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Abstract: The Han River Basin is a main agricultural production area and a water source for the
middle route of the South-to-North Water Diversion Project in China. Over the past 20 years, human
exploitation and ecological construction have disturbed the sustainability of land productivity in
the Han River Basin. Theil–Sen trend analysis, Mann–Kendall statistical test, and Hurst index
methods were applied to examine spatial–temporal trends and sustainability characteristics of land
net primary productivity (NPP) change in the Han River Basin from 2001 to 2019 using MOD17A3
NPP product, natural, and socio-economic data obtained from Google Earth Engine (GEE). The
findings demonstrated that the interannual variation of land NPP exhibited a fluctuating upward
trend, with a more pronounced growth rate from 2001 to 2010 than from 2011 to 2019. The spatial
heterogeneity of land NPP was evident, with high values in the west and low values in the east.
Of the basin area, 57.82% presented a significant increase in land NPP, while only 0.96% showed a
significant decrease. In the future, land NPP in the Han River Basin will present sustained growth.
The results were also compared with Trends.Earth’s calculations for the SDG 15.3.1 sub-indicator
of land productivity. In addition, the spatial heterogeneity of factors influencing land NPP change
was explored using a multiscale geographically weighted regression (MGWR) model. Precipitation
and population count were the dominant factors in most regions. Besides, precipitation, population
count, and human modification all exhibited inhibitory effects on the increase in land NPP except for
elevation. The research can provide a scientific basis for tracking land degradation neutrality (LDN)
progress and achieving sustainable socio-ecological development of the Han River Basin.

Keywords: the Han River Basin; trend analysis; sustainability analysis; land productivity; multiscale
geographically weighted regression

1. Introduction

As an essential part of terrestrial ecosystems, vegetation plays an irreplaceable role in
regulating the global climate and carbon balance. Increasing the carbon sink in terrestrial
vegetation has become a strategic option for humans to cope with global warming [1,2].
Increasing studies on the terrestrial carbon cycle have focused on estimating land pro-
ductivity and its response mechanisms, which have become an essential element and
hotspot in current ecology and global change research [3–7]. The United Nations (UN)
Sustainable Development Goal (SDG) indicator 15.3.1 includes land productivity as one
of the three key sub-indicators [8,9]. However, spatially explicit baselines and dynamic
progress results for SDG target 15.3 (land degradation neutrality, LDN) at a global scale
have not yet been released, which is directly related to data availability, methodological
uncertainty, and political sensitivity. Complementary studies on trends and sustainability
in land productivity change could provide technical and data support for regional SDG
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15.3.1 assessments. It is of great theoretical and practical significance for achieving LDN
and ensuring sustainable socio-ecological development.

Net primary productivity (NPP) is the total quantity of dry organic matter produced
by green plants per unit area per unit time through photosynthesis after subtracting au-
totrophic respiration [10]. NPP is a crucial parameter in terrestrial ecological processes.
It reflects the combined effects of climate change and human activities on terrestrial veg-
etation. As a result, it is a critical indicator for determining carbon balance, health, and
sustainability of terrestrial ecosystems [3,11]. Studies have demonstrated that NPP can
effectively capture the state of land productivity. It is more vulnerable to climate change
and human activities than vegetation indexes such as NDVI [12,13]. Climatic factors (e.g.,
temperature, precipitation, and solar radiation) and human activities (e.g., land-use change,
vegetation construction, and soil-water conservation) are now widely regarded as the
main drivers of land productivity change [1,14]. For instance, government-led ecological
projects, including afforestation and conversion of farmland to forest or grassland, will
improve land productivity; urban expansion will decrease land productivity by occupying
ecological land, including farmland, forest, and grassland.

The earliest methods of quantifying NPP were in situ measurements, which mainly
included harvest measurements, biomass surveys, photosynthesis measurements, radi-
ation measurements, chlorophyll measurements, and feedstock material consumption
measurements [15]. However, these methods are often restricted by several factors that
make them difficult to implement. Thus, scholars presented statistical climate models,
physiological–ecological process models, light energy utilization models, and multiple
interactive models [16–19]. Long timeseries and wide coverage of remote sensing data
make data-driven models of ecosystem processes a vital tool for understanding the spatial
and temporal characteristics of land productivity and its driving mechanisms. MODIS data
are presently one of the primary remote sensing data sources for regional land NPP esti-
mation due to their high temporal resolution and low acquisition cost [20,21]. MOD17A3
calculates global terrestrial NPP using the Biome-BGC model with a light energy utilization
model based on MODIS Terra satellite parameters [22]. It has been validated and applied
extensively in global and regional carbon cycle research [3,23–25].

The Han River Basin is an important ecological barrier area and a water source for
China’s South-to-North Water Diversion Project. As the world’s largest water transfer
project, it is expected to transfer 9.5 billion cubic meters of water annually from the Han
River Basin to the North China Plain, benefiting over 120 million people who are expe-
riencing water shortages [26,27]. In order to ensure high-quality and sustainable water
transfer for the project, ecological protection and water security in the water source area
are of paramount importance. China has implemented a series of ecological construction
projects in the Han River Basin since 1999, including afforestation, reforestation, conversion
of farmland to forest or grass, natural forest protection, and soil-water conservation. The
vegetation in the basin has changed dramatically in terms of area, distribution, and quality.
Much attention has been paid to whether ecological restoration projects are effective in
improving ecosystem services in the Han River Basin [28]. In addition, agriculture thrived
early in the Han River Basin, with the Jianghan Plain and Hanzhong Basin serving as
important agricultural and commercial grain production bases in China [29,30]. Intensive
agricultural activities are concentrated along river systems [28]. Socio-economic develop-
ment and increasing human exploitation of land resources have led to changes in land
structure and degradation of land functions. As a result, the sustainability of land produc-
tivity has been disturbed [31–33]. It is essential to establish a rapid evaluation system that
objectively illustrates the trends and sustainability of land productivity changes due to the
abovementioned disturbances.

