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Abstract: Rooftop photovoltaics (PV) and electrical vehicles (EV) have become more economically
viable to residential customers. Most existing home energy management systems (HEMS) only focus
on the residential occupants’ thermal comfort in terms of indoor temperature and humidity while
neglecting their other behaviors or concerns. This paper aims to integrate residential PV and EVs
into the HEMS in an occupant-centric manner while taking into account the occupants’ thermal
comfort, clothing behaviors, and concerns on the state-of-charge (SOC) of EVs. A stochastic adaptive
dynamic programming (ADP) model was proposed to optimally determine the setpoints of heating,
ventilation, air conditioning (HVAC), occupant’s clothing decisions, and the EV’s charge/discharge
schedule while considering uncertainties in the outside temperature, PV generation, and EV’s arrival
SOC. The nonlinear and nonconvex thermal comfort model, EV SOC concern model, and clothing
behavior model were holistically embedded in the ADP-HEMS model. A model predictive control
framework was further proposed to simulate a residential house under the time of use tariff, such
that it continually updates with optimal appliance schedules decisions passed to the house model.
Cosimulations were carried out to compare the proposed HEMS with a baseline model that represents
the current operational practice. The result shows that the proposed HEMS can reduce the energy
cost by 68.5% while retaining the most comfortable thermal level and negligible EV SOC concerns
considering the occupant’s behaviors.

Keywords: home energy management; clothing behavior; electrical vehicle; thermal comfort; heating,
ventilation, air conditioning; photovoltaics

1. Introduction

There are about 100 million single-family homes in the U.S. that consume 36% of total
electricity while causing the peak system load in hot summer days [1]. The home energy
management system (HEMS) is one of the most promising tools to conserve electricity cost,
especially in the presence of the Internet of Things, smart appliances, smart meters, wireless
sensors, and energy storage. HEMS is capable of monitoring the energy usage of smart
appliances and subsequently sending the control commands to each controllable appliance
for energy cost savings and peak load reduction. A vast body of studies have demonstrated
that HEMS can efficiently reduce the electricity cost [2–8] and provide residential demand
flexibility and demand response (DR) (e.g., demand curtailment and demand shifting) in
response to the DR signal from distribution system operators to minimize grid congestion
and violations at peak load conditions [5]. In [9], a human-centered intelligent HEMS is pre-
sented while considering real-time control of DR equipment, which integrates ubiquitous
sensor data from the physical layer and the network layer to obtain electricity consumption
patterns and cognitively understand the behavior of residents.

The operational landscape of the distribution system is undergoing a radical trans-
formation. Particularly, increased distributed renewable energy resources and demand

Sustainability 2021, 13, 13826. https://doi.org/10.3390/su132413826 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-6269-770X
https://orcid.org/0000-0002-5223-6635
https://doi.org/10.3390/su132413826
https://doi.org/10.3390/su132413826
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su132413826
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su132413826?type=check_update&version=2


Sustainability 2021, 13, 13826 2 of 20

diversification are challenging the status quo. The installed capacity of residential photo-
voltaics (PV) systems is on the rise globally since its cost has been reduced by 64% since
2010 [10]. More and more families install and utilize PV as one clean and reliable power
resource. One study [11] has comprehensively demonstrated that utilizing the residential
PV affects the electricity consumption for the household under the uncertainty of the cost
of the PV system and occupant’s investment. Srikranjanapert et al. [12] found that the
government should promote the integration of HEMS with a PV system.

Meanwhile, the transportation industry, including both commercial and residential
sectors, has been experiencing one of the greatest technology transitions toward electrical
vehicle (EV) [13]. By 2030, EV sales are estimated more than 10% of the US new-vehicle
market share in a medium growth scenario [14]. EVs, as the home energy storage, will
play a more important role in providing vehicle-to-home (V2H) services in the presence of
residential PV. To coordinate the scheduling of the house load, a PV-EV integrated HEMS
could positively affect the household and the distribution network, creating a ’win-win’
scenario for both [15]. Moreover, Shafie-Khah et al. [6] incorporate the uncertainties of
distributed renewable energy (DRE) and EV to schedule the appliances in smart houses.
Mohammadi et al. [7] use a genetic algorithm to solve scheduling of many home equipment
such as EV, PV, clothes washer, dishwasher, etc., via the various residential loads. Wang et
al. proposed a multiobjective optimal method for HEMS based on the Internet of Things
system (i.e., ZigBee) in [16]. Jin et al. [17] integrated the machine-learning-based prediction
programming into HEMS that considers thermal comfort, energy cost, carbon emission,
and user convenience. Mojtaba et al. [18] applied a stochastic model predictive control
strategy to minimize the electricity cost and reduce the cost of EV battery degradation.
Wu et al. [8] integrate renewable energy system (RES) into EV charging station via a
finite-horizon Markov decision process (MDP) model while maintaining a satisfaction rate
of the demand. All the above works suggest that there has been a fast-growing interest in
integrating residential PV and EV into the HEMS in the research communities.

