
on, construction workers (21 of 44 papers) and PPE (17 of 44 papers) are the main ob-
jects of interest. For objects, different algorithms (e.g., object detection algorithms [35],
object tracking [36], and activity recognition [37]) have demonstrated good performance in
detecting and tracking workers. For example, by using DL-based object detection architec-
tures, previous studies detected workers and PPE successfully with an accuracy exceeding
0.90 [85,87,107,111,118]. In addition, recognizing equipment operations (e.g., dump trucks
and excavators) has also attracted much attention from researchers for mainly examining
the interaction between entities. For example, researchers proposed DL-based models to
monitor and analyze the interaction between workers and equipment with an accuracy
range of 0.65 to 1.00 [2,97–99,102].

As various DL methods that use a CNN, RNN, and GNN have been applied, dif-
ferent formats of data (e.g., videos, images, and signals) have been used to detect those
representing unsafe behaviors in the data. In particular, detection and tracking of unsafe
behaviors were performed mainly using videos and images (85%). The reason for this
phenomenon is partly because collecting videos and images at construction sites is easier
and more common than other types of data (e.g., signals). According to Daniel and Chen
(2003) [170], along with digital camcorders, video conferencing, digitized movies, and
video emails that are making their way into everyday life, it is almost certain that the use
of video data will multiply by multiple times in the coming years. Moreover, nowadays,
there are various publicly available data sources such as Microsoft’s Common Objects in
Context (MS COCO) [171], ImageNet [172], Pascal VOC [173], etc., which researchers can
easily access.

From an algorithmic perspective, recent neural networks, especially CNNs, have
achieved considerable success in various areas, including image/video understanding,
processing, compression, etc. [174]. The trained CNN can be used to handle classification,
recognition, and prediction tasks on test data with highly efficient adaptability [174]. There-
fore, CNN was dominantly applied in detecting unsafe behaviors using image data sources
(34 of 44 papers). For videos and other sequence data such as signals (e.g., time-series
data), RNNs, designed for sequence learning [175], were also used with high performance.
For example, various studies have utilized RNN models to detect unsafe behaviors from
videos with an accuracy exceeding 0.9 [15,37,95].

5.2. Physical Condition Identification

Previous research on unsafe physical conditions have focused mainly on structural
defects and site layout status at construction sites. The main objects of interest in such
research include structures (e.g., guardrails and diaphragm walls) and equipment (e.g.,
cranes, wheel loaders, and construction vehicles). For example, various studies proposed
CNN-based methods to detect structural defects such as guardrail defects [14], crane
cracks [135], and diaphragm wall deformations [136] from images and signals with an
accuracy of up to 0.97. In addition, to evaluate whether the site layout is appropriate,
entities in the construction sites need to be detected precisely. Therefore, in a construction
environment involving a wide range of heavy equipment (e.g., tower cranes, dump trucks,
and excavators), recognizing equipment operations has also attracted much attention from
researchers (50% of the total number of papers regarding physical conditions), and these
DL studies can gain accuracy of over 0.9 [135,137–139].

For detecting unsafe physical conditions, image was the most used type of data in
DL models (62.5% of total papers). By applying the image classification task, the status
of physical conditions regarding guardrails [14], the surface of crane cracks [135], and
dense multiple construction vehicles [139] were detected and located to ensure safety at
construction sites. Moreover, because of the growing interest in CNNs, the most common
tool used for image analysis and image classification [34], they have been applied the most
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in handling issues related to physical conditions. In addition, to predict other physical
conditions such as diaphragm wall deformation [136] and water flow [140] during the
underground construction process, time-series data was used to describe properties related
to deformation and inflow over time. For this application, an RNN is commonly used to
deal with such issues with a high accuracy, reaching 0.99 [136,140].

5.3. Safety Management

DL has been used effectively to support construction safety management. By using
image datasets, the CNN method was utilized the most (8 of 14 papers) to provide managers
with real-time statuses of large-scale construction jobsites, so this can assist in improving
their decision-making regarding safety and planning [148–151]. These studies mainly
focused on workers (six of eight papers) and equipment (e.g., pump trucks, excavators,
rollers, and tower cranes) (seven of eight papers). For example, various studies applied
CNN models to detect workers and construction equipment from images with an accuracy
range of 0.55–1.0. In addition, to minimize safety risks in construction, data are recorded
in various formats (e.g., video, photographs, and safety reports), which researchers have
used to monitor safety [134]. Thus, various studies have used videos and images (64%) and
accident reports (36%) to aid the investigation and analysis of risks at construction sites.
For example, previous studies applied DL models for NLP tasks (e.g., text classification
and information extraction) with high accuracy, ranging from 0.54 to 0.87 [16,18,38,39,154].