Remarkable progress has been made in the estimation methodologies, spatial–temporal
changes, and impact mechanisms of land productivity in recent years [4,6,34–36]. Land
productivity change and its influencing factors have been investigated at different scales, in-
cluding global [35,37], national [20,21,38], and ecologically sensitive or fragile areas [34–37].
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These studies have all verified the impact of climate change and human activities on land
productivity to varying degrees, as well as the spatial heterogeneity of land productivity
responses to these factors. Land productivity in various regions has also been better un-
derstood and recognized. Scholars have conducted numerous studies on the dynamics of
vegetation/land productivity in the Han River Basin. These studies have played a positive
role in ecological construction and environmental protection in the Han River Basin, focus-
ing on the effects of forest vegetation on the water environment [39], vegetation succession
during fallow restoration [40], the relationship between land productivity changes and
climatic factors [41–44], and hydrological effects of vegetation change [45] and their impacts
on soil erosion [46]. Previous research has mostly concentrated on the relationship between
land NPP changes and climatic factors. The spatial–temporal dynamics and sustainability
of land NPP change in the Han River Basin under the influence of human activities, as well
as on longer time scales, have not been fully studied. There are few quantitative studies
that incorporate the effects of climatic factors and human activities on land NPP change in
the Han River Basin. As a result, it is difficult to reveal the response mechanisms to land
productivity change in the Han River Basin. What is the influence of human exploitation
and ecological construction on land productivity in the basin? What are the differences
between regions? These issues are not clear. Quantitative analysis and assessment are
required in conjunction with relevant data and methods.

Google Earth Engine (GEE) is a cloud computing platform for remote sensing with vast
global geoscience data. The computational efficiency of GEE can significantly reduce the
quantity of intermediate data storage required to support the processing of long timeseries
and large amounts of remote sensing data. GEE has developed into a powerful research
tool in geosciences and related domains. Many studies have utilized it to detect water and
vegetation dynamics, estimate crop yield, and monitor forest change [47–51]. Through
GEE, Robinson et al. (2018) [52] developed two NPP products for the U.S. mainland with
different resolutions (30 m and 250 m).

The three objectives of this study are (i) what are the trends of land NPP change in the
Han River Basin over the last 20 years? (ii) What are the spatial patterns of natural and
anthropogenic factors influencing land NPP changes within the basin? In particular, what
are the regional differences in the dominant factors within the basin? (iii) How to facilitate
to calculate and operate land productivity evaluation at the basin scale and assess their
accuracy, reliability, or validity, taking the Han River Basin as an example.

First, this paper intends to take advantage of the acquisition and computational ef-
ficiency of the GEE cloud platform to invoke timeseries NPP dataset from 2001 to 2019
in the Han River Basin. Secondly, a pixel-by-pixel trend analysis method is used to as-
sess the spatial–temporal trends and sustainability characteristics of land NPP changes.
Furthermore, comparisons are made with the land productivity assessment method recom-
mended in the practice guidelines provided by the United Nations Convention to Combat
Desertification (UNCCD). In addition, a multiscale geographically weighted regression
model (MGWR) based on regular grids is constructed to explore the influence of natural
and human activity factors on land NPP change and their spatial differences. We aim to
enrich the research related to land productivity changes and their response mechanisms in
the Han River Basin. The results can provide scientific support to guarantee regional food
security and high-quality water transfer, help track the progress of LDN, and contribute to
the socio-ecological sustainable development of the basin.

Innovations in this study include (i) using international shared datasets based on the
GEE cloud platform to track and monitor land productivity in the Han River Basin and,
thus, provide an operational approach for SDG 15.3.1 assessment practices at the regional
scale and promote the understanding of achieving sustainable development goals of the
basin; (ii) applying the MGWR model to study the influencing factors of land NPP change.
MGWR enables us to reveal the spatial heterogeneity of factors influencing land NPP
change more extensively and intuitively than general linear regression models and, thus,
helps to clarify regional differences in the dominant factors of land productivity changes.
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2. Materials and Methods
2.1. Study Area

The Han River is the largest tributary of the Yangtze River, with a total length of
1577 km. The mainstream of Han River originates at the southern foot of Qinling Mountains,
flows through Shaanxi Province and Hubei Province, and feeds into the Yangtze River
at the Dragon King Temple in Hankou, Wuhan. The Han River Basin is located between
30◦10′–34◦20′ N and 106◦15′–114◦20′ E, covering a gross area of 159,000 km2.

The topography of the Han River Basin is high in the west and low in the east, with
low and moderate mountains in the west and hilly plains in the east. The upper reaches,
involving the watershed above Danjiangkou, which has undulating topography with Daba
Mountains and Qinling Mountains to the south and north, respectively, and the Hanshui
Valley in between. The middle reaches, from Danjiangkou to Zhongxiang, where the terrain
is relatively flat, with Wudang Mountains and Funiu Mountains to the south and north,
respectively, and the Nanyang Basin in between. The lower reaches, which belong to the
Jianghan Plain where the terrain is flat, are located below Zhongxiang. The Han River Basin
is in the subtropical monsoon zone, with a mild and humid climate. Precipitation in the
basin is relatively abundant, with an annual average of 894 mm. Precipitation is unevenly
distributed throughout the year, mainly concentrated from May to October. Runoff is
chiefly supplied by precipitation, and its annual distribution coincides with the distribution
of precipitation, with the flood season lasting from late June to early October [53]. The
upper reaches of the Han River Basin is densely forested, consisting mainly of evergreen
broad-leaved forests, evergreen coniferous forests, deciduous broad-leaved forests, and
mixed forests, whereas the middle and lower reaches are mostly agricultural lands, where
soil erosion is a concern [29,46].

According to water resources zoning, the Han River Basin is divided into three
sub-basins: the watershed above Danjiangkou, the Tangbai River Watershed, and the
mainstream watershed below Danjiangkou, which account for 47%, 21%, and 32% of the
basin area, respectively. The Han River Basin is now known as a water conservation area
for the middle route of China’s South-to-North Water Diversion Project. Figure 1 illustrates
the geographical overview of the Han River Basin.

