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Abstract: The Mediterranean basin is a hot spot of climate change where the Posidonia oceanica (L.)
Delile (PO) and other seagrasses are under stress due to its effect on marine coastal habitats and the
rising influence of anthropogenic activities (i.e., tourism, fishery). The PO and seabed ecosystems,
in the coastal environments of Pantelleria and Lampedusa, suffer additional growing impacts from
tourism in synergy with specific stress factors due to increasing vessel traffic for supplying potable
water and fossil fuels for electrical power generation. Earth Observation (EO) data, provided by
high resolution (HR) multi/hyperspectral operative satellite sensors of the last generation (i.e.,
Sentinel 2 MSI and PRISMA) have been successfully tested, using innovative calibration and sea
truth collecting methods, for monitoring and mapping of PO meadows under stress, in the coastal
waters of these islands, located in the Sicily Channel, to better support the sustainable management
of these vulnerable ecosystems. The area of interest in Pantelleria was where the first prototype of the
Italian Inertial Sea Wave Energy Converter (ISWEC) for renewable energy production was installed
in 2015, and sea truth campaigns on the PO meadows were conducted. The PO of Lampedusa coastal
areas, impacted by ship traffic linked to the previous factors and tropicalization effects of Italy’s
southernmost climate change transitional zone, was mapped through a multi/hyper spectral EO-
based approach, using training/testing data provided by side scan sonar data, previously acquired.
Some advanced machine learning algorithms (MLA) were successfully evaluated with different
supervised regression/classification models to map seabed and PO meadow classes and related Leaf
Area Index (LAI) distributions in the areas of interest, using multi/hyperspectral data atmospherically
corrected via different advanced approaches.

Keywords: Posidonia oceanica (PO); LAI & density; PO health & Pergent model; sea truth collection;
Earth Observation; HR satellite multispectral/hyperspectral sensors; atmospheric correction; coastal
monitoring; mapping shallow waters habitat seabed; calibration/validation & training/test; clas-
sification & regression machine learning; model performance & thematic accuracy; Sentinel 2 MSI
multispectral & PRISMA hyperspectral; ISWEC (Inertial Sea Wave Energy Converter)

1. Introduction

In the Mediterranean, Posidonia oceanica (PO) is one of the most important seagrass
carbon sink species for the variety and extension of its meadows, but it is increasingly at
risk and sometimes in decline, with the frequent reduction of its extent and an increase
in meadow fragmentation [1–3]. This arises from the variations in sea water parameters
(i.e., turbidity, temperature, acidity and salinity) linked to climate change and impacts
from anthropogenic activities (fishing, traffic of ships and oil tankers and new coastal

Sustainability 2021, 13, 13715. https://doi.org/10.3390/su132413715 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-2388-8247
https://orcid.org/0000-0001-7277-8063
https://orcid.org/0000-0002-0821-333X
https://orcid.org/0000-0002-2405-2898
https://doi.org/10.3390/su132413715
https://doi.org/10.3390/su132413715
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su132413715
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su132413715?type=check_update&version=1


Sustainability 2021, 13, 13715 2 of 27

infrastructures) with coastal habitat modifications even favorable to tropical alien species
invasion [4–7]. Like other seagrasses, PO plays a role of paramount importance in coastal
habitats worldwide, providing ecological goods and ecosystem services that contribute
to human welfare and shoreline protection [8]. To evaluate the ecological status of PO
meadows, different approaches have been developed using the relationship between their
genetic/genotypic diversity [9,10] and the main biophysical parameters (i.e., shoot density
and LAI) that, today, can be effectively monitored and mapped using integrated approaches
based on remote sensing techniques [11].

The recent advances in Earth Observation (EO) applications, based on satellite and
airborne platforms [12], provide operative tools for supporting extensive monitoring needs
for sustainable management of sea/inland waters [13,14] and agri-ecosystems, natural
and managed [15,16], in various environments of the Earth’s surface [17,18]. However, EO
based monitoring of shallow waters and seabed of the coastal environment characterized
by anthropogenic impacts, still represents a challenge, due to coastal water turbidity often
associated with various atmospheric effects and noises, combined with the difficulties of in
situ sampling for collecting sea truth calibration data of submerged plants on the seabed
by means of scuba diving. These are important limiting factors to useful exploitation of
EO high resolution (HR) data for extensive mapping of PO and coastal seabed and water
quality parameters [14,19], especially where the coastal sea currents are significant, as in
the Southern Mediterranean islands, with consequent additional signal degradations from
increased water turbidity from sediment resuspension and sun-glint presence [20–22].

The Italian islands of the southern Mediterranean, such as Pantelleria and Lampedusa,
generally present transparent coastal waters and PO meadows, with seabed habitats that
still exhibit significant levels of biodiversity and specific adaptation to the accentuated
energy levels of sea waves that characterize this area of the Sicily Channel [2,20]. This
aspect has favored the installation of the first Italian Inertial Sea Wave Energy Converter
(ISWEC) there, choosing Pantelleria as a representative of many small-islands in the
Mediterranean Sea, whose energetic independence through eco-compatible innovative
solutions can improve life of the isolated coastal communities while safeguarding their
coastal fragile ecosystems from the perspective of global sustainability [23].

Despite their shallow water wealth and natural heritage, often safeguarded in pro-
tected areas, the actual increase in anthropogenic activities, linked to tourism and fishing,
negatively impacts on these natural ecosystems, with consequent potential damage and a
need for more effective monitoring to support their sustainable management. Other threats
derive from the difficulties of supplying potable water and electrical power to many islands
not connected to the national electricity grid, where additional factors of environmental
impacts come from the traffic of boats carrying fossil fuels for local electricity production,
also used for desalinization of sea water [24].

In order to provide eco-compliant electricity power from renewable resources, in
2015, the ISWEC prototype was installed for testing purposes in the coastal area offshore
of Pantelleria. Even designed to minimize the impacts, the prototype installation and
operation involved interactions with local PO and seagrass meadows, with possible plant
damage and water transparency decreasing due to seabed sediment resuspension [25].

Thus, the effective monitoring of the local PO ecosystems in the two islands is rec-
ommended in order to allow the detection of potential stress and damage linked to the
in-crease in anthropogenic activities mentioned above and/or other natural factors. In the
2015 and 2016 years, two measurement campaigns were carried out in the vicinity of the
ISWEC prototype for collecting sea truth data on PO meadows [24,26].

Satellite EO-based approaches for PO and seagrass monitoring can be very effective,
but they must be based on suitable HR sensors, as well as effective atmospheric preprocess-
ing and calibration using appropriate in situ measurements. Once suitably corrected for
atmospheric noise, the satellite HR EO techniques can provide effective multiscale tools
for monitoring marine ecosystems on shallow water seabeds. However, the basic require-
ments for characterizing the PO meadow and sub-merged habitats of shallow waters as
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well as their distribution patches at the “land-sea” inter-face area, in optically complex
coastal waters, first focus mainly on remote HR sensors within the 30–10 m of ground
resolution (a.g.r.) and suitable radiometry, sensible to weak signals coming from the coastal
seabed [20,21]. In recent years, various satellite sensors have started to provide EO data
with these features for EO applications, such as multispectral Landsat 8 OLI by NASA and
Sentinel 2 MSI (of the Copernicus ESA EU program), or the most recent hyper-spectral
PRISMA, implemented by the Italian space agency (ASI), having different additional capa-
bilities based on its 240 narrow acquisition bands, to be checked for these specific coastal
monitoring applications. These sensors, compared to previous ones of the same family, in
addition to the increase in the acquisition bands in the visible and NIR, present improve-
ment in their radiometry that offers greater capacity in different EO applications [27], in
particular, for operational monitoring of coastal ecosystems previously unavailable [19,20].
In particular, the PRISMA sensor makes available the opportunity to test this satellite EO
hyperspectral technique in this specific sector, where airborne remote sensing techniques
have been mostly used.

Since atmospheric noise can greatly affect the useful reflectance signals exiting from
the water surfaces, the radiometric preprocessing must include an effective atmospheric
correction to remove the significant contribution from the aerosol load and other factors
typical of the water column and sea-land interface [28,29]. In addition, the necessary
sea truth measurements, devoted to quantitative PO characterization, are expensive and
labor-intensive due to human and instrumental resources needed to operate during diving
for sample collection and subsequent laboratory analyses.

Considering these limiting factors, in this work, original EO-based monitoring/mapping
methods for the useful exploitation of information extracted from the exiguous number of
available in situ measurement stations, were implemented. The developed approach al-
lowed us to exploit the radiometric variability related to EO data of the entire sampling area
(~50 m2) of Pantelleria measurement stations used in the previous campaigns. The sea truth
data of the ISWEC campaigns were then exploited within a calibration/validation schema
for the regression models, based on some machine learning regression algorithms (MLRA),
designed to be robust against possible outliers and incomplete/limited samples [30–32].