Another primary function of the HEMS is maintaining occupants’ comfort via tracking
occupants’ activities (behaviors) and understanding occupants’ preferences.
References [19–21] presented comprehensive research about the occupant’s behavioral
pattern in the HVAC system. An et al. [19] proposed a new key-performance index to
represent occupant’s air conditioning (AC) usage such as AC operating hours, fan coil
units’ operation hours, the ratio of AC-on days, etc. Wang et al. [20] proposed a model
linking the occupancy with an energy-cyber-physical system, which can potentially save
about 26.4% of energy consumption in the HVAC system. Hong et al. [21] explored the link
between occupant personality types with their behaviors of sharing energy-environment
control systems and interactions with their colleagues inspired by a five-factor model with
four dimensions: willingness to share control, knowledge of control, group decision behav-
ior, and adaptive strategies. However, all the above studies pertaining to the occupant’s
behaviors have not factored in the occupant’s clothing behaviors, which may drastically
affect the occupant’s thermal comfort.

The traditional way to design the HVAC system in the building is to consider the
building insulation and indoor temperature/humidity. However, clothing insulation is
also a significant factor for occupants’ thermal comfort. Specifically, Fanger et al. proposed
a thermal index, i.e., predicted mean vote (PMV) for occupant [22]. PMV takes humidity,
temperature, and clothing insulation, etc., into consideration to predict the thermal comfort
of occupants [23,24]. PMV has been widely adopted by many researchers in the context
of HVAC scheduling [25–29]. In reality, residential occupants can frequently adjust their
clothing, depending on the thermal conditions around them, on an hourly or subhourly
basis, as opposed to a constant clothing value in an entire day. The frequent clothing
adjustment is even more plausible under the COVID-19 outbreak, whereby many busi-
nesses worldwide shift from traditional office-based work operations to work-from-home
arrangements. Such adjustments can improve home demand flexibility and thus enable a
higher energy cost saving. One relevant study that explicitly considers clothing behaviors
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in PMV in the context of home energy management is the authors’ previous work [30],
which is first-of-its-kind in modeling the clothing behaviors as controllable variables to
optimally adjust the clothing levels for occupants. The authors believe that the hourly or
subhourly clothing adjustment should be fully captured and optimized in the residential
home energy management to model HVAC systems realistically. Considering clothing
behaviors and actions (donning/doffing) into the HVAC scheduling is meaningful and
innovative to enable a sustainable energy future in the residential sector.

As the EV may become the major (only) transportation for a household and even
for a sustained community, the expected EV state of charge would be another serious
concern for residential occupants [31–33]. In [31], the authors incorporated the dynamic of
driver’s behaviors into the EV charging model and proposed a stochastic game approach
to address the renewable energy uncertainty. Reference [32] introduces a time anxiety
concept to address the uncertain events in the charging duration and a game theory-based
approach to solve the optimal EV charging problem. Yan et al. [33] proposed a new index
to measure driving anxiety that to characterize the driver’s discomfort on the driving
range and uncertain events which are changed by the driving experience quantitatively.
However, all the related work above ignored the complex interaction between EV and
other major appliances such as PV and HVAC, resulting in piecemeal studies in the context
of the HEMS.

To tackle those problems, this paper studies the HEMS, consisting of HVAC, EV, and
PV, by taking into account three distinct categories of occupant behaviors: (1) clothing be-
haviors, (2) EV SOC concerns, and (3) PMV-based thermal comforts. A stochastic Adaptive
Dynamic programming (ADP) model [34] is modified and extended to optimally deter-
mine the setpoints of heating, ventilation, air conditioning (HVAC), occupant’s clothing
decisions and the EV’s charge/discharge schedule while considering uncertainties in the
outside temperature, PV generation, and EV’s arrival SOC. Nonlinear and nonconvex
models of thermal discomfort, EV SOC concerns and clothing behaviors are holistically
embedded in the ADP-HEMS model. A model predictive control framework is further
proposed to simulate a residential house under the time-of-use tariff such that it continually
updates with optimal appliance schedules decisions passed to the residential house model.
Simulations are systematically carried out to compare the results between the proposed
method and the baseline model. The contributions of this work are three-fold:

(1) To consider the occupant’s behaviors, i.e., thermal comfort, clothing behaviors, and
EV SOC concerns, a stochastic ADP-HEMS model is established to include HVAC, EV, and
PV under uncertainties.