Besides recognizing individuals committing unsafe actions from images, identifying
the person’s identity also plays an important role in supporting safety management. Once a
person’s identity can be determined, site managers can provide specific feedback regarding
their unsafe behaviors [152]. However, very little research has focused on this issue (one
of 66 papers). In a notable study conducted by Wei et al. (2019) [152], a DL model was
applied to determine a person’s identity by computing the c between the identity feature
with previously saved features of other people’s identities; however, this study reported
practical limitations such as the limited number of activities (e.g., people walking), and
the possibility of delay in recognizing a person’s identity in real-time because of the
computation requirements placed on the attention network to extract representations
from videos.

5.4. The Summary of Contributions and Limitations of Deep Learning on Safety Management

This study reviewed the contributions and limitations specified in previous papers
and reports the key contributions with limitations, as summarized and outlined in Table 5.
In terms of contributions, by detecting unsafe physical conditions, construction workers
and equipment, as well as their behaviors, the multiple contributions of DL models include
monitoring safety and proactively preventing hazards, evaluating proactive safety risk
levels, strategizing effective training solutions, designing effective hazard recognition
and management practices, and applying operator assistance systems in construction
machinery to achieve active safety. The investigation and analysis of safety reports can
not only be used proactively during typical work planning, job hazard analyses, prejob
meetings, and audits, but also raise the safety awareness of workers and professionals.
However, applying DL in construction safety still has challenges such as the limitation
of the dataset, the influence of performance due to the presence of occlusions, blurriness,
and background patches, and the lack of consideration of an individual’s identity during
action recognition.
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Table 5. The summary of contributions and limitations of DL in safety management.

Purposes Contributions Limitations References

Detecting workers and
equipment, estimating,

recognizing, and
analyzing their

behaviors.

DL models can support monitoring safety
and proactively preventing hazards by

sending early warning information
combined with the on-site alarm equipment
to the management staff so they can provide
instant feedback concerning unsafe behavior,
and appropriate actions can be put in place

to prevent reoccurrence.

The training dataset was limited. [2,15,35,84,91,93,94,96,98,99,103,
111,148,149,151,152,156,157]

The accuracy of the method is
affected by the presence of
occlusions, confusion with
background patches, poor

illumination, and blurriness.

[84,87,97,105,107,110,148,155,156]

They do not associate any
personal identification with the

output for verification.
[105,106,118,156,157]

Not mentioned. [37,86,95,101,102,108,109,112–
117,119–122,150,153]

Proactive and automatic safety risk level can
be analyzed and evaluated for making

decisions on risk management.

The dataset was limited. [36,89,94,99]

Cases of the on-site experiment
failed due to visual obstacles. [92]

Not mentioned. [85,86,88,90,104]

DL models support strategizing effective
training solutions and designing effective

hazard recognition and management
practices.

The dataset was limited. [93,99,100]

The accuracy of the method is
affected by the presence of

occlusions.
[93]

Individual workers need to be
identified. [157]

The proposed method can be applied to
operator assistance systems in construction

machinery to achieve active safety.
The dataset was limited. [2]

Detecting unsafe
physical conditions.

DL models can support monitoring safety
and early warning, so managers can provide

the appropriate solutions to prevent or
control risks.

The dataset was limited. [14,140]

Occlusion was not addressed. [14]

Not mentioned. [65,135–139]

Before the predicted deformation reaches the
threshold limit, control strategies can be

implemented to avoid excessive
deformation and the corresponding risks to

the engineering project and surrounding
environment.

Not mentioned. [136]

Investigating and
analyzing safety

reports.

The results can be used proactively during
typical work planning, job hazard analyses,

prejob meetings, and audits.
Not mentioned [16,39]

DL models raise the security awareness of
workers and professionals to better

understand and prevent hazards and
accidents, and aid in educating workers

about “what not to do” and “what to do”.

The dataset was limited. [18,38,154]

Not mentioned. [16,39]

6. Future Research Directions

Despite recent technical advances in DL, there are still challenges in its practical appli-
cations. Based on the limitations identified and summarized, directions for future research
are discussed to resolve these issues and further expand their applications. These directions
include (1) expanding a comprehensive dataset, (2) improving technical restrictions due to
occlusions, and (3) identifying individual who performed unsafe behaviors.