Figure 1. Location and topography of the Han River Basin, China.
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2.2. Data Sources and Processing
2.2.1. NPP Data

NPP data from 2001 to 2019 were derived from the annual NPP dataset (MOD17A3HGF
V6) (https://lpdaac.usgs.gov/products/mod17a3hgfv006/, accessed on 2 September
2021) provided by NASA, with a spatial resolution of 500 m and a conversion factor
of 0.0001. MOD17A3HGF is synthesized from all 8-day net photosynthesis (PSN) prod-
ucts (MOD17A2H) from the given year, where the PSN value is the difference between
gross primary productivity (GPP) and maintenance respiration (MR). MOD17A3HGF V6
improves the accuracy of NPP estimation by using updated Biome Property look-up tables
(BPLUT) and an updated version of the Global Modeling and Assimilation Office (GMAO)
meteorological data compared with MOD17A3 V5.5 [54]. The function to obtain the dataset
in GEE is ee.ImageCollection(“MODIS/006/MOD17A3HGF”).

2.2.2. Meteorological Data

Temperature data from 2001 to 2019 were collected from the daily land surface temper-
ature (LST) product (MOD11A1) (https://lpdaac.usgs.gov/products/mod11a1v006/, ac-
cessed on 28 September 2021) provided by NASA, with a spatial resolution of 1000 m and a
conversion factor of 0.02. The function to obtain the product is ee.ImageCollection(“MODIS/
006/MOD11A1”) in GEE. The GEE platform can also perform calculations of annual aver-
age temperature based on these obtained data.

Precipitation data from 2001 to 2019 were obtained from Climate Hazards Group In-
frared Precipitation with Station data (CHIRPS) (https://www.chc.ucsb.edu/data/chirps,
accessed on 28 September 2021) provided by University of California, Santa Barbara
(UCSB), with a spatial resolution of 0.05 arc degrees. The function to obtain the dataset is
ee.ImageCollection(“UCSB-CHG/CHIRPS/DAILY”) in GEE. The GEE platform can also
perform calculations of annual average precipitation based on these obtained data.

2.2.3. Topographic Data

Elevation data were derived from NASA Digital Elevation Model product (NASA-
DEM) (https://lpdaac.usgs.gov/products/nasadem_hgtv001/, accessed on 28 September
2021), with a spatial resolution of 30 m. NASADEM is a reprocessing of STRM that incor-
porates auxiliary data from ASTER GDEM, ICESat GLAS, and PRISM to improve accuracy.
The function to obtain the data in GEE is ee.Image(“NASA/NASADEM_HGT/001”). In
addition, slope data can be generated according to NASADEM.

2.2.4. Forest Cover Data

Forest cover data were derived from the global forest cover change product (GFCC30
SR) (https://lpdaac.usgs.gov/products/gfcc30tcv003/, accessed on 11 October 2021)
provided by NASA with a spatial resolution of 30 m. GFCC30SR is based on the en-
hanced Global Land Survey (GLS) datasets, which consists of Landsat 5 Thematic Map-
per (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) imagery. The forest
cover layer estimates the percentage of horizontal ground covered by woody vegeta-
tion greater than 5 m in height in each 30 m pixel. The dataset is available for four
epochs centered on 2000, 2005, 2010, and 2015. The function to obtain the data in GEE is
ee.ImageCollection(“NASA/MEASURES/GFCC/TC/v3”).

2.2.5. Human Activity Data

Population count data were collected from the gridded product of global population
(GPWv411) (https://sedac.ciesin.columbia.edu/data/collection/gpw-v4, accessed on 11
October 2021) provided by Socioeconomic Data and Applications Center (SEDAC), with
a spatial resolution of 30 arc seconds and covering the years 2000, 2005, 2010, 2015, and
2020. The function to obtain the data is ee.ImageCollection (“CIESIN/GPWv411/GPW_
Population_Count”).

https://lpdaac.usgs.gov/products/mod17a3hgfv006/
https://lpdaac.usgs.gov/products/mod11a1v006/
https://www.chc.ucsb.edu/data/chirps
https://lpdaac.usgs.gov/products/nasadem_hgtv001/
https://lpdaac.usgs.gov/products/gfcc30tcv003/
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4
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Human modification data were derived from the global human modification dataset
(gHM) (https://sedac.ciesin.columbia.edu/data/set/lulc-human-modification-terrestrial-
systems, accessed on 11 October 2021) provided by SEDAC with a spatial resolution
of 1000 m. The gHM provides a cumulative measure of global human modification of
terrestrial land with values ranging from 0.0 to 1.0. The gHM is calculated from the
proportion of a given location that has been modified and the intensity of modification
associated with a specific type of human modification. Five major anthropogenic stressors
were mapped around 2016 using 13 individual datasets: human settlement, agriculture,
transportation, mining and energy production, and electrical infrastructure. The function
to obtain the data in GEE is ee.ImageCollection(“CSP/HM/GlobalHumanModification”).

Since the storage formats, spatial resolutions, and projections of the above datasets
are not compatible (Table 1), this study adopted the JavaScript code editor based on GEE
to implement the calling, reprojecting, resampling, clipping, computing, and related pre-
processing to reduce labor and hardware resource usage.

Table 1. Source and resolution of the data used.