Recently, machine learning/artificial intelligence (AI) computer applications have
increasingly gained popularity, especially in sectors where there is a need to make ef-
fective predictions or trends calculations in the presence of limited/incomplete calibra-
tion/training data, statistical noise or collinearity presence, taking advantage of the so-
called increasing Big Data availability and robust statistical modelling advances. One
of them refers to remote sensing EO applications, where the increase in spectral/spatial
capabilities of the new sensors on board of the operative satellite platforms provides an
unprecedented amount of EO data, continuously upgraded and made available online
to the users [33,34]. On the other hand, in EO based monitoring and modelling applica-
tions, the frequent necessity to face growing costs and resources to collect expensive in
situ data reduces the possibility to plan a calibration as ample and complete as needed
and desired. Machine learning algorithms (MLAs) and schemas were developed to more
effectively exploit this kind of incomplete information through their self-adapting and
learning capacities for useful predictive modeling with suitable assessment of mapping
functions from inputs to outputs, optimized function approximation or classification [33].
In particular, they focus on two typical main usages of EO data processing, involving the
classification and regression approaches [31]. The classification aims at predicting a discrete
class of output labels from input data (typically, EO data as atmospherically corrected
multi/hyperspectral reflectance responses), after a learning phase termed training. The
regression is instead aimed at predicting continuous quantities on the basis of input (the
EO data) and a function model obtained from a calibration set of input/output data. To
support the development of a methodology for monitoring and mapping the PO habitats
in these islands, various typical MLA were preliminarily considered for regression (MLRA)
modeling and supervised classification (MLCA) of the multi/hyperspectral data, taking
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into account their different capabilities and performance in various situations of noise,
limited class samples and outlier presence in input data that frequently occurs in EO
applications for coastal marine monitoring [34–36].

These satellite remote sensing HR techniques were combined with in situ point mea-
surements of biophysical parameter to monitor and map the PO meadows and benthic
habitats in the shallow coastal waters of the Pantelleria and Lampedusa islands [24,26].

Starting from the in situ measurements of the density and Leaf Area Index (LAI) of PO,
estimated for the sampling station areas in proximity of the ISWEC installation, various
distributions of these important biophysical parameters were assessed in the coastal shallow
waters of Pantelleria, using regression models based on different MLRA algorithms and
the original calibration/validation schema with Sentinel 2 MSI multispectral data [37,38].

According to Pergent [39], the developed methodology included the assessment of
the health distribution of PO located along the entire coast of Pantelleria island, using
bathymetry and the EO-derived PO density distribution.

The distribution of PO meadows and other seabed classes of the Lampedusa coast
were estimated through PRISMA hyperspectral data by means of an advanced MLCA and
supervised classification scheme, using the side scan sonar and preexisting data, available
for the western part of the coastal seabed [40,41], as training/validation set [42,43].

The Environmental Mapping and Analysis Program (ENMAP) software box package
was used for both regression and classification tasks, based on learning machine algo-
rithms [38]. This software is integrated into the free and open-source widely distributed
QGIS. It was developed in the framework of the German hyperspectral EO HR mission,
with the launch of the satellite mission expected in the next few months and a sensor similar
to the operative PRISMA of ASI. The PRISMA data, distributed as hdf5 format files, was
decoded using the PRISMAREAD package, working in the R statistic environment [44].

2. Materials and Methods
2.1. Methodology

In the developed methodology, the S2 and PRISMA EO data have been preprocessed
using different atmospheric correction options, available through the packages considered
(ACOLITE, ICOR, System Preprocessors of EO Data Provider). They were then exploited
for assessing regression/classification models, based on sea truth independent data and
MLA, whose effectiveness was assessed by means of a performance metric using various
statistical parameters. In such a way, at the same time, both the atmospheric correction
effectiveness and algorithm suitability were evaluated. The most performant models were
then used for the production of the final thematic maps of seabed classes and biophysical
parameter distributions of PO, on which are based the intercomparisons and considerations
at different scales, referring to the anthropogenic and natural impact factors.

As reported in the methodology scheme (Figure 1), each of the visually selected (based
on cloud cover and water turbidity patterns) frames (S2 or PRISMA), was corrected using
the three atmospheric correction preprocessing options available in the two packages,
obtaining three different corrected products: Adjacency corrected bottom of atmosphere
reflectance (BOA), BOA (without adjacency correction) and water leaving reflectance
(see Section 2.4.1). These atmospherically corrected products were used to estimate the
regression or classification models through MLA, for the areas of interest of Pantelleria and
Lampedusa, using the sea truth information available as calibration/validation data. The
model performance was then evaluated using an error/correlation metric for MLRA and
an accuracy metric for MLCA. The final maps were finally produced by means of the best
models found.

2.2. Areas of Interest and EO Data

In 2015, ESA (European Space Agency) launched on board of Sentinel 2 (S2) A polar
satellite, the MultiSpectral Instrument (MSI) sensor, able to acquire data at 10 m of a.g.r.,
and providing EO data with improved radiometry and revisiting capability of 5 day, based
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on the twin platform, Sentinel 2 B, that became operational shortly after the first one. These
spectral-spatial characteristics of S2, with visible channels and NIR at 10 of a.g.r., provide a
useful tool to effectively support the extensive monitoring of shallow coastal waters and
their seabed. In the 2019, the hyperspectral sensor PRISMA (240 acquisition bands) by
ASI, became operational and with its capability of many acquisition channels in the visible
range, at 30 m of a.g.r., currently represents an unprecedented opportunity even for the
applications in the coastal monitoring sectors.
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Figure 1. Scheme of the implemented methodology.

The 10-m multispectral HR data, provided by the S2 MSI satellite sensor, including the
entire coastal areas of interest, were acquired and preprocessed, with the objective of testing
their improved monitoring capabilities of PO distribution with the related LAI and other
biophysical parameters. Furthermore, the hyperspectral data in the VIS-NIR (visible—near
infrared) range (470–970 nm) at 30 m of a.g.r., provided by PRISMA, has been tested for
mapping the PO meadows and seabed in the coastal shallow waters of Lampedusa.

Figure 2 shows the Pantelleria island image in true color acquired by S2 on 20 August
2015 (upper part), with the detailed area of interest (lower part) including the sampling
station areas indication and global localization map (lower right corner). The ISWEC
prototype is visible in the area of sampling station n. 1. The detailed image also shows
the sea waves perturbing the water surface with sun-glint and sediment suspension that
introduce noise to the useful EO reflectance signals from the seabed and shallow water.

The monitoring activities in Pantelleria were primarily focused on the area of the
ISWEC installation but with the perspective of testing the spatial extensibility of calibration,
carried out in the proximity of the converter (visible within the sampling station 1 borders
in Figure 2) and then over the remaining coastal areas of the island. The position of the
converter was chosen on the basis of the energy distribution of wave motion along the
coasts of the island, evaluated through oceanographic modeling and multi-temporal data
appropriately acquired at adequate resolution. It is located within areas where there are
sparse PO meadows that need to be monitored to highlight any consequent potential
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threats. According to coordinate system used for the sea truth data, the UTM WGS 84 zone
33 N metric cartographic projection was adopted.
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Figure 2. Pantelleria island in the S2 frame acquired on 20 August 2015 (upper image), reported in true color (R:665 nm,
G:560 nm, B:490 nm). The Area of interest including the ISWEC location with the four sampling stations of the 2016 sea
truth campaign, is indicated by the box delimited by red lines. Detail of the area of interest with the sampling stations and
the location of ISWEC converter (in the red circle) enclosed in the station n. 1 area (lower image). The synoptic map, with
location of the islands of interest in the Sicily channel of Mediterranean, is also provided (lower right corner). The graticule
of the metric cartographic projection (UTM WGS 84 zone 33 N) adopted is also included.
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Taking into account Lampedusa’s smaller size (Figure 3), an EO derived map of its PO
meadows and other seabed main classes was created for the entire island’s coasts, using
the partial distribution obtained through side-scan sonar data as training/validation set.
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Figure 3. Lampedusa island (True color RGB) as seen by S2 MSI (10 m a.g.r.) multispectral sensor
(upper) on the 17 August 2015 and by PRISMA hyperspectral sensor (lower) on 11 August 2020
(panchromatic channel at 5 m of a.g.r.). The graticule of metric cartographic projection (UTM WGS 84
zone 33 N) adopted is also included.