(2) An MPC framework is further developed for co-simulating the proposed HEMS
model with a house model such that it continuously passes the HEMS decisions and
updates the house status for more accurate and realistic simulations.

(3) Cosimulations are carried out to compare the proposed ADP-HEMS with a baseline
case that represents the current operation for a residential house. The result shows that a
significant cost saving is achieved while the occupant’s various comfort is satisfied.

2. Background and Formulation
2.1. Background

The scheme of the proposed HEMS, shown in Figure 1, includes three interconnected
parts: a preprocessor, an ADP-based MPC model, and a house model. The Preprocessor is
mainly used for the analysis of the historical and forecast data collected from the cloud,
such as the occupant’s desired sleeping temperature, the daily energy consumption of EV,
and weather forecasts, etc. A deep neural network can be utilized to yield forecasts. The
ADP-based MPC model is an algorithmic function in the application layer to determine the
optimal actions for the controllable appliances. The details of this model are provided in the
subsequent sections. The house model is the physical model that executes the scheduled
setpoints obtained from the ADP-based MPC. In the house model, all the data are collected
by a central data collector from sensors and smart meters in the home. The occupant’s daily
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schedules, such as commute and travel plans, can be collected from the smartphone. Such
data will be feedback to the occupant-centric environment information module for data
analysis and calibration. Subsequently, the optimal schedule for HVAC and EV generated
by the HEMS is directly sent to the corresponding appliances, whereas the best actions
for clothing behaviors are sent to the occupant’s smartphone application as notifications.
The occupant can choose to either follow or ignore the notifications. Next, the occupants’
responses are recorded, and the occupant status is updated. The remainder of this section
shows the description of the HEMS formulation, consisting of HVAC, EV, and PV, with
detailed models of occupants’ thermal comfort, clothing behaviors, and EV SOC concerns.
Finally, a discussion of the proposed HEMS-MPC framework is displayed.

Figure 1. Conceptual diagram of proposed HEMS consisting of HVAC, EV, and PV with occupant’s
thermal comfort, clothing behaviors, and EV SOC concerns.

2.2. ADP-HEMS Formulation

A HEMS problem is a typical optimization problem modeled as a Markov decision
process (MDP) to minimize the occupant’s utility function while considering various
constrains at multiple levels, e.g., the occupant level, residential home level and distribution
grid level. In this paper, the proposed framework focuses on three types of controllable
variables, i.e., i = {HVAC, Clo, EV}. The indoor temperature sHVAC

t , the level of clothing
insulation sClo

t , and the SOC of EV sEV
t represent the variable state at time t. The associated

actions for those variables are HVAC input power aHVAC
t , clothing decision aClo

t , i.e.,
donning and doffing, and EV charging/discharging power aEV

t . Positive aEV
t values denote

charging actions, and negative values are for discharging actions. In addition, uncertainty
is taken into account such as the outside temperature is ũOUT

t , the EV arrival SOC ũSOC
t ,
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and PV generation ũPV
t . Arithmetically, the set tuple {st, at, ũt} simply depicts state, action,

and uncertainty of proposed HEMS:

{st, at, ũt} = {(sHVAC
t , sClo

t , sEV
t ), (aHVAC

t , aClo
t , aEV

t ), (ũOUT
t , ũPV

t , ũSOC
t )}

The primary function of HEMS is to find the optimal actions a∗t for minimizing the
expected weighted sum of the objective function Ot over the entire look-ahead horizon:

a∗t =arg min
at

E{
T

∑
t=1

Ot(st, at, ũt)} (1)

where Ot is a function of state st, action at, and uncertainty ũt, which is defined as follows:

Ot(st, at, ũt) = τDt · Dt(st, at, ũt) + τCt · Ct(st, at, ũt) (2)

where the objective function is composed of two components: (1) a discomfort function Dt
and (2) an energy cost function Ct. In (2), τDt and τCt are respectively weighted coefficients
associated with discomfort and the energy cost, the values of which can represent a different
type of occupants, i.e., cost-saving-seeking occupants or comfort-seeking occupants. Those
coefficients can be finely tuned by using historical simulation data. The occupant discomfort
function Dt is defined as:

Dt(st, at, ũt) =βPMV · |PMV(st)|+ βSOC · EVconcern
t

+ βClo · Clopenalty
t + βBat · Batpenalty

t

(3)

where PMVt, EVconcern
t , Clopenalty

t , Batpenalty
t are the occupant’s thermal comfort, EV SOC

concern, penalties on frequent clothing adjustments, and penalties on frequent switches
between charge and discharge, respectively; βPMV , βSOC, βClo, and βBat are the correspond-
ing coefficients. Additionally, |PMV(st)| is expressed in an absolute value format since
the most comfortable thermal state for the occupant is when PMV = 0. The energy cost
function Ct is defined as:

Ct(st, at, ũt) = ct pG
t ∆t (4)

where pG
t is the power exchange in kW between the grid and the house, ct is the electricity

price in $/kW paid by the occupant, and ∆t in hr is the time interval resolution. Note that
a positive pG

t denotes the action to purchase power from the utility and a negative pG
t for

selling power back to the utility. The power balance equation among PV, EV, HVAC, and
the power grid for the residential home is expressed as:

pG
t = aHVAC

t + aEV
t − ũPV

t , ∀t (5)

where the PV generation ũPV
t is taken as a stochastic input parameter with a time-series

forecast over the scheduling horizon.

2.3. Occupant’s Comfort Model
2.3.1. Thermal Comfort

Here, a simplified PMV model from [25] is adapted:

PMV(st) = a(sClo
t ) · sHVAC

t + b(sClo
t ) · Pa(sHVAC

t , rht)− c(sClo
t ), tw < t < ts (6)

where a(sClo
t ), b(sClo

t ) and c(sClo
t ) are associated coefficients, which are relevant to the

clothing insulation of the occupant and can be obtained under different clothing insulation
levels [25]; rht is the relative humidity; tw and ts are the occupant’s times of waking up
and going to bed, respectively. In general, the PMV is only considered when the occupant
is active at home, excluding the sleeping time. As seen, this model is only dependent on
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the indoor air temperature and water vapor pressure Pa(sH
t , rht) in kPa. The water vapor

pressure function is defined:

Pa(sHVAC
t , rht) = rht · 0.61121 · e(18.678−sHVAC

t /234.5)·(sHVAC
t /(257.14+sHVAC

t ) (7)

2.3.2. Clothing Behavior Model

The thermal insulation offered by the occupant’s clothing state is called clothing
insulation, which is quantified by the unit of clo. One unit of clo equates to 0.155 K×m2/W,
indicating the amount of clothing needed by a sedentary person to maintain thermal
comfort in an environment with 21 ◦C of air temperature, 50% of relative humidity, and
0.1 m/s of airspeed. A comprehensive list of clo values for selected garment types and
formulas can be found in the ASHRAE Standard 55 [23] and ASHRAE Handbook [35]
for assessing the insulation provided by a clothing ensemble. Table 1 lists the estimated
clo values of some typical business casual clothing ensembles. The clothing insulation is
typically partitioned into three ranges, i.e., Clo 1, Clo 2, and Clo 3, which are from 0.25 to
0.50, from 0.51 to 1.00, and from 1.01 to 1.65, respectively.

Table 1. Three ranges of clothing insulation for occupants.

sClo Value clo 1 clo 2 clo 3

Clothing insulation
range 0.25–0.50 0.51–1.00 1.01–1.65

Ensemble Example
(Shirt Level)

short-sleeve shirt +
thin trousers

(Sweater Level) thin
long-sleeve sweater +

long-sleeve shirt +
thick trousers

(Jacket Level) thick
suit jacket +

long-sleeve shirt +
thick trousers

As seen in Table 1, if sClo of a male occupant is equal to clo 2 and he is feeling cold,
he can exchange his thin sweater for a thick suit. Conversely, if he is feeling hot in such
a clothing state, he may take off his thin long-sleeve sweater, and replace his long-sleeve
shirt for a short-sleeve shirt. Analogously, a female occupant can adjust her clothing
insulation by adding or reducing layers of clothing, which in turn has a direct impact
on the occupant’s thermal comfort. Therefore, the optimal indoor temperature can be
drastically changed by the HEMS under different clo values. Figure 2 shows the PMV
curves defined in Equation (6) versus ambient temperature at different clo levels. The
clo levels impacts the associated coefficients a(sClo

t ), b(sClo
t ), and c(sClo

t ) in Equation (6),
resulting in three PMV curves for either gender of the occupant. In Figure 2, the most
comfortable temperature range, that is, when the PMV value is between −0.5 and 0.5, for
clo 1, clo 2, and clo 3 are highlighted in blue, yellow, and green, respectively.