Data Source Resolution

NPP MOD17A3HGF, NASA 500 m
Temperature MOD11A1, NASA 1000 m
Precipitation CHIRPS 0.05 arc degrees

Elevation/slope NASADEM 30 m
Forest cover GFCC30TC, NASA 30 m

Population count SEDAC 30 arc seconds
Human modification SEDAC 1000 m

Basin/watershed China National Earth System Science Data Center vector

2.3. Methods
2.3.1. Change Trend of Land NPP

The Theil–Sen trend analysis [55] and Mann–Kendall statistical test [56] were used
to conduct pixel-by-pixel change trend analysis and significance tests for timeseries land
NPP in the Han River Basin. The advantage of the Theil–Sen trend analysis is that it does
not require the sample to obey a specific distribution and is not subject to outliers. The
Mann–Kendall test is a non-parametric test that is used to test data that are not normally
distributed. The Theil–Sen slope (ρ) is calculated as follows:

ρ = median
( xj − xi

j− i

)
(1 < i < j < n) (1)

where ρ is the slope of land NPP; median is the median function; i and j are timeseries; xi
and xj are land NPP values in the i-th and j-th years, respectively. When ρ > 0, it indicates
an upward trend in land NPP; when ρ < 0, it indicates a downward trend in land NPP;
when ρ = 0, it indicates an insignificant trend in land NPP. According to the Mann–Kendall
test, five significance levels are assigned to characterize the change trend of land NPP:
highly significant increase (ρ > 0, p < 0.01), significant increase (ρ > 0, 0.01 < p < 0.05),
no significant change (p > 0.05), significant decrease (ρ < 0, 0.01 < p < 0.05), and highly
significant decrease (ρ < 0, p < 0.01).

2.3.2. Sustainability Analysis of Land NPP Change

The Hurst index was used to describe sustainable characteristics of land NPP change
in the Han River Basin from 2001 to 2019. The Hurst index was first proposed by the
British hydrologist Hurst (1951) [57] and was later modified by Mandelbrot and Wallis
(1969) [58]. The Hurst index is an effective method for quantitatively predicting future
trends of timeseries data based on a rescaled range analysis method. It has been widely
used in meteorology, hydrology, geology, and other fields. Its calculation procedure can be

https://sedac.ciesin.columbia.edu/data/set/lulc-human-modification-terrestrial-systems
https://sedac.ciesin.columbia.edu/data/set/lulc-human-modification-terrestrial-systems
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found in previous studies [24,59]. The Hurst index (H) is generally available in three cases,
with values ranging from 0 to 1.

(1) If 0.5 < H < 1, it is a continuous series that the future trend of land NPP change is
consistent with the past. The closer H is to 1, the stronger the continuity is.

(2) If H = 0.5, it is a random series that the future trend of land NPP change is irrelevant
to the past.

(3) If 0 < H < 0.5, it is a reverse continuous series that the future trend of land NPP change
is opposite to the past. The closer H is to 0, the stronger the reverse continuity is.

2.3.3. Land Productivity Assessment Based on Trends.Earth for SDG Indicator 15.3.1

SDG indicator 15.3.1 uses information from three sub-indicators: land productivity,
land cover, and soil organic carbon, according to the conceptual framework for monitoring
LDN released by UNCCD. The Trends.Earth plugin (http://trends.earth, accessed on 25
May 2021) can be used to calculate the above sub-indicators. Trends.Earth allows the user
to calculate each sub-indicator in a spatially explicit manner, generating raster maps that
are later integrated into the final SDG 15.3.1 indicator maps [60]. The output is a tabular
report that shows potential areas for improvement and degradation. In Trends.Earth,
land productivity is calculated using annual average NDVI from MODIS or AVHRR data.
Three measures of change derived from NDVI timeseries data are used to estimate land
productivity, including trajectory, state, and performance.

(1) Trajectory—measures the rate of change in land productivity over time. Trends.Earth
uses pixel-level linear regressions to identify areas where land productivity has
changed during the analysis period. Mann–Kendall non-parametric tests are then
performed, considering only those significant changes with a p-value ≤ 0.05. Positive
significant trends in NDVI indicate potential improvement, while negative significant
trends suggest potential degradation.

(2) State—detects the most recent changes in land productivity compared with the base-
line period. The baseline period is considered as the historical period, while the
comparison period is defined as the most recent years. Then, the average NDVI is
calculated for the baseline and comparison periods. The percentile class to which it
belongs is determined, with possible values ranging from 1 (lowest class) to 10 (high-
est class). If the difference in class between the baseline period and the comparison
period is less than 2, the pixel may be degraded; if the difference is greater than 2, the
pixel may have a recent improvement in productivity; if there is only a small change,
the pixel is considered stable.

(3) Performance—measures local productivity compared with similar land cover types
across the study area. If the observed average NDVI is less than 50% of the maximum
productivity, this sub-indicator considers the pixel to be potentially degraded. The
maximum productivity is at the 90th percentile of the frequency distribution of NDVI.

In addition, the three sub-indicators of land productivity are merged to determine the
integrated degradation type of land productivity occurring in the area, according to the
rules shown in the table below (Table 2). The result is a 5-level indication supporting the
assessment of SDG 15.3.1.

http://trends.earth
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Table 2. Sub-indicators of land productivity and their integration.

Trajectory State Performance Integrated Degradation Types

Improvement Improvement Stable Improving
Improvement Improvement Degradation Improving
Improvement Stable Stable Improving
Improvement Stable Degradation Improving
Improvement Degradation Stable Improving
Improvement Degradation Degradation Stable

Stable Improvement Stable Stable
Stable Improvement Degradation Stable
Stable Stable Stable Stable
Stable Stable Degradation Stable but stressed
Stable Degradation Stable Early signs of decline
Stable Degradation Degradation Declining

Degradation Improvement Stable Declining
Degradation Improvement Degradation Declining
Degradation Stable Stable Declining
Degradation Stable Degradation Declining
Degradation Degradation Stable Declining
Degradation Degradation Degradation Declining

Note: Integration rules are referred to as “SDG Indicator 15.3.1” by Trends.Earth from Conservation International,
2018 (https://trends.earth/docs/en/background/understanding_indicators15.html, accessed on 25 May 2021).
Copyright 2017–2021 by Conservation International.