2.3. Sea Truth

In general, the sea truth surveys for the assessment of PO focus mainly on the char-
acterization of meadows with continuous distributions (cover > 60–80%), without any
optimization aimed at providing an area-based effective calibration for modelling based
on EO data. In the case of discontinuous, fragmented and patchy distributions of PO
meadows, the in situ calibration for the extensive distribution estimate of their biophysical
parameters through EO data, should require the assessment of the entire local area of
interest, including the sub-areas lacking plants, with a mean cover percentage lower than
20% that must be accounted for. To address this limiting factor, an original methodology
has been exploited here for the sea truth acquisition of calibration measurements on the
fragmented PO meadows near the ISWEC installation in Pantelleria based on a systematic
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sampling scheme (Figure 4). To better deal with PO patchy distribution, an on-purpose im-
plemented sampling method was exploited that allowed the estimation of a percent cover
parameter using a semiautomatic digital procedure, from digital images of measurement
plots acquired by scuba. The estimated cover parameter was then exploited for refining the
in situ LAI distribution assessment, more area than meadow oriented, with the specific
objective of improving EO calibration [24,26].
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Figure 4. Location of the measurement stations and sampling scheme used for the sea truth campaigns on the PO meadows
in the nearby of the installation site of the ISWEC prototype (station n. 1). Sampling schema for sea truth collection (right
part). Al the plots are 1 m2 squares distributed along a regular grid at same distance. The coordinates of the center of plot 1
coincides with those of the sampling station, while the distance between the plots is the same.

The ISWEC prototype was installed in late July-early August 2015, and the first
sea truth campaign was carried out in the second half of August, while the second one
started in the middle of October of the following year. During the campaigns, various
measurements of several biophysical parameters related to PO phenology have been
acquired, in correspondence with sampling stations distributed along the bathymetric
negative gradient, starting from the converter prototype location, at 31 m. of depth
(Figure 4). Three measurement stations in 2016 were located at the same coordinates as
those exploited in 2015, while the fourth was positioned between the last two, at about
30 m. of bathymetry. Some GPS techniques and other auxiliary instrumentation (i.e.,
compass, underwater digital photo camera and containers for plant samples), used in
diving supported information collection of in situ biometric measurements which were
completed with the subsequent laboratory analyses for the assessment of the biophysical
parameters of interest (biomass, shoot density, cover and LAI). The work in the field,
consisting mainly of the underwater activities using the 1 m2 sampling frame (Figure 5)
and auxiliary instrumentation, took place in the second half of last August and in the
middle of October, respectively, according to logistic and organization constraints and
weather/sea conditions. From the perspective of EO based regression model calibration and
in accordance with the most popular protocols, for each measurement station, a systematic
sampling scheme based on 1 m2 plots was exploited (Figure 5). The measurement stations
are identified by their respective GPS center coordinates on the surface and are associated
with the related plots, each of 1 m2, where the biophysical measurements and samples
were collected using an oriented frame with the objective of allowing the characterization
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of an area compatible with the a.g.r. of satellite images. The station coordinates coincide
with those of plot n. 1 center, while the d parameter of the plot scheme was set at 25 m,
in order to cover a square area of about 50 m2, corresponding to the 5 × 5 pixel of the
S2 MSI sensor. In addition, RGB digital images of plots, taken with a special underwater
camera, including approximately the frame with a defined orientation, were acquired
to support the development of a robust, innovative and semi-automatic procedure for
the estimation of more reliable coverage/density values (see below). Various phenology
parameters of PO were visually assessed within each plot identified by a North-oriented
white frame (Figure 3), whose photograph image was taken preliminary to other diving
measurement activities. The density was appraised by visually counting the number of
shoots (shoot/m2) in the North-West quadrant of the sampling frame. Some PO plant
samples (3–5 shoots) were then collected from the North-West quadrant of the frame and
properly stored for the successive laboratory analyses. Consequently, by applying the
conventional protocol, the average density was calculated and expressed as the number of
shoots/m2 for the whole station area. The laboratory analyses provided the characterization
of phenology (i.e., LAI) and physiological parameters of PO samples, such as biomass (fresh
and dry weight) and biometry, together with genetic polymorphism for the determination
of the genetic structure of the meadows (these genetic and other aspects will be widely
discussed in another ongoing paper). The most common protocols for estimating the
coverage of the PO meadows in diving are based on the visual evaluation of the percentage
coverage of PO within a plot sample area. This estimate is likely always affected by
approximations due to the subjectivity of the operator, further worsened by uneven lighting
situations and various limitations related to underwater operating modes. The use of digital
images of the area of interest at adequate resolution, duly oriented and preprocessed,
allows areal assessment through semiautomatic operating procedures aimed at increasing
repetitiveness and the reliability of the assessed cover values. Some digital preprocessing
procedures, on purpose developed for both radiometric (normalization for illumination
unevenness) and geometric (perspective and frame rectification/overlay) corrections of the
acquired image of the station plots (Figure 4), were applied before we proceeded with a
supervised segmentation/classification algorithm. Ultimately, since the inhomogeneity in
the illumination was mainly between the left and right side of the images, a normalization
based on the polynomial model of the RGB intensity averaged over the column was adopted
for the correction. The perspective correction was carried out using a first order geometric
transformation of the input image calibrated to the 1 m2 sampling frame (included in
the picture), to obtain the resampled output at 0.2 cm of pixel resolution. The true color
corrected image was then classified using a maximum likelihood (ML) supervised schema
with three classes (seabed, PO and frame) whose relative surface measure was easily
quantified after clipping the frame area.

The classification output, without subjective photointerpretation, allowed us to appro-
priately segment the preprocessed image into three classes consisting of PO (green), sea
bottom (blue) and frame (Figure 5 bottom right), from which it is possible to easily derive
the coverage percentage of the PO. The procedure developed was then applied to the entire
set of plot images acquired for each sampling station.

At the ENEA Casaccia laboratory, Biomass and Biotechnology for Energy, the biometry
of each plant (number, length and width of the collected leaves) was also estimated, and
the biomass was calculated in both fresh and dry weight after drying at 70 ◦C for 72 h,
both in the epigeal (foliar) and rhizome. After being removed from the plants, the young
leaves were washed in distilled water to remove the epiphytes before being placed in liquid
nitrogen and stored at −80◦ for the subsequent analyses. The density distribution of the
PO (shoots/m2) at station level was derived by averaging the values assessed in diving on
its plots.
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(included in the center of picture). Original image (top left) and after digital corrections to minimize the effects of uneven
lighting (top right). Image corrected for perspective geometric distortion effects (bottom left) and its classified map (after
the within frame clipping) obtained by means of a semiautomatic procedure (see detailed description above reported) for
identifying the PO coverage (bottom right).

Following the consolidated methods, the LAI and other parameters, at the level of the
single stations, were calculated by averaging the laboratory biometric measurements of
samples collected at plot level (i.e., PO leave areas and number of leaves per shoot, wet/dry
specific weight) and related density values, with final normalization accounting for plot
surface. The percent cover, obtained from digital processing of frame imagery taken while
diving, was then introduced as a multiplying correction factor aimed at the optimization of
the calibration of the regression modelling approaches based on EO data (see next chapter).

In 2016, the PO meadows of Lampedusa (western part) were preliminarily mapped
using side-scan sonar on board a ship with the goal to update the preexisting data [40,41].
In addition to the seabed classes of PO, some others related to differently grained sand and
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rock were also discriminated against (Figure 6). Given the scarce sonar detection capability
of low-density seabed vegetation, in addition to suitably detected PO, a sparse (potential)
PO class was introduced too. The three classes of differently grained sand and dunes,
discriminated by sonar acoustic waves due to their textures not easily detectable in EO
data, were grouped into just two. According to the historical maps, the most reliable part
of this achieved data was used for the training/validation of MLCA (see next chapter), in
the form of stratified randomly selected points extracted for the seven seabed classes.
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2.4. EO Data Processing and Calibration

The available EO frames, compatible with the sea truth data, were first selected on
the basis of visual inspection, checking the presence of cloud cover and water turbidity
patterns in the areas of interest. The selected data, atmospherically corrected using the
different options, was then exploited in the MLRA and MLCA modelling approaches based
on the sea truth calibration/training sets and using the various MLA algorithms. In the
end, the final choice in terms of frame, preprocessing options and MLA combinations,
was accomplished on the basis of the performance parameters assessed in the model
validation/accuracy assessment steps.