sClo
t = sClo

t−1 + aClo
t (8)

sClo
t ≤ sClo

t ≤ sClo
t , ∀t (9)

aClo
t ≤ aClo

t ≤ aClo
t , ∀t (10)

Clopenalty
t = |aClo

t · aClo
t−1|, ∀t > 1 (11)
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Figure 2. PMV verus three-level clothing insulation.

To incorporate the occupant clothing states and actions, the clothing state transition
of the occupant is expressed in (8). The upper and lower bounds on the clothing state
and actions are modeled in (9) and (10). While, as is demonstrated in the numerical
simulations, the clothing behavior model provides greater flexibility for the HEMS to come
up with better HVAC schedules, frequent doffing and donning creates inconvenience for
the occupants. As a result, adding a penalty on clothing changing behavior in consecutive
time periods as modeled in (11) can avoid the problem of frequent doffing and donning.
This penalty is further added in (3) as a part of the overall occupant discomfort. Notice that
this clothing model of the occupant is formulated as a combinatorial optimization problem,
which may suffer the computational intractability issue in a large-scale HEMS problem.

2.3.3. EV Model with the Occupant’s SOC Concern

Due to the inaccurate estimation of the EV driving range, unforeseeable traffic condi-
tions, and potential early-than-expected departure time, an EV driver is typically fearful
of completely depleting the EV battery before reaching the destination. The definition
of the term, namely the SOC concern, represents the occupant’s concern caused by all
these factors. The SOC concern can be viewed as a reflection of the occupant’s behavior
proneness for charging the EV when it is parked at home. Therefore, a mathematical model
is formulated here to describe the occupant’s EV SOC concern as follows:

EVconcern
t = max

(
SOCe

t − sEV
t , 0

)
, ta ≤ t ≤ td (12)

The SOCe
t is the occupant’s expected SOC during the charging as follows:

SOCe
t =

k1

(
e−k2(t−ta)/(td−ta) − 1

)
e−k2 − 1

, ta ≤ t ≤ td (13)
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where ta and td are the EV arriving time and departing time, respectively; k1 and k2
are the shape parameters which can be established based on insights of the occupant’s
driving behavior, the occupant’s sensitivity to electricity price and the tolerance to SOC
concern [33]. Figure 3 provides a visible demonstration of how the SOC concern involves
overtime in a charging duration. The dark orange area represents the remaining EV SOC
concern, and light orange depicts the concern that is relieved when the actual SOC (sEV

t ) is
greater than the expected SOC (SOCe

t ) in the charging duration. Other EV constraints are
modeled as follows:

sEV
t = (1− λEV)sEV

t−1 +
ηEVaEV

t
CEV , ta + 1 ≤ t ≤ td (14)

sEV
t ≤ sEV

t ≤ sEV
t , ∀t (15)

aEV
t ≤ aEV

t ≤ aEV
t , ∀t (16)

Batpenalty
t = max

(
−(aEV

t−1 · aEV
t ), 0

)
(17)

Constraint (14) shows the state transition of EV when it is parked at home. λEV in (14)
captures its SOC loss caused by self-discharging when transitioning from one state to the
next [36]; ηEV represents the EV charge/discharge efficiency, which may differ between
charge and discharge actions made by the HEMS. Constraints (15) and (16) indicate that the
EV state and action (i.e., charging and discharging) must lie within its recommended SOC
and power limits. It is worth mentioning that V2H is considered in this paper; therefore,
the positive value of action aEV

t denotes charging, and negative aEV
t is for discharging.

Equation (17) defines a penalty to prevent frequently switching between charging and
discharging of the EV battery since the frequent switches would reduce the lifetime of the
EV battery [37]. In Equation (17), the penalty Batpenalty

t only occurs when the EV actions
change between charging and discharging in consecutive time periods, whereas there is no
penalty when it is idle (no action) or charge/discharge consistently. Note that the EV model
with the occupant’s EV SOC concern in (12)–(17) are nonlinear and nonconvex, which is
naturally suited for the MDP-based solution rather than using the linearization techniques.