2.3.4. Geographically Weighted Regression (GWR) and Multiscale GWR (MGWR)

Variance inflation factor (VIF) is employed to detect the severity of multicollinearity
in the ordinary least square (OLS) regression analysis. VIF is calculated as [61]:

VIF =
1

1− Ri
2 (2)

where Ri
2 represents the unadjusted coefficient of determination for regressing the i-th

independent variable on the remaining ones. The reciprocal of VIF is known as tolerance. In
general, a VIF above 4 or a tolerance below 0.25 suggests the presence of multicollinearity,
and further investigation is required. When the VIF is greater than 10 or the tolerance is
less than 0.1, significant multicollinearity must be rectified.

The geographically weighted regression (GWR) was first proposed by Brunsdon et al.
(1996) [62] to investigate the local non-stationarity of independent variables in space.
Due to the improved fit of the simulation model, GWR has been increasingly utilized
in spatial regression than general linear regression models. As GWR is ineffective in
diagnostic analysis, OLS regression is essential to validate the model’s accuracy prior to
GWR analysis [63]. OLS is a global linear regression model in which all independent
variables in each region are used to estimate a dependent variable. The basic principle is
to minimize the sum of the squares of the differences between the observed dependent
variable in the given dataset and those predicted by the linear function of the independent
variable. The GWR model derives separate regression coefficients for each grid, unlike
the OLS model, which only measures global or average significance. The GWR model is
structured as follows [64,65]:

yi = β0(ui, vi) +
k

∑
j=1

βbwj(ui, vi)xij + εi (3)

where (ui, vi) is the central coordinate at position i; yi is the attribute value at i; bwj
represents the bandwidth used by the regression coefficient of the j-th variable; βbwj(ui, vi)
is the regression coefficient for the j-th variable at i; β0(ui, vi) and εi are the intercept and
error term at i, respectively.

https://trends.earth/docs/en/background/understanding_indicators15.html
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In common with the GWR model, the regression coefficient (βbwj) of the multiscale
GWR (MGWR) model is calculated based on local regression, as well as kernel functions
and bandwidth selection criterion. Unlike the GWR model, the MGWR model allows for
different degrees of spatial smoothing for each variable separately, which lowers estimation
bias and produces a more realistic and valuable model of the spatial process [61]. Thus,
the heterogeneity of bandwidth in the MGWR model is what distinguishes it from the
GWR model, and this improvement can be achieved by redefining GWR as a generalized
additive model (GAM) [66].

The optimal bandwidth was determined using Gauss functions and the Akaike in-
formation criterion (AIC) to examine the fit of the OLS, GWR, and MGWR models. In
general, if the difference in AIC values between the two models is greater than 3, there is
a significant difference between them. The model with a lower AIC value is considered
to have a better fit. In addition, the Moran’s I statistic is usually used to check spatial
autocorrelation in the error terms of the model. The residuals of the model are randomly
distributed when the Moran’s I value is close to 0, which indicates a good fit. On the other
hand, the model shows a poor fit.

The study area was divided into regular grid cells measuring 5× 5 km. The dependent
variable was the difference in land NPP from 2001 to 2019, and the independent variables
were seven influencing factors (temperature, precipitation, elevation, slope, forest cover,
population count, and human modification). All variables needed to be standardized
using outlier procedures before being fitted to the model. Furthermore, the influence factor
corresponding to the maximum absolute value of the regression coefficients was identified
as the dominant component in land NPP changes.

In this study, the MGWR model was implemented using MGWR 2.2 software devel-
oped by the Spatial Analysis Research Center of Arizona State University (SPARC), and
data pre-processing and map production were carried out by ArcGIS 10.3 software.

3. Results
3.1. Spatial–Temporal Pattern of Land NPP

The average land NPP in the Han River Basin from 2001 to 2019 showed evident
spatial heterogeneity, with high values in the west and low values in the east (Figure 2a).
Land with NPP values greater than 700 g C·m−2·a−1 accounted for 9.81% of the basin area,
mainly in Qinling Mountains located in the northwest and in Daba Mountains distributed
in the southwest. Land with NPP values between 600 and 700 g C·m−2·a−1 accounted
for 18.10% of the basin area, primarily in northern Hanzhong and southern Ankang and
Shiyan. Land with NPP values between 400 and 600 g C·m−2·a−1 accounted for 66.15%
of the basin area and was concentrated in the middle and upper reaches. Land with NPP
values less than 400 g C·m−2·a−1 accounted for 5.94% of the basin area, mainly around
Nanyang and in the lower reaches of the Han River (Figure 2a).

The spatial distribution of land NPP in sub-basins of the Han River Basin also pre-
sented significant regional differences. Specifically, land showing the highest NPP values
was in the watershed above Danjiangkou, with an average of 591 g C·m−2·a−1, land ex-
hibiting moderate NPP values was in the mainstream watershed below Danjiangkou, with
an average of 482 g C·m−2·a−1, and land displaying the lowest NPP values was in the
Tangbai River Watershed, with an average of 449 g C·m−2·a−1.

The average annual land NPP in the Han River Basin between 2001 and 2019 ranged
from 140 to 1033 g C·m−2·a−1, with an average of 486 g C·m−2·a−1. The highest was in
2015, while the lowest was in 2001. The interannual variation of land NPP exhibited a
fluctuating upward trend. The growing linear trend reached the significant level (p < 0.01)
with an average change rate of 4.90 g C·m−2·a−1. The increasing trend between 2001 and
2010 was more pronounced (p < 0.01), with an average growth rate of 10.76 g C·m−2·a−1,
while the increasing trend between 2011 and 2019 was less pronounced (p > 0.5), with an
average growth rate of 3.33 g C·m−2·a−1 (Figure 2b).
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The average growth rates of land NPP in the upper, middle, and lower reaches of
the basin were 5.78, 3.88, and 3.29 g C·m−2·a−1 (Figure 2c), respectively. Specifically, the
growth rate of land NPP in the watershed above Danjiangkou from 2001 to 2019 was faster
than the basin-wide average (4.90 g C·m−2·a−1), whereas the growth rates of land NPP
in the Tangbai River Watershed and the mainstream watershed below Danjiangkou were
slower than the basin-wide average.