2.4.1. Atmospheric Pre-Processing

The general approach to water applications, based on the near infrared (NIR) re-
flectance channels for characterization of atmospheric aerosol parameters (i.e., aerosol
optical depth as AOD) distributions, in the case of shallow water, typical of oligotrophic
open oceans, has proven to be less effective for monitoring shallow-water environments
and seabed, including seagrass and PO coastal ecosystems [45]. In fact, coastal waters are
rarely oligotrophic due to their frequent optical complexity, with high concentrations of
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various optically active substances (case II waters), which is often accentuated by sediment
suspension dispersed in the water column, in the form of total suspended matter (TSM)
concentration, which is increased by sea waves and currents. To properly address these
difficulties in coastal water remote sensing, our approach includes atmospheric correction,
mainly accomplished using the current version of the ACOLITE package, specifically
designed for atmospheric correction of multispectral remote sensing data at decameter res-
olution, for monitoring applications in coastal or inland waters, even with non-negligible
turbidity [43]. It preliminarily starts with aerosol DSF fitting and system correction to
produce a BOA reflectance distribution (without taking into account the detailed distribu-
tion of aerosol effects), then the corresponding WLR (water leaving radiance/reflectance)
is assessed (taking into account the detailed aerosol effect distribution), if the retrieved
aerosol distribution (AOD) reaches a sufficient noise level to degrade the water reflectance
responses [46,47]. The package also provides the subset function of the area of interest, au-
tomatic selection of water surfaces (WLR option), and sun-glint removal from the processed
multispectral data. This capability is remarkably favorable if we also consider the turbidity
of the waters due to the accentuated hydrodynamics of the marine area of Pantelleria,
caused both by the morphology of its coastal seabed and by the relevant intensity of the sea
current field, which, especially in summer, characterizes this area of the Strait of Sicily. This
aspect constitutes a limiting factor in the selection of exploitable satellite acquisition frames
for the monitoring of its shallow waters, which, in summer, are considerably few, due to
the presence of excessive diffuse turbidity and significant sun-glint effects (Figure 2).

The radiometric correction for quantitative monitoring of the coastal seabed where
the PO plants grow, in addition to atmospheric AOD, must take into account additional
noise contributions from other factors, such as water column and adjacency effects [48,49].
Given the normal situation of water limpidity along these islands’ coasts in case of current
minima, the selection of the few frames without visible turbidity pattern affecting the
areas of interest is assumed to guarantee negligible water column attenuation noises.
Adjacency effects result from contamination of water reflectance signals of interface pixels
(frequently including useful signals from PO plants) from contiguous land areas, depending
on atmospheric scattering and AOD [49]. Thus, for intercomparison purposes, another
atmospheric correction package, named ICOR [50], not specifically devoted to water
applications, is also exploited. The code is able to produce BOA distribution, including
this radiometric correction, not performed by ACOLITE (i.e., adjacency). The ACOLITE
code is based on the dark spectrum fitting (DSF) algorithm for the optimized estimation
of the reflectance of coastal and inland waters, even with non-negligible turbidity, with
optional correction for sun-glint effects. In essence, DSF, instead of assuming a negligible
signal over water in predefined NIR or SWIR bands, and some spatial extent of aerosol
type and concentration, aims to achieve spatial-spectral modelling by choosing the optimal
bands for a given image or subset of images. Recent studies have found good performance
of the DSF algorithm in optically complex coastal or estuarine waters [46].

To test the capabilities of the S2 MSI satellite sensor for mapping the PO meadows
in the shallow waters of the island of Pantelleria, various multispectral frames taken in
2015 and 2016, at different levels of preprocessing, referring to different seasonal periods,
have been first selected on the basis of both cloud coverage and turbidity patterns from sea
current intensity.

For the atmospheric correction, the used approach was the so-called “image-based”
one, which exploits the specific information contained in the same multispectral image to
be corrected and does not require further in situ measurements in the field, simultaneous
with the satellite passage. Moreover, being easy to apply, it is suitable for our operational use.

In general, the S2 frames are available at two atmospheric basic preprocessing levels,
termed TOA (top of atmosphere) and standard atmospheric correction (performed through
the Sen2Cor default processor), which is used for retrieving bottom atmosphere surface
reflectance (BOA), without any refinement specifically devoted to suitably retrieving WLR.
The latter includes both the contribution of optically active components in the water
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column, mainly including sediments (TSM) and CDOM (colored dissolved organic matter),
in addition to phytoplankton, as well as that relating to the coverage of the shallow seabed,
coming from seagrass, macro-algae and various benthic substrates. To provide WLR
distribution, more appropriate for our application, the ACOLITE package, recently made
available in its last version among the open-source scientific codes, was introduced. The
ACOLITE code was designed to be specifically applied for atmospheric correction in coastal
and inland water EO monitoring applications and provides corrections for sun-glint with
the production of both BOA and WLR corrected reflectance distributions (only in case of
aerosol presence), with automatic detection of water surface, but it does not include the
adjacency effect removal.

Therefore, the radiometric correction of the selected frames for atmospheric effects
was carried out also through the ICOR code integrated into the SNAP ESA (European Space
Agency) package, which was not specifically conceived for preprocessing water surface
imagery but is able to correct reflectance signals for adjacency effects. This last correction
could be very important for the effective monitoring of the coastal shallow waters at the
land-sea interface, due to the possible contamination of the upper reflection values by
the contiguous earth zones. In this context, given the unavailability of processing tools
able to perform all the radiometric corrections cited above, it was introduced to allow a
comparison of the relative weights of the different noise effects.

Considering the spectral ranges useful for water penetration and land-water dis-
crimination, the PRISMA hyperspectral data in the 411–708 nm range (38 bands) has been
selected preliminarily from its VIS-NIR dataset (66 bands) for the modelling step. Then they
were used as they had been provided, directly under the form of BOA, without any water
surface optimization and adjacency/sun-glint effects removal, due to the unavailability
of devoted processing packages. The classification carried out using the MLCA and the
information from the multiple PRISMA bands, in addition to the distribution of the seabed
classes, allowed a reliable estimate of the relative probabilities and levels of confidence
of the result, with the possibility of using a threshold for the effective selection of the
unclassified areas.

2.4.2. Modelling and Classification

The preprocessed S2 multispectral images were first exploited for assessing the dis-
tribution of PO biophysical parameters near the ISWEC converter of Pantelleria, using
different MLRA and sea truth calibration data collected in correspondence with the mea-
surement stations.

The objective of regression is to forecast a target value based on independent predictors
under the hypothesis of a cause/effect relationship function model between variables, to be
estimated using suitable known input-output values as a calibration data set. Regression
techniques mostly differ based on the number of independent variables and the type of
relationship between the independent and dependent variables. The widely diffused linear
regression works well in the case of linear relationships and an optimal calibration set, but
in the case of model functions not known, and different from linear dependence with a
lacking calibration set, the results can be unsatisfactory. This situation is typical of EO based
monitoring applications, especially in shallow waters and coastal seabed habitats, where
the non-linearity of model functions and non-optimal and lacking calibration sets deriving
from sea truth collection difficulties often occur. This is mainly linked to the complexity of
radiative light interactions involved, coupled with the expensiveness in terms of cost and
resources needed for sampling and measurements in scuba diving activities.

In general, regression models, based on field measurements (independent variables
and responses), are usually implemented through a well-established calibration and vali-
dation (CV) schema, in order to provide better predictive power. The calibration delivers
the function model parameters by optimal fitting the responses of interest (i.e., LAI) using
physically or statistically based function models of independent variables (the spectral
reflectance EO data) for a subset of the available measurements. In validation, the re-
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maining measurements, different from those of calibration, provide a realistic predictive
capability of the estimated model using independent data. In such a way, a more realistic
evaluation of performance and expected errors may be available for the successive running
of the calibrated model. In this framework, a sufficient number of measurements, likely
greater than the few available at the station level, is required to apply such a scheme to
suitably calibrate and validate models assessed, while also providing reliable insights
into their robustness in terms of statistical significance and predictive power. In order
to try to lower this negative impact linked to sea truth calibration incompleteness, we
used both advanced machine learning algorithms, possibly robust against this unfavorable
aspect, coupled with the partial expansion of the calibration data based on the radiometric
variability in the area of the sampling stations, as explained in the following. For each
station, the sea truth data of PO biophysical parameter variables was derived from in situ
and laboratory measurement protocols as averages of plot systematic point sampling in a
50 × 50 m area around the station center coordinates (Figure 4), while their resulting stan-
dard deviation was assumed as station measurement error. Therefore, an area of equivalent
dimensions compatible with that seen by the S2 MSI satellite sensor, approximately equal
to 5 × 5 pixels (window), centered on the single station, was used for the extraction of the
corresponding point spectral signatures at pixel level. These different spectral signatures of
the pixels crossing the areas of every measurement station were singularly used to suitably
support the calibration/validation steps in the selected regression modelling approaches.
In addition, considering the low number of stations sampled, a virtual station (station 0)
was introduced in the vicinity of others where the bathymetry is incompatible with the
presence of PO, in order to better constrain the models.

Preliminarily, various S2 MSI frames, including the area of interest (AOI), were selected
on the basis of cloud coverage and other noise (sun-glint and current turbidity patterns)
minimization. Then, the sea truth data with the corresponding spectral signatures extracted
from station areas on the atmospherically pre-processed AOI images in the selected frames,
were preliminarily tested using the MLRA approaches, available within the ENMAP
toolbox running in the QGIS environment [38].