Figure 3. Illustration of EV SOC concern.

2.4. HVAC Model

A first-order thermodynamic model is used to describe the evolution of the room
temperature as a function of the previous state, the power consumed by the HVAC as well
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as the outdoor temperature. The thermal dynamic equation and other HVAC constraints
are listed as follows:

sHVAC
t ={

γRMsHVAC
t−1 − γHVAC

c aHVAC
t + γOUTũOUT

t , ∀t, cooling
γRMsHVAC

t−1 + γHVAC
h aHVAC

t + γOUTũOUT
t , ∀t, heating

(18)

sHVAC
t ≤ sHVAC

t ≤ sHVAC
t , ∀t (19)

aHVAC
t ≤ aHVAC

t ≤ a HVAC
t , ∀t (20)

Equation (18) shows the state transition of the room temperature for a prescribed
mode, i.e., cooling or heating. Note that in this HEMS model, the HVAC efficiency is
embedded in the HVAC-related coefficients γHVAC

c and γHVAC
h . Those coefficients, together

with other thermal coefficients, i.e., γRM and γOUT , can be obtained by using polynomial
fitting based on historical data. In addition, the control action, aHVAC

t , is computed in units
of thermal energy added or removed. This control can be straightforwardly adapted to the
corresponding thermostat settings. Equations (19)–(20) indicate that, for both the cooling
and heating cases, the states and actions have to lie within the specified bounds set either
by the occupants or by the HEMS.

The overall state transition diagram of the ADP-based HEMS problem consisting of
HVAC, EV, and PV while considering the occupant’s thermal comfort, clothing behaviors,
and EV SOC concerns on a summer day is shown in the top box of Figure 1. At the terminal
state (t = T), Ot, defined in Equation (2), is calculated for all possible state in the state space.
Further, for all previous states, backward induction is implemented to find the optimal
objective value with the best decision. The ADP traverses backward and a∗t and O∗t at each
time t is obtained. O∗1 corresponding to a∗1 is then obtained at the initial time interval. As
seen, a highlighted red path symbolizing the optimal policy is eventually procured by the
proposed ADP-HEMS.

It should be noted that the ADP-based solution is one of the most natural and suitable
solutions to the proposed HEMS problem. By contrast, other types of optimization algo-
rithms such as mixed-integer linear programming (MILP), quadratic programming (QP),
and genetic algorithm (GA) are not well suited for solving the proposed HEMS problem
due to the nonconvex/nonlinearization characteristics of the constraints introduced by the
occupant’s thermal comfort, clothing behaviors, and EV SOC concerns. The focus of this
paper is to illustrate how the proposed HEMS model can benefit residential homes, and
thereby extensive simulations with and without the proposed HEMS are carried out and
compared. The algorithmic comparison is beyond the scope of this paper and will be con-
ducted in future work. For a much simpler HEMS problem (without considering occupant
behaviors), interested readers can find more details about the algorithmic comparison in
the prior work [34].

Note that the Sobol sampling backward induction (SSBI) and K-D tree nearest neigh-
bor (KDNN) techniques [34] are adopted here to increase the computational efficiency of
the ADP-HEMS. Analogous to classic backward induction, SSBI contains a Sobol sampling
function that compresses the workload efficiently by only considering necessary state, ac-
tion, and uncertainty sets. KDNN is a noteworthy value function approximation approach
that traverses the nearest point in the state space and seeks an approximation value of
O∗t instead of computing the exact value from Equation (1). The combination of KDNN
and SSBI has demonstrated significant increases in the computation speed of the ADP in
finding the optimal policy a∗ [34].