Figure 2. Spatial distribution (a) and interannual variation of the multi-year average of land net primary productivity (NPP)
in the Han River Basin of China (b) and its sub-basins (c) from 2001 to 2019.

3.2. Change Trend of Land NPP

The Theil–Sen slope (ρ) of land NPP ranged from −33 to 20 g C·m−2·a−1 in the Han
River Basin from 2001 to 2019. Land with an increasing trend of NPP (ρ > 0) accounted for
92.27% of the basin area, while land with a decreasing trend of NPP (ρ < 0) only accounted
for 7.73%. Specifically, land with faster increases in NPP (ρ > 5) was mainly located in
Hanzhong, northern Ankang, Fangxian, the Shennongjia Forestry District, regions around
the Danjiangkou Reservoir, and parts of the Nanyang Basin, whereas land with faster
decreases in NPP (ρ < −5) accounted for a small proportion and was concentrated in the
peri-urban areas (Figure 3a).

Figure 3. Spatial distribution of change trend (a) and significance levels (b) of land net primary productivity (NPP) in the
Han River Basin of China between 2001 and 2019.

The Mann–Kendall method was used to examine the change trend of land NPP at
five significance levels (Figure 3b). Land with highly significant (p < 0.01) and significant
(p < 0.05) increases in NPP accounted for 39.25 and 18.57% of the basin area, while land
with highly significant (p < 0.01) and significant (p < 0.05) decreases in NPP only accounted
for a small proportion of the basin area (0.96% in total). The spatial distribution of areas
with significant increases was quite similar to that of areas with high growth rates of land
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NPP. In addition, land NPP in most regions, representing 41.23% of the basin area, did not
change significantly.

3.3. Sustainability Analysis of Land NPP Change

The Hurst index of land NPP ranged from 0.29 to 0.74 in the Han River Basin from 2001
to 2019, with a multi-year average of 0.59. The continuous series of land NPP (0.5 < H < 1)
accounted for 89.44% of the basin area, indicating that the future trend of land NPP is
consistent with the past in most areas of the Han River Basin. The reverse continuous
series of land NPP (0 < H < 0.5) accounted for 10.56% of the basin area and was mainly
concentrated in the middle-lower reaches of Nanzhang, Gucheng, and Yicheng and in the
upper reaches of junction areas of Shangnan, Yunxi, and Yunxian (Figure 4). The future
trend of land NPP in these regions is opposite to the past.

Figure 4. Spatial distribution of Hurst index of land net primary productivity (NPP) in the Han River
Basin of China from 2001 to 2019.

Spatial overlay analysis of the change trend map and the Hurst index map was per-
formed to obtain the coupled distribution of sustainability pattern of land NPP in the Han
River Basin from 2001 to 2019 (Figure 5). In the continuous series of sustainability pattern,
regions exhibiting significant and highly significant increases accounted for 58.90% of the
basin area, mainly in Hanzhong, northern Ankang, Fangxian, the Shennongjia Forestry
District, regions around the Dankiangkou Reservoir, and parts of the Nanyang Basin; areas
showing significant and highly significant decreases represented 0.98% of the basin area,
primarily in the peri-urban areas. In the reverse continuous series of sustainability pattern,
regions displaying significant and highly significant increases accounted for 0.33% of the
basin area; areas presenting significant and highly significant decreases only accounted
for a small proportion (less than 0.01%). In general, series with continuously significant
increases in sustainability pattern of land NPP were far more than those with continuously
significant decreases (or reverse continuously significant increases). Therefore, land NPP
in the Han River Basin will present sustained growth in the future.
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Figure 5. Spatial distribution of sustainability pattern of land net primary productivity (NPP) in the
Han River Basin of China from 2001 to 2019.

4. Discussion
4.1. Comparison of Land Productivity Assessment

(1) Land productivity assessment based on Trends.Earth—the MODIS NDVI dataset
(MOD13Q1) was chosen to estimate land productivity in the Han River Basin from
2001 to 2019, which can be implemented in the Trends.Earth plugin of QGIS 3.16 soft-
ware. It was obtained by integrating three categories of trajectory, state, and perfor-
mance according to the rules in Table 2. Figure 6 presents the spatial distribution
of land productivity in the Han River Basin from 2001 to 2019 using this method.
In this study, the state was computed using 2001–2014 as the baseline period and
2015–2019 as the comparison period to compare a region’s current productivity with
its past productivity. Specifically, three integrated degradation types, including stable,
stable but under pressure, and early signs of decline, were combined as STABLE;
the integrated degradation type of increasing was classified as IMPROVEMENT; the
integrated degradation type of declining was labeled as DEGRADATION.

(2) Land productivity assessment based on sustainability pattern—the sustainability
analysis of land NPP presented in Figure 5 was taken for land productivity estimation.
Specifically, three sustainability patterns of land NPP, including continuously and
highly significant increase, continuously significant increase, and reverse continu-
ously significant decrease, were combined as IMPROVEMENT; four sustainability
patterns, covering continuously and highly significant decrease, continuously sig-
nificant decrease, reverse continuously and highly significant increase, and reverse
continuously significant increase, were merged as DEGRADATION; two sustainabil-
ity patterns, involving continuously no significant change and reverse continuously
no significant change, were grouped as STABLE.

(3) Comparison of the results obtained using the above two methods—the DEGRADA-
TION land estimated by the two methods was broadly consistent, but the assessments
of IMPROVEMENT and STABLE presented some differences. (Figure 7). Specif-
ically, the percentages of IMPROVEMENT, DEGRADATION, and STABLE in the
Trends.Earth method were 87.05%, 1.92%, and 11.03%, respectively; the percentages
of those in the sustainability pattern method were 58.90%, 1.32%, and 39.78%, re-
spectively. Because certain land defined as IMPROVEMENT by Trends.Earth was
classified as STABLE by the sustainability pattern method.
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Figure 6. Trajectory (a), state (b), performance (c), and integrated degradation type of land produc-
tivity (d) in the Han River Basin of China from 2001 to 2019 calculated by Trends.Earth.