During the preliminary phase, in addition to the usual linear regression, the machine
learning regression algorithms tested were: Gaussian process regressor (GP), kernel ridge
(KR), linear support vector machine regressor (LSVR), partial least square (PLS), random
forest tree (RF) and support vector machine (SVR). Most of these approaches can provide
effective and efficient solutions for regression and classification supervised tasks in EO
data applications [30,33,34], using the preventive and effective transformation of the raw
variables into higher dimensional representations of feature space, via different kernel
functions, with the capability to suitably handle non-linearity of models with collinearity
and other weaknesses in calibration/training data. The support vector machine algo-
rithms (LSVR and SVR) are based on the non-parametric supervised statistical learning
technique, with robustness against outliers and limited training. They are able to estimate
a hyperplane in the feature space that minimizes misclassifications. The RF consists of
a group of decision trees induced by different sub-sets of the training data. Each tree in
the forest casts a vote for the class with which a given analysis unit (in this case, a given
segment) should be associated. The class with the most votes is the one associated with
the segment [33]. Various statistical performance indicators were considered, starting from
those of different error metrics arising from the difference between modelled/measured
values under the form of mean error (ME), mean absolute error (MAE), root mean square
error (RMSE), mean square error (MSE) and median absolute error (MedAE). In addition,
others, linked to correlation between variables, such as ratio of performance to Deviation
(RPD), squared Pearson’s (r2), explained variance score and coefficient of determination
(R2) were also included. For the parameters of the first group based on different error
metrics, minimization of their absolute values is required, while for others, linked to the
correlation between calibration measurements, absolute maximum values are the best ones
when superior to one for RPD and close to 1 for the absolute values of the others.
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The supervised classification of the PO meadows and seabed covers in the coastal
shallow waters of Lampedusa was implemented using the GP, LSVC, RF and SVR MLCA,
introduced above [34,35]. The training/validation set was obtained from point samples
randomly extracted (stratified scheme) from various areas of the side scan sonar map,
previously verified on available historical maps and georeferenced in order to guarantee its
satisfying overlay with the PRISMA and S2 frames (RMS 1.5 pix). The relative performance
of classifiers was evaluated via different accuracy metrics based on overall accuracy (OA),
K-statistics (k) and mean-F1 accuracy parameters, derived from the related confusion
matrices [26], with the best results linked to the maximization of values.

All the EO multi/hyperspectral data, extracted from images (previously selected by
visual inspection of quick look) and subsequently corrected atmospherically using the
available preprocessing options, was used for modeling through MLA in the regression and
classification procedures. The selection of the best combination of frames, preprocessing
option, and MLA, in terms of global performance was accomplished based on results
obtained in the validation step implemented through a 3-fold cross-validation method.
This latter includes a random selection into three groups of the available sea truth data and
related spectral signatures, and then one of them is used for calibration/training and the
remaining two for validation/accuracy assessment. This step is repeated twice using the
other two group combinations, and then the final values of the performance indicators are
obtained as averages of the three partial outputs. Consequently, the final output choice was
then performed, based on the performance parameters obtained in the modeling phase,
for each frame and related atmospheric preprocessing option and specific MLA algorithm
used. The thematic maps of the LAI-c and density continuous distributions of Pantelleria
PO meadows and the seabed classes, including PO, of Lampedusa, were produced using
the best combination previously found.

The PO density distribution so obtained, coupled with the related bathymetry, allowed
us to assess a four-class map of the health of PO meadows along the entire coast of
Pantelleria island on the basis of the model first proposed by Pergent [39] and here suitably
coded in the ERDAS-Imagine spatial modeler software environment. The model was
developed several years ago with the support of an ample data set of sea truth observations
and on the basis of the standard PO density distributions within a bathymetric range of 20
to 30 m. It includes 4 PO health classes, where the first two are disturbed meadows with a
decreasing level of degradation, and the last two are healthy ones.

3. Results

Table 1 includes LAI, shoot density (Den) and related cover (c) data, assessed from
laboratory and in situ measurements collected on PO meadows during the 2015 and
2016 campaigns. The calculated uncertainties of each biophysical parameter were indicated
in the right columns of the main values with the same label, starting with a capital D. The
cover values, produced by the on-purpose developed semiautomatic procedure using the
digital underwater imagery of PO plots, were exploited to obtain refined values of the
LAI (LAI-c). These refined values are lower compared to uncorrected ones and could be
considered as a spatial density of LAI(m2/m2)], more oriented to EO data calibration, than
usual LAI evaluations at meadow level. In fact, they showed a better correlation with EO
spectral reflectance responses of the reference area. The graph in Figure 7, displays the
corrected (using % cover) and uncorrected LAI values, obtained from the data collected
during the two sea truth campaigns.

Due to patchy and fragmented distributions, the LAI-c data is all lower than the
corresponding uncorrected ones, while the values measured in 2016 are significantly less
than those acquired in 2015 at the same station. The sea truth campaigns were carried out
respectively in the early/middle of August 2015 and in late October 2016.
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Table 1. Biophysical parameters estimates derived from sea truth data collected in the 2015 and 2016 campaigns, and
laboratory biometric measurements for all the stations. The station n. 4 was introduced in 2016.

2015 2016

Bath. LAI DLAI Den. Dden Cov LAI-c DLAI-c LAI DLAI Den. Dden Cov LAI-c DLAI-c

st. (m) m2/m2 m2/m2 sh/m2 sh/m2 % m2/m2 m2/m2 m2/m2 m2/m2 sh/m2 sh/m2 % m2/m2 m2/m2

1 10 3.37 0.86 112.80 37.48 69.20 2.33 0.59 1.57 0.51 61.60 10.807 43.65 0.69 0.22
2 20 2.19 0.73 139.20 10.33 65.70 1.44 0.48 1.13 0.36 65.60 19.308 47.15 0.53 0.17
4 30 1.83 0.40 54.40 17.573 23.15 0.42 0.09
3 31 2.62 1.21 121.60 33.57 48.90 1.28 0.59 1.05 0.51 80.80 15.849 33.80 0.35 0.17
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Figure 7. LAI assessment with LAI-c related values, corrected using cover estimates provided by the semiautomatic
segmentation procedure, for the 2015 and 2016 sea truth campaigns. The station values were reported according to their
growing bathymetry.

At the beginning of autumn, the PO, such as terrestrial photosynthetic plants, loses
both the old leaves and the ends of the younger ones often damaged by the first storms,
which we find on the beaches as biodegradable waste material. Therefore, the decrease
in LAI and biomass observed in the measurements relating to the two campaigns may
likely be due to the different seasonal vegetative stage linked to the dates on which they
were conducted. According to the light attenuation with bathymetry, the LAI parameters
both decrease as depth increases from sampling station 1 to 4 (Figure 7). The PO density
trend instead does not show an inverse dependence on the bathymetry, but it evidences
the decreases linked to the different seasonal stage of PO plants in the two campaigns.
The measured biomass shows a decrease in the middle stations in 2015, while in 2016 the
measurements consistently rise with the bathymetry, but both with the related uncertainties
that reduce their reliability (Table 2).

Table 2. Biomass estimates as fresh (Bio) and dry (Biod) specific weights (per shoot), derived from samples data collected in
the 2015 and 2016 sea truth campaigns, and laboratory biometric measurements for all the stations. The station n. 4 was
introduced in 2016.

2015 2016

Bath. Bio
(F.W.)

DBio
(F.W)

Biod
(D.W.)

DBiod
(F.W)

Bio
(F.W.)

DBio
(F.W)

Biod
(D.W.)

DBiod
(F.W)

st. (m) g/sh g/sh g/sh g/sh g/sh g/sh g/sh g/sh

1 10 8.190 1.644 1.280 0.198 3.383 2.316 0.675 0.359
2 20 4.840 1.800 0.900 0.248 4.099 2.450 0.863 0.398
4 30 4.307 2.732 0.804 0.387
3 31 7.37 1.88 1.24 0.29 6.267 2.386 1.005 0.396
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Referring to EO data, the visual selection of the potentially exploitable imagery was
carried out by discharging those affected by clouds over the interest area and water
turbidity patterns from sea currents on the water surfaces to be monitored.

The removal of atmospheric noise (mainly from aerosol variable distribution over
the water surfaces of interest) from the multispectral frames acquired by the S2 MSI
sensor was first accomplished through the abovementioned ACOLITE operational tool.
The S2 multispectral images selected for Pantelleria were acquired on 30 August 2015
and 21 November 2016, based on the previously described criteria. Similarly, the frames
identified for Lampedusa have been acquired on 21 August 2016 and 01 August 2020
respectively, for S2 and PRISMA sensors. Figure 8 shows the results of the ACOLITE
DSF modelling for the S2 frames acquired on 30 August 2015 (a) and 14 August 2016 (b),
while Figure 9 displays the results of atmospheric correction steps performed using the
different tools/options available, including those provided by the ICOR code for adjacency
effects removal.
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Figure 8. ACOLITE dark Spectrum modelling Fit (DSF) for the S2 MSI multispectral images acquired on 30 August 2015
(a) and 14 August 2016 (b). The sensor zenithal angle and AOD retrieved at 550 nm were also reported.