6.1. Expanding a Comprehensive Dataset

In a dynamic and complex construction environment involving many human re-
sources, diverse types of equipment, as well as many types of actions of humans and
equipment, larger and more comprehensive datasets are important for improving the
performance of DL models. According to Ding et al., (2018) [15], some worker actions could
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not be recognized due to the training sample size and the limited number of unsafe actions
considered. Therefore, with larger datasets, the model may further improve and provide
more accurate results. However, there is currently no comprehensive and common dataset
publicly available, not only for specific tasks such as object detection, pose detection, and
activity recognition but also for a variety of construction sites, different viewpoints, light-
ing, and occlusion conditions. Although several studies such as Xuehui et al., (2021) [149]
presented the Moving Objects in Construction Sites (MOCS) image dataset for detecting
objects at construction sites, its use may be limited by the size and type of the dataset.
Therefore, further research is needed to generate and share a comprehensive dataset for
the research community. Potential solutions may include generating publicly available
datasets by developing a DL-based methodology to automatically create safety reports
in natural language based on construction site imagery and using models to collect and
amalgamate reports across the industry through continuous updates as new data arrive.
In a study on DL in generating radiology reports, Monshi et al., (2020) [176] reported that
CNNs used for image analysis could be integrated alongside RNNs for NLP and natural
language generation (NLG), generating radiology coherent paragraphs in the medical field.
Thus, once this DL application is applied in construction, creating automatic safety reports
based on construction site images increases the number of datasets. A platform then needs
to be built for public access so that researchers can easily share and upload datasets.

6.2. Improving Technical Restrictions Due to Occlusions

In dynamic and continuously changing construction environments, as images and
videos data are mostly used, DL models have faced challenges such as occlusion [84], poor
illumination and blurriness [105], and background clutter [97]. For example, Fang et al.,
(2019) [93] reported that the DL model could not detect all people traversing structural
supports due to the presence of occlusions. However, previous studies often ignored
occlusions by assuming no occlusion (e.g., the guardrail is always visible for detection
in [14]). To handle these issues, potential solutions may include the following. First, a
method is needed to search and identify the optimum placement of cameras (e.g., position
and distance of a camera, the effect of occlusion, and lighting conditions) where full or
maximum coverage of resources (e.g., workers, materials, and machines) can be achieved.
Second, to handle the self-occlusion of projected objects in a 2D vision, reconstructing
the 3D bounding boxes of these objects can be conducted using DL models to estimate
depth and reconstruct depth scenes as a global 3D model from monocular images. Finally,
another method for coping with occlusions is to combine vision-based approaches with
sensor-based methods (e.g., the global positioning system), which can provide the location
and motion of objects.

6.3. Identifying Individuals Who Performed Unsafe Behaviors

Providing feedback to individuals regarding the likelihood of their unsafe actions can
result in immediate behavior modification and targeted safety training [93]. Therefore,
in addition to identifying unsafe actions at construction sites, it is necessary to identify
who performed these unsafe actions. Based on this, site managers can automatically
identify unsafe behavior in real time and provide feedback to individuals about their
unsafe behaviors. However, previous studies have not focused on the identification of
workers (e.g., [156,157]). To achieve this goal, several solutions can be used in the future.
First, sensors can identify a person’s identity and location [177]. Thus, future research can
combine the results of an individual’s identity from sensors and action monitoring of the
DL model to identify those who do not perform unsafe actions. Second, this issue can be
addressed by developing a DL approach to identify individuals from videos by integrating
temporal and spatial information. Wei et al., (2019) [152] provided an example of this
approach. This DL approach focuses on using the spatial attention network for extracting
spatial feature maps, temporal attention networks for extracting temporal information, and
computing the distance between features to recognize a person’s identity. In addition, a
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person’s identity can also be recognized by face recognition models based on a CNN [178],
so future research can combine face recognition and action recognition to identity workers
performing unsafe behaviors.

7. Conclusions

This study synthesized and reviewed the current DL studies applied to safety man-
agement in the construction industry. It was found that DL studies had paid attention to
three main research directions, including behaviors, physical conditions, and management
issues. By providing detailed summaries of DL applications in each category, this paper
aims to support researchers and managers in the field of construction safety with a specific
overview regarding what type of method has achieved highly accurate results, along with
the type and amount of data that has been used for a certain safety task, as well as the
actions managers can take from the result of DL models for improving safety manage-
ment. In general, detecting unsafe behaviors was the main research direction of previous
studies (67%) with high performance, which has contributed to safety management in
the construction industry. Moreover, the results indicated that CNN modeling was the
most common method used in these studies (75%) and achieved high accuracy, which
could reach up to ~1.0, from the primary data of images (73%). In addition to providing
the overall trends of DL applications, this literature also presents limitations and future
directions for applying DL in construction safety. In a dynamic and complex construction
environment involving many human and equipment resources, expanding larger and
more comprehensive datasets is important for improving the DL model performance. In
addition, the presence of occlusions causing challenges for DL studies using image and
video data should be addressed in future studies. Another direction is to identify individu-
als who performed unsafe behaviors for immediate behavior modification and targeted
safety training. DL is an emerging area of construction safety and is still developing, so
outlining key challenges and corresponding proposal research can aid in developing DL
applications in the future. We expect that this paper will provide not only new lines of
advanced methods for researchers working on safety management but also opportunities
to apply DL in practice.
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