Figure 7. Comparison of land productivity assessment results between two methods—the
Trends.Earth method and the sustainability pattern method.

In addition, this study chose a test area to investigate the above differences (Figure 8).
The test region was defined as IMPROVEMENT in the Trends.Earth method but classi-
fied as STABLE in the sustainability pattern method. We discovered that the test region
is mostly in a more stable state from the Google Earth images in 2001 and 2019. The
Trends.Earth method appeared to overestimate IMPROVEMENT and DEGRADATION
lands. As a result, the conclusions drawn from the sustainability pattern method were
more reasonable. One explanation could be the data source for assessing land productivity.
The Trends.Earth method was based on annual NDVI obtained from MOD13Q1, while
the sustainability pattern method was based on annual NPP generated from MOD17A3.
It is worth emphasizing that, according to the UNCCD-LDN scientific framework [67],
the assessment of land improvement or land degradation must exactly correspond to the
time period under consideration. In this study, the Trends.Earth compared the current
productivity of an area with its past productivity using the period 2001–2014 as the baseline
period and the period 2015–2019 as the comparison period. Thus, there may be cases
where the assessment leads to an improvement, yet in reality it is still in the process of
degradation. Therefore, it is essential to recognize that despite the positive results derived
from the Trends.Earth method, land degradation in the Han River Basin could be severe.
The methodological framework for land productivity monitoring should be upgraded in
the future, thus serving to achieve a higher level of LDN by 2030.
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Figure 8. Comparison of land productivity assessment results, Google Earth images, and data sources
between the Trends.Earth method and the sustainability pattern method in the test region.

4.2. Key Drivers of Land NPP Change

Climate variability and human activity are commonly regarded as the two main
components influencing land NPP change. OLS regression was firstly applied to identify
potential explanatory variables. The dependent variable was the increase in land NPP
in the Han River Basin from 2001 to 2019, and the independent variables were seven
influencing factors: temperature, precipitation, elevation, slope, forest cover, population
count, and human modification. OLS regression results revealed that none of the seven
explanatory factors had a VIF value above 10, indicating that these independent variables
had only minimal covariances. In addition, with the exception of temperature, slope, and
forest cover, the other four independent variables passed the significance test at the 5%
level. As a result, these four variables were included in the OLS regression.

The presence of spatial correlation between the variables is a requirement for using the
GWR model. Moran’s I values were used to pre-test the spatial correlation of the associated
variables. We examined the spatial autocorrelation of the standardized residuals for all
grids and found that the standard deviations predicted by the GWR model were spatially
randomly distributed, with a Moran’s I value of 0.009 and a z-score of 0.956. Therefore, the
overall simulation effect of the model is favorable. It is reasonable and feasible to apply the
GWR model to evaluate the factors influencing land NPP change in the Han River Basin.

Table 3 compares the key metrics associated with fit statistics for the global model
(OLS), GWR, and MGWR. The MGWR model had a smaller AIC, a slightly larger adjusted
R2, and richer bandwidths than OLS and GWR. Therefore, MGWR outperformed the other
two models in fitting the drivers of land NPP change in the Han River Basin.

Table 3. Fit statistics for OLS, GWR, and MGWR models.

Model Metrics OLS GWR MGWR

AIC 14,234 12,440 12,355
Adjusted R2 0.318 0.562 0.565

Bandwidth 150 150 Intercept (578), Precipitation (51), Elevation (5794),
Population Count (485), Human Modification (645)

The variable bandwidth measures the spatial scale of each process. It captures the
difference in the scale of action of natural and socio-economic influences on land NPP. The
larger the scale of action, the lower the spatial heterogeneity of influencing factors. On the
contrary, the more pronounced the spatial heterogeneity. Based on the results of the MGWR
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model, among the natural factors, the scales of action of precipitation and elevation were 51
and 5794 (Table 3), respectively. The effect of precipitation on land NPP change indicated a
high degree of spatial heterogeneity. The scale of action of elevation was proportional to
the sample size. It was a global variable with low spatial heterogeneity, and the effect of
elevation on land NPP change was broadly consistent throughout the basin. There was
significant spatial heterogeneity in the effect of human factors on land NPP change, with a
scale of 485 for population count and 645 for human modification (Table 3).

The violin plot of regression coefficients of the influencing factors of the MGWR
model (Figure 9) shows both positive and negative effects on land NPP change. The
increase in population count had an overall negative effect on land NPP (19.42% positive,
80.58% negative), and the negative effect was substantial. In contrast, the increase in
elevation had an overall positive effect on land NPP (59.15% positive, 40.85% negative),
though the positive effect was not strong, whereas the polarization was pronounced.
Besides, precipitation and human modification had bi-directional effects on land NPP,
with relatively equivalent positive and negative effects, but generally negative. In general,
precipitation, population count, and human modification all exhibited inhibitory effects on
the increase in land NPP except for elevation.

Figure 9. Distribution of regression coefficients of influence factors of the MGWR model.

Figure 10 demonstrates the factors that exerted the most significant influence on land
NPP change for each grid. It was found that the dominant factors influencing vegetation
growth varied with geographic location. Each influencing factor was both positively
and negatively correlated with land NPP change. The results showed that precipitation
and population count were the dominant factors in most regions, accounting for 65.16%
and 23.23% of the basin area, respectively. Specifically, the northern, north-western, and
southern parts of the basin were mainly influenced by population count, while the central
and south-eastern regions were primarily affected by precipitation.