In the previous Figure 6, a combination of system corrected (BOA) PRISMA VIS chan-
nels is displayed as the background of the distribution of seabed training classes derived
from the s. s. sonar map. In Figure 10, a different false color image of atmospherically
corrected (BOA) hyper-spectral PRISMA components, in the blue-green range, is reported.

The point-pixel spectral signatures, extracted from the atmospherically preprocessed
images of the areas of sampling stations of Pantelleria, were coupled with the related LAI-c
values derived from sea truth measurements in order to assess the regression models using
the different MLRA algorithms.

Given the high water penetration of the blue-green light made exploitable through the
various PRISMA bands, in Figure 10, many costal seabed features can be better identified
as the bluish areas on the left-lower coast of the island, corresponding to thin sand cover.

The graphs in Figure 11 show the best regression models assessed from the 30 August
2015 and 22 November 2016 S2 WLR distributions provided by the ACOLITE code. These
best models were estimated using respectively the KR and LSVR MLRA.

In the graphs, each dot represents a different pixel-point spectral signature extracted
from the preprocessed multispectral data of the corresponding sampling station areas.
The graphs also shows statistic parameters tables including p-values (Prob < |t|) and
p-values (F) of F-statistic (as Prob < F), highlighting the significant confidence levels of the
assessed models.
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Figure 9. Results from the different atmospheric corrections applied to the S2 MSI TOA multispectral
data of Pantelleria island: ACOLITE BOA (Bottom of Atmosphere) system corrected (a); ACOLITE
WLR (Water leaving Radiance/reflectance) (b); ICOR BOA radiance/reflectance (c).
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Figure 11. Measured vs. predicted LAI-c obtained from best models estimated using the 30 August 2015 (a) and 22 November
2016 (b) S2 preprocessed (WLR) frames of Pantelleria. The models were assessed respectively through KR and LSVR MLRA
algorithms. The resulting R2 coefficients are 0.886 (a) and 0.753 (b) while the related t and F statistic tables with p-values
(Prob > |t|) and p-value (Prob > F) were included in the graphs.

Table 3 includes the list of the best combinations found at the level of S2 frames, pre-
processing options, and MLRA, with the related performance parameters for the models
of PO LAI-c distribution on the Pantelleria coasts for the 2015 and 2016 years. The ATM
column of Table 3 embraces different radiometric preprocessing options. In particular,
ACO + the suffixes HW and HS refer respectively to WLR and BOA (with sun-glint removal
and without adjacency correction), while ICOR indicates BOA with adjacency correction
and without sun-glint removal.
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Table 3. Best combinations found for regression models of PO LAI-c distribution in Pantelleria coast, using preprocessed S2
frames and sea truth data of 2015 and 2016 with different MLRA. The EO data have been atmospherically corrected using
diverse options indicated under the ATM column.

Date ATM MAE RMSE MSE r2 R2 MLRA

30 August 2015 ACO-HW 0.2912 0.3702 0.1371 0.8173 0.8168 KR
30 August 2015 ICOR 0.3084 0.4473 0.2001 0.7552 0.7359 RF
30 August 2015 ACO-HW 0.281 0.4568 0.2087 0.7755 0.7211 RF
30 August 2015 ACO-HS 0.3039 0.4231 0.179 0.7815 0.7609 SVR

08 December 2015 ACO-HW 0.3765 0.4588 0.2105 0.7449 0.7156 KR
22 November 2016 ACO-HW 0.0436 0.0495 0.0024 0.8438 0.8431 LSVR

14 August 2016 ACO-HS 0.1028 0.1217 0.0148 0.7182 0.7147 PLS

A subset of values obtained for the most relevant regression performance parameters
were also reported with the indication of the exploited MLRA. The best results for the years
2015 and 2016 were obtained using respectively the frames of 30-08 and 22-11, preprocessed
with ACOLITE for WLR retrieval. For these frames, the regression models with the highest
performance were those provided by KR and LSVR MLRA, with R2 values of 0.81 and 0.84.
The inferior results for both years, in terms of error and correlation performance parameters,
of the BOA distribution provided by ACOLITE and ICOR, preliminarily suggest that the
WLR retrieved by ACOLITE is the most effective atmospheric preprocessing method to
allow seagrass mapping. The most effective MLRA with the 2015 frames following the KR
were SVR and RF, while for 2016, the best were LSVR and PLS. The differences between the
ranges of absolute values of calibration measurements acquired in the two campaigns and
the internal variation within each dataset may involve the diverse capacity of a specific
MLRA to better model the required trends.

As stressed before, due to different campaign dates, the 2015 LAI calibration values are
significantly higher than the related values measured in 2016, with less discriminability of
measurement stations and consequently different MLRA effectiveness in distribution mod-
elling. In any case, the regression global performance, in terms of both error and correlation
parameters, achieved the best result using the preprocessed frame of 22 November 2016
with the LSVR model, followed by that of 2015 provided by the KR MLRA (Table 3). The
local distributions, assessed using the best 2015 and 2016 models, are reported in Figure 12.
Their PO patch distributions were also in satisfactory accordance with the preexisting
information and maps available, even though they were not updated (i.e., M.A.T.T.M.-
SiDiMar. GIS-Geodatabase, 2008). Since the latter are mainly based on observations of
the summer period, the agreement of the 2016 autumn distribution (more affected by thin
cloud presence at the upper corner of the area of interest) is less strong. Furthermore, from
a qualitative comparison with this auxiliary GIS information (SidiMar), it happens that the
model estimated for PO distribution in 2015 through the KR MLRA is less stable spatially
at global level and less effective for the correct mapping of the PO of the entire island than
that derived from the RF (Table 3, Figure 13), although the latter is less performant with
sea truth point data.

Due to different seasonal development periods of PO in the sea truth campaign dates,
a direct comparison between the LAI-c distributions is useless for assessing the potential
impact of the ISWEC prototype, but in any case, the LAI-c map of 2016 does not show
a significant discontinuity and reduction in the proximity of the converter plant. This
sug-gests that the installation of the prototype, thanks to its technical solution to minimize
the interaction with the seabed beneath (i.e., floating mooring), did not significantly impact
the nearby PO meadows.

The PO density (shoots/m2) distribution was assessed using the WLR derived from
the 30 August 2015 S2 frame through SVR, which has been found to be the most performant
MLRA, although with poor parameter values (r2 = 0.401, R2 = 0.316). The PO health map
based on the Pergent model, obtained from these EO derived density and bathymetry
distributions, is shown in Figure 14. In general, from the health map, you can see that most
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of the PO meadows on the Pantelleria coast are in equilibrium with normal or high density
and there are not areas of abnormal density, with highly disturbed meadows. Small areas
of stressed PO (disturbed—low dens.) meadows were detected in proximity to the harbor,
probably linked to the concentration of anthropogenic activities and ship traffic.
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Table 4 includes the performance parameters evaluated for classification maps ob-
tained through different MLCA using the BOA hyperspectral data of Lampedusa, ac-quired
by the PRISMA sensor on 11 August 2020. The results obtained through SVC and LSVC
were the two best (evaluated O.A. respectively, 82.64 and 78.46) while those related to RF
and GP ranked correspondingly at intermediate and worst levels.
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Figure 14. Four density derived classes of PO health in Pantelleria coast, within 20–30 m bathymetry range, according to
Pergent model.

Table 4. Accuracy assessment parameters estimated for seabed and PO thematic maps obtained by supervised classification
of PRISMA (BOA) data through different MLCA.

MLCA

GPC LSVC RF SVC

parameter Estimate
[%]

95 % Confidence
Interval [%]

Estimate
[%]

95 % Confidence
Interval [%]

Estimate
[%]

95 % Confidence
Interval [%]

Estimate
[%]

95 % Confidence
Interval [%]

Overall
Accuracy 24.76 22.0 27.44 78.46 74.0 82.83 76.53 72.0 80.97 82.64 79.0 86.54

Kappa
Accuracy 7.44 −3.0 17.88 74.02 68.51 79.53 71.71 66.02 77.4 79.09 74.03 84.14
Mean F1
Accuracy 13.76 - 79.21 - 77.78 - 83.39 -

Table 5, lists the best of accuracy parameters for classification of PRISMA hyperspectral
data coupled with those obtained for S2 MSI multispectral data, preprocessed through the
different radiometric preprocessing options (BOA and WLR water-oriented atmospheric
with sun-glint and adjacency effects removal) under the ATM column. Here the accuracy
metric shows that, in general, the water oriented ACOLITE preprocessing (prefix ACO) of
S2 data performs better than that of ICOR (BOA and adjacency effect removal). Moreover,
the ACOLITE BOA, including sun-glint (ACO-HS), is less effective than WLR ACOLITE
(ACO-HW). The following figures display the thematic maps obtained using the SVC
MLCA, with data from PRISMA hyperspectral BOA VIS (Figure 15) and S2 multispectral
WLR (Figure 16), acquired on the dates indicated (Table 5).