Figure 10. Regional differences in the dominant factors of land NPP change in the Han River Basin
of China from 2001 to 2019.
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4.3. Further Research

The 2030 Sustainable Development Goals (SDGs) are currently less than 10 years
away. Given the long time it takes for ecosystems to recover from conservation to benefits,
only urgent and effective action to halt and reverse global land degradation will make it
possible to meet the growing global demand for agriculture and, thus, achieve the 2030
SDGs. Focusing on the lack of methodology in assessing SDG 15.3 progress, this paper
used an internationally shared dataset to enable the tracking and monitoring of SDG 15.3.1
indicators to evaluate trends in the growth trend of LDN in the Han River Basin. The study
can provide important information to support the understanding of SDG 15.3 achievement
at a regional scale. The methodology adopted in this paper can also be replicated and
operationalized on a global scale. The results are globally consistent and comparable,
which can help to clarify the global contribution of LDN growth in the region.

The findings of this paper on the achievement and trends of LDN growth in the
Han River Basin are broadly consistent with those of Zhang and Ren (2016) [43] on the
spatial distribution and temporal trends of land productivity. The NPP data in both studies
were based on the MOD17A3 dataset, which was obtained using a model combining
ecological processes and remote sensing data (Biome-BGC model). The MOD17A3 NPP
dataset compensates to some extent for the deficiencies of ecophysiological models in non-
homogeneous regions and helps provide feedback on regional land productivity, carbon
sink capacity, and ecosystem quality. The multi-year average of land NPP derived in
this study (486 g C·m−2·a−1) was higher than that gained by Zhang and Ren (2016) [43]
(439 g C·m−2·a−1), mainly due to the inconsistent time period. This study was based
on 2001–2019, whereas their work was based on 2000–2012. Therefore, this study better
represented the impact of the implementation of China’s South-to-North Water Diversion
Project (the middle route started supplying water on 12 December 2014) on land NPP and
the ecology of the water source area.

This paper explored the drivers of land NPP change and their spatial differentiation
using an MGWR model based on regular grids, which helps identify the dominant influenc-
ing factors at given locations. The study reflected that land NPP change in the Han River
Basin resulted from a combination of natural elements and human activities. Changes in
land NPP are usually nonlinear and are often influenced by multiple factors. Most previous
studies have explored the influence of climatic factors on land NPP changes [34,41,42,44],
while the combined effects of climate change and human activities have been less consid-
ered [43]. The study by Zhang and Ren (2016) [43] elaborated the effects of temperature,
precipitation, elevation, slope, and human activities, respectively. Their finding that the
precipitation had a more substantial impact on land NPP than the temperature was consis-
tent with present studies [42,43,68]. However, these studies were more oriented toward
descriptive statistical analysis and did not spatially elucidate the dominant factors of spatial
differentiation. Therefore, there were similarities and differences in the conclusions. Several
studies have discussed anthropogenic impact concerning land-use patterns or land-use
intensity [30–33], but there is no direct relationship between land NPP and land use. Land
NPP may remain constant for land-use changes, while land use may stay the same for land
NPP changes.

Baseline determination and dynamic monitoring of degraded land are key tasks in
achieving SDG target 15.3 (LDN) [8], which can be directly used to assess the progress of
LDN and provide support for land-use planning. Further research can be geared toward
the demand for geographic data at different spatial scales in the assessment of SDG 15.3
progress. This work could take advantage of big data platforms to provide better support
for data, products, and tools. The development of cloud-based SDG 15.3.1 online tools
will be an essential part of the geodata support in the LDN assessment. By interfacing
with multiple data calculation engines and data environments, users will be provided
with online SDG 15.3.1 indicator calculations and integrated assessments based on areas of
interest. This is particularly important for the monitoring and assessment of SDG 15.3 in
less developed countries and regions.
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5. Conclusions

The spatial–temporal trends and sustainability characteristics of land NPP change
in the Han River Basin from 2001 to 2019 were investigated based on the MOD17A3
NPP dataset obtained from GEE. The main drivers of land NPP change and their spatial
differences were quantified as well. The results are presented below.

(1) The multi-year average of land NPP was 486 g C·m−2·a−1 in the Han River Basin
from 2001 to 2019, with the highest in 2015 and the lowest in 2001. The interannual
variation of land NPP exhibited a fluctuating upward trend, with a more pronounced
growth rate from 2001 to 2010 than from 2011 to 2019. The growth rate of land NPP in
the upper reaches was faster than the basin-wide average, while the growth rates in
the middle and lower reaches were slower than the basin-wide average.

(2) The spatial heterogeneity of land NPP was evident, with high values in the west
and low values in the east. Of the basin area, with NPP values between 400 and
600 g C·m−2·a−1, 66.15% was concentrated in the middle and upper reaches of the
basin. Land NPP was highest in the watershed above Danjiangkou, followed by
the mainstream watershed below Danjiangkou, and lowest in the Tangbai River
Watershed. The Theil–Sen slope of land NPP in the Han River Basin from 2001 to 2019
ranged from −33 to 20 g C·m−2·a−1. Of the basin area, 57.82% presented a significant
increase in land NPP, 0.96% showed a significant decrease, and 41.23% exhibited
no significant change. In general, series with continuously significant increases in
sustainability pattern of land NPP change were far more than those with continuously
significant decreases. Land NPP in the Han River Basin will present sustained growth
in the future.

(3) It was broadly consistent in the estimation of DEGRADATION between the Trends.
Earth method and the sustainability pattern method. However, there were some
differences in the assessment of IMPROVEMENT and STABLE, because certain land
defined as IMPROVEMENT by Trends.Earth was classified as STABLE by the sustain-
ability pattern method.

(4) The MGWR model outperformed the global OLS and GWR models in fitting the
drivers of land NPP change in the Han River Basin. There are regional differences
in the main factors influencing land NPP change. Precipitation and population
count were the dominant factors in most regions, and the population count shows a
significant inhibitory effect on the growth of land NPP. In practice, a zoning approach
should be adopted to develop differentiated vegetation restoration and conservation
programs for specific regions.

The assessment approach proposed in this study can provide a methodological frame-
work and examples of regional practice that can enable track progress of LDN and the
socio-ecological sustainable development of the basin.
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