The retrieved seabed class distribution, in addition to the high accuracy metric re-
ferring to sea truth (side-scan sonar map), shows good agreement with each other and
with historical data (SiDi MAR). As regards the PO meadows distribution. As regards the
distribution of other seabed classes, there is a slight difference in the percentage of rock
coastal areas compared to those with fine sand in the two thematic EO derived products.
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Table 5. Accuracy assessment parameters metric estimated for seabed and PO thematic maps obtained by supervised
classification of S2 and PRISMA EO data obtained from various preprocessing options (ATM column) by means of different
MLCA. The EO data have been atmospherically corrected using diverse options indicated under the ATM column. The bold
indicate the highest values.

Date MLCA Sensor ATM
Overall

Accuracy
(OA)

OA 95%
Confidence

Intervals (%)

Kappa
Accuracy

(K)

K 95%
Confidence

Intervals (%)
Mean F1
Accuracy

21 August 2016 SVC S2 ACO-HW 82.22 78.0 86.01 78.67 73.94 83.4 82.32
21 August 2016 RF S2 ACO-HW 78.33 74.0 82.28 74.0 68.92 79.08 77.86
21 August 2016 SVC S2 ACO-HS 80.56 77.0 84.47 76.67 71.77 81.56 80.56
21 August 2016 RF S2 ACO-HS 79.17 75.0 83.1 75.0 69.99 80.01 78.88
11 August 2020 SVC PRISMA BOA 82.64 79.0 86.54 79.09 74.03 84.14 83.39
11 August 2020 LSVC PRISMA BOA 78.46 74.0 82.83 74.02 68.51 79.53 79.21
21 August 2016 SVC S2 ICOR 77.78 74.0 81.73 73.33 68.21 78.46 77.08
21 August 2016 RF S2 ICOR 76.67 73.0 80.71 72.0 66.77 77.23 76.34
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Figure 15. PO and seabed distribution classes of Lampedusa coast, assessed through SVR MLCA
using PRISMA BOA hyperspectral data acquired on 11 August 2020. The PRISMA panchromatic
channel is used for the land island area, while the black region refers to the unclassified (confidence
level < 80%).

The PRISMA thematic product shows a better capacity to detect rocks and intermediate-
coarse sand areas and a poorer PO patch geometric characterization, probably due to its
geometric resolution (30 m), lower than that of S2 (10 m). In both the PRISMA and S2
thematic maps, the PO areas are in agreement with test data (side scan sonar) but tend to be
overestimated respect to the older distribution (SidiMar), with a different detection of the
coarse sand dunes area in the southern part of the island. Ultimately, although the PRISMA
sensor with its multiple narrow bands in the visible with basic atmospheric preprocessing
has demonstrated the best thematic accuracy metric (O.A. = 82.64), the results of the S2
sensor, suitably preprocessed using water surface options, are slightly lower (O.A. = 82.22),
with a difference of less than 5%.



Sustainability 2021, 13, 13715 24 of 27

Sustainability 2021, 13, x FOR PEER REVIEW 25 of 29 
 

 
Figure 15. PO and seabed distribution classes of Lampedusa coast, assessed through SVR MLCA 
using PRISMA BOA hyperspectral data acquired on 11 August 2020. The PRISMA panchromatic 
channel is used for the land island area, while the black region refers to the unclassified (confidence 
level < 80%). 

 
Figure 16. PO and seabed classes distribution of Lampedusa coast assessed through SVR MLCA 
using S2 WLR multispectral data acquired on 21 August 2016. The S2 BOA green band (560 nm), is 
used for the land island area. 

4. Conclusions 
The PO meadows and seabeds of Pantelleria and Lampedusa islands were 

serviceably monitored and mapped through the developed methodology based on the EO 

Figure 16. PO and seabed classes distribution of Lampedusa coast assessed through SVR MLCA
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4. Conclusions

The PO meadows and seabeds of Pantelleria and Lampedusa islands were service-
ably monitored and mapped through the developed methodology based on the EO data
provided by the last generation of the S2 MSI and PRISMA multi/hyperspectral HR sen-
sors, with their ampler selection of suitable frames and acquisition channels coupled with
effective radiometric preprocessing for removing the different atmospheric noises from
captured frames. Various approaches for coastal atmospheric preprocessing of EO data
were integrated with different machine learning algorithms to properly support the re-
gression/classification advanced modelling, calibrated/validated through sea truth data,
collected and processed by means of original methods.

The distribution of density and LAI of PO meadows on the Pantelleria coast were
estimated through S2 EO data, focusing on the location of the ISWEC energy converter
prototype on the north-east coast, where the sea truth calibration data was collected in
2015 and 2016. The LAI (m2/m2) and density (shoots/m2) distributions of PO meadows
were effectively assessed by means of preprocessed EO multispectral data using the most
performant MLRAs (R2 = 0.81, R2 = 0.84). In this context, the S2 WLR data, atmospherically
corrected using the advanced ACOLITE package, have been found to be the most effective
for monitoring and modelling the PO and seagrass biophysical parameter distributions.

The PO health distribution map, derived from estimated density according to the
Pergent model, highlighted the satisfactory condition of meadows in the vicinity of the
ISWEC and throughout the island, except in small areas near the harbor, which are likely
more subjected to anthropogenic impacts.

The preprocessed S2 and PRISMA EO data were successfully exploited for mapping
the seabed and PO of Lampedusa’s shallow waters using different MLA classification
approaches based on supervised schemes. The accuracy metric of the classification map
obtained from the PRISMA hyperspectral data (BOA atmospherically corrected without
sun-glint and adjacency effects removal) was the best. The results, in terms of the accu-
racy metric of the classification based on S2 WLR data and the most performant MLCA,



Sustainability 2021, 13, 13715 25 of 27

were a bit lower (O.A. = 82.22), while the others, corresponding to different processing
options follow.

The results above described may provide a preliminary indication of the suitability
of the last generation multispectral S2 MSI and hyperspectral PRISMA sensors for coastal
ecosystems and shallow water monitoring, specifically for PO mapping purposes, strongly
dependent on the radiometric preprocessing procedure for atmospheric noise removal. The
integration of atmospheric preprocessing packages for EO HR multi/hyperspectral data to
couple the WLR retrieval with the removal of the sun-glint and adjacency effects is required,
also for the ongoing hyperspectral missions (i.e., ENMAP), in the perspective of further
improvement of the developed methodology. The results achieved demonstrate that the
integrated use of these recent satellite HR remote sensing multi/hyperspectral techniques
through advanced MLA, even supported by limited on-site surveys, represents an effective
and extensive mapping tool for supporting the sustainable management of island coastal
environments and PO habitats in shallow waters. This is also guaranteed in the case of
island coasts with high dynamic of sea currents, where it is of interest to assess the impact
of the introduction of advanced systems for the exploitation of sea wave renewable energy
on marine ecosystems and coastal environments, characterized by high biodiversity but
significantly vulnerable to the pressure of anthropic activities and to climate change effects.

Author Contributions: Conceptualization, methodology (F.B. and C.M.), Sea truth collection/processing
& validation (C.M., L.D.C., C.G., G.M. and A.G.D.S.), resources, writing review and editing (F.B.,
C.M., G.S., M.V.S. and All); supervision (F.B. and C.M.). All authors have read and agreed to the
published version of the manuscript.

Funding: This research was conducted within the framework of the Marine Hazard project (PON-
FESR 2020–2022, PON03PE_00203) and multi-year national program of National Electric System
Research (RdS) financed by the MISE (Ministry of Economic Development) for research and develop-
ment activities in the electricity sector and to improve the cost-effectiveness, safety, and environmental
compatibility, of energy production.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Acknowledgments: Acknowledgements to the ENEA station for climate observation Roberto Sarao
of Lampedusa islands for administrative and technical support to the work in sea truth and EO
data collection and pre-processing. In addition, the authors acknowledge the partnership agreement
between ENEA and CNR-IBE for the CAL/VAL activity of the PRISMA sensor (PRISCAV project),
supported by ASI.

Conflicts of Interest: The authors declare no conflict of interest. ENEA is not responsible for any use,
even partial, of the contents of this document by third parties and any damage caused to third parties
resulting from its use.

References
1. Bidak Laila, M.M.; Heneidy Selim, Z.; Li, W.; Fakhry Amal, M.; El kenany Eman, T.; El Askary Hesham, M.; Elkareem Mohamed,

S. Mediterranean Tapeweed Posidonia oceanica (L.) Delile, an Endangered Seagrass Species. Egypt. J. Bot. 2021, 61, 335–348.
[CrossRef]

2. Gnisci, V.; Cognetti De Martiis, S.; Belmonte, A.; Micheli, C.; Piermattei, V.; Bonamano, S.; Marcelli, M. Assessment of the
ecological structure of Posidonia oceanica (L.) Delile on the northern coast of Lazio, Italy (central Tyrrhenian, Mediterranean).
Ital. Bot. 2020, 9, 1–19. [CrossRef]

3. Madonia, A.; Caporale, G.; Penna, M.; Bonamano, S.; Marcelli, M. Assessment of the Photosynthetic Response of Posidonia
oceanica (Linneaus) Delile, 1813 along a Depth Gradient in the Northern Tyrrhenian Sea (Latium, Italy). Geosciences 2021, 11, 202.
[CrossRef]

4. Stramska, M.; Aniskiewicz, P. Recent Large Scale Environmental Changes in the Mediterranean Sea and Their Potential Impacts
on Posidonia oceanica. Remote Sens. 2019, 11, 110. [CrossRef]

5. Hastings, R.; Cummins, V.; Holloway, P. Assessing the Impact of Physical and Anthropogenic Environmental Factors in
Determining the Habitat Suitability of Seagrass Ecosystems. Sustainability 2020, 12, 8302. [CrossRef]

http://doi.org/10.21608/ejbo.2021.67942.1652
http://doi.org/10.3897/italianbotanist.9.46426
http://doi.org/10.3390/geosciences11050202
http://doi.org/10.3390/rs11020110
http://doi.org/10.3390/su12208302


Sustainability 2021, 13, 13715 26 of 27

6. Mannino, A.M.; Borfecchia, F.; Micheli, C. Tracking Marine Alien Macroalgae in the Mediterranean Sea: The Contribution of
Citizen Science and Remote Sensing. J. Mar. Sci. Eng. 2021, 9, 288. [CrossRef]

7. Zenone, A.; Pipitone, C.; D’Anna, G.; La Porta, B.; Bacci, T.; Bertasi, F.; Bulleri, C.; Cacciuni, A.; Calvo, S.; Conconi, S.; et al.
Stakeholders’ Attitudes about the Transplantations of the Mediterranean Seagrass Posidonia oceanica as a Habitat Restoration
Measure after Anthropogenic Impacts: A Q Methodology Approach. Sustainability 2021, 13, 12216. [CrossRef]

8. Boudouresque, C.F.; Blanfuné, A.; Pergent, G.; Thibaut, T. Restoration of Seagrass Meadows in the Mediterranean Sea: A Critical
Review of Effectiveness and Ethical Issues. Water 2021, 13, 1034. [CrossRef]

9. Micheli, C.; Cupido, R.; Lombardi, C.; Belmonte, A.; Peirano, A. Changes in genetic structure of Posidonia oceanica at Monterosso
al Mare (Ligurian Sea) and its resilience over a decade (1998–2009). Environ. Manag. 2012, 50, 598–606. [CrossRef] [PubMed]

10. Micheli, C.; D’Esposito, D.; Belmonte, A.; Peirano, A.; Valiante, L.M.; Procaccini, G. Genetic diversity and structure in two
protected Posidonia oceanica meadows. Mar. Environ. Res. 2015, 109, 124–131. [CrossRef]

11. Hossain, M.S.; Bujang, J.S.; Zakaria, M.H.; Hashim, M. The application of remote sensing to seagrass ecosystems: An overview
and future research prospects. Int. J. Remote Sens. 2015, 36, 61–114. [CrossRef]

12. Borfecchia, F.; Cimbelli, A.; De Cecco, L.; Della Rocca, A.B.; Martini, S.; Barbini, R.; Colao, F.; Fantoni, R.; Palucci, A.; Ribezzo,
R. Integrated remote sensing mission in the Venice Lagoon. In Proceedings of the Remote Sensing of Vegetation and Sea 1997,
Satellite Remote Sensing III. Taormina, Italy, 23–27 September 1996; Volume 2959. [CrossRef]

13. Borfecchia, F.; Micheli, C.; Cibic, T.; Pignatelli, V.; De Cecco, L.; Consalvi, N.; Caroppo, C.; Rubino, F.; Di Poi, E.; Kralj, M.; et al.
Multispectral data by the new generation of high-resolution satellite sensors for mapping phytoplankton blooms in the Mar
Piccolo of Taranto (Ionian Sea, southern Italy). Eur. J. Remote Sens. 2019, 52, 400–418. [CrossRef]

14. Hwang, C.; Chang, C.-H.; Burch, M.; Fernandes, M.; Kildea, T. Spectral Deconvolution for Dimension Reduction and Differentia-
tion of Seagrasses: Case Study of Gulf St. Vincent, South Australia. Sustainability 2019, 11, 3695. [CrossRef]

15. Sciortino, M.; De Felice, M.; De Cecco, L.; Borfecchia, F. Remote sensing for monitoring and mapping Land Productivity in Italy:
A rapid assessment methodology. CATENA 2020, 188, 104375. [CrossRef]

16. Borfecchia, F.; Crinò, P.; Correnti, A.; Farneti, A.; De Cecco, L.; Masci, D.; Blasi, L.; Iantosca, D.; Pignantelli, V.; Micheli, C.
Assessing the Impact of Water Salinization Stress on Biomass Yield of Cardoon Bio-Energetic Crops through Remote Sensing
Techniques. Resources 2020, 9, 124. [CrossRef]

17. Pollino, M.; Cavallini, A.; Caiaffa, E.; Borfecchia, F.; De Cecco, L. Geomatics to Analyse Land Transformation in Mozambique? The
Nacala Corridor Case Study. In New Metropolitan Perspectives. NMP 2020. Smart Innovation, Systems and Technologies; Bevilacqua,
C., Calabrò, F., Della Spina, L., Eds.; Springer: Cham, Germany, 2020; Volume 178. [CrossRef]

18. Borfecchia, F.; Frezzotti, M. Satellite Image Mosaic of the Terra Nova Bay Area, Victoria Land, Antarctica. Mem. Soc. Geol. IT 1991,
46, 521–523.

19. Pham, T.D.; Xia, J.; Ha, N.T.; Bui, D.T.; Le, N.N.; Tekeuchi, W. A Review of Remote Sensing Approaches for Monitoring Blue
Carbon Ecosystems: Mangroves, Seagrasses and Salt Marshes during 2010–2018. Sensors 2019, 19, 1933. [CrossRef]

20. Borfecchia, F.; Consalvi, N.; Micheli, C.; Carli, F.M.; Cognetti De Martiis, S.; Gnisci, V.; Piermattei, V.; Belmonte, A.; De Cecco, L.;
Bonamano, S.; et al. Landsat 8 OLI satellite data for mapping of the Posidonia oceanica and benthic habitat of coastal ecosystems.
Int. J. Remote Sens. 2018, 39, 1–28. [CrossRef]

21. Medina-Lopez, E. Machine Learning and the End of Atmospheric Corrections: A Comparison between High-Resolution Sea
Surface Salinity in Coastal Areas from Top and Bottom of Atmosphere Sentinel-2 Imagery. Remote Sens. 2020, 12, 2924. [CrossRef]

22. Colomer, J.; Serra, T. The World of Edges in Submerged Vegetated Marine Canopies: From Patch to Canopy Scale. Water 2021,
13, 2430. [CrossRef]

23. Bracco, G.; Giorcelli, E.; Giorgi, G.; Mattiazzo, G.; Passione, B.; Raffero, M.; Vissio, G. Performance assessment of the full scale
ISWEC system. In Proceeedings of the 2015 IEEE International Conference on Industrial Technology (ICIT), Seville, Spain,
17–19 March 2015; pp. 2499–2505. [CrossRef]

24. Borfecchia, F.; Micheli, C.; Belmonte, A.; De Cecco, L.; Gomez, C.; Bracco, G.; Mattiazzo, G.; Struglia, M.V.; Sannino, G. Valutazione
dell’impatto ambientale del sistema ISWEC tramite tecniche integrate di Remote Sensing ed in situ. In Proceeedings of the ASITA
2016, Cagliari, Italy, 8–10 November 2016; ASITA: Milano, Italy; pp. 67–80, ISBN 978-88-941232-6-5.

25. Borfecchia, F.; Micheli, C.; De Cecco, L. Stima Degli Impatti Sugli Ecosistemi Costieri da Impianti Waves Energy Tramite Tecniche di
Remote Sensing; ENEA Report RdS/PAR2014/224; ENEA: Rome, Italy, 2015.

26. Borfecchia, F.; Micheli, C.; Belmonte, A.; De Cecco, L.; Sannino, G.; Bracco, G.; Mattiazzo, G.; Struglia, M.V. Impact of ISWEC
sea wave energy converter on Posidonia oceanica meadows assessed by satellite remote sensing in the coastal areas of Pantelleria
island. In Proceeedings of the EGU General Assembly 2016, Vienna Austria, 23–28 April 2016; EGU: Munich, Germany, 2016.
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