2.5. MPC-Based HEMS Simulation Framework

Figure 4 shows the flowchart of the developed MPC-based HEMS framework. In this
framework, a rolling window is applied to implement and validate the decisions made
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by the HEMS for the energy cost savings and the occupant’s discomfort minimization.
First, the proposed ADP-HEMS optimally searches for the best actions at the current time
period based on the initial input data, and then a tuple of optimal actions is generated
and passed to the house model (including the status of appliances and occupants) in
real-time for execution. The simulated house status after the execution is updated and
sent back to the ADP-HEMS as the initial input data for making decisions for the next
time period. The above processes repeat, and the rolling window moves forward until
the end of the simulation horizon. Notice that there are two types of major inputs: (1) the
HEMS configuration and (2) the occupant preferences. The HEMS configuration includes
all parameters required to set up the house model under various exterior system conditions,
including residential appliance parameters, ToU tariff structure, weather forecasts, etc.
The occupant’s preference includes the desired sleeping temperature, the parameters of
clothing behaviors, and driving behaviors. Note that machine-learning-based forecast
techniques can be integrated in the proposed MPC framework. The long short-term
memory (LSTM) is adopted in this study as an outside temperature forecaster. LSTM is one
type of recurrent neural networks that have superior time-series predictions for short-term
weather conditions. The details of how to integrate LSTM into the HEMS procedure are
provided in [30,38].

Figure 4. Illustration of proposed MPC cosimulation framework.
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3. Cosimulation Results

The proposed ADP-HEMS and the MPC cosimulation framework is simulated in
Matlab on a desktop computer with the Intel Xeon CPU E5-2640 dual processors and 256
GB RAM. The proposed model and framework are implemented based on the Dynamic
programming for Adaptive Modeling and Optimization toolkit developed by National
Renewable Energy Laboratory [39]. The HVAC and EV are controllable appliances, whereas
other electrical appliances (dishwasher, water heater, etc.) are noncontrollable in the
simulation. As shown in Table 2, the HVAC parameters in Equation (18) were obtained
from data of a residential house located in Hillsboro, Oregon [40,41], and the EV parameters
can be found in [42,43]. Although simulations are performed only in one location in this
paper, the proposed HEMS model can be effectively applied to any other locations with
different climate conditions and electricity tariff structures. This will be investigated in
future studies.

Table 2. The parameters of HVAC and EV.

HVAC State range γRM γOUT γHVAC
c COP aHVAC(kW) SEER SCOP

[18 ◦C, 30 ◦C] 0.9 0.1 0.116 4.75 6 18 4

EV State range CEV(kWh) aEV(kW) ηEV λEV EPA est. (miles) MPGe (city/highway)

[20%, 100%] 82 8 0.9 0 315 141 / 127

3.1. Simulation Scenario Setup

The consideration is a two-day cosimulation for a single-family consisting of a young
couple. One works from home, and the other drives to work during the first day (Friday)
and travels for a short trip for running some errands in the evening of the second day
(Saturday). The scenario for the occupant’s driving and sleeping schedules is shown in
Table 3 for the cosimulation. In Table 3, the EV is not at home between 8 a.m. and 6 p.m.
with an estimation of 30% SOC consumption for the first day, and not at home from 7 p.m.
to 9 p.m., with an estimation of 9.7% SOC consumption for the second day. The desired
sleeping temperature instead of the PMV model is used to validate the performance of the
HEMS during the occupant’s sleeping time.

Table 3. The clothing condition and EV event.

Time Range Occupant’s Clothing Conditions Desired Temperature

[10 p.m., 6 a.m.] Sleeping with Clo 1 22 ◦C

Time Range EV Behavior EV SOC Consumption

[8 a.m., 6 p.m.] Not at home at Day 1 30%

[7 p.m., 9 p.m.] Not home at Day 2 9.7%

The Pacific Gas & Electric (PG&E) ToU electricity rate is applied, i.e., EToU-E6, shown
in Figure 5, which includes the base (white), shoulder (light red area), and peak prices
(dark red area) at $0.244, $0.32, and $0.436/kWh, respectively. The two slashed areas
represent the occupant’s EV driving schedules when the EV is not at home. To compare
the performance of the proposed HEMS, a baseline case is simulated without using the
HEMS, in which the HVAC thermostat is set to a constant desired temperature and the
EV is charged immediately after arriving at home. The female thermal comfort is used as
the reference to compute the PMV in both cases. In addition, there is an assumption that
these two days are hot summer days, one being a perfect sunny day and the other being a
cloudy day. On both days, the peak temperature is around 34 ◦C. It is worth mentioning
that the use of phase change materials can stabilize daily temperature fluctuations in the
residential house, which in turn reduces the temporary demand for heating and cooling.
However, this is beyond the scope of this paper and will be investigated in future efforts.
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Figure 5. The time-of-use electricity tariff.

3.2. Baseline Case Simulation

A baseline case is simulated without HEMS that (1) uses a fixed thermostat setpoint
for a desired indoor temperature and (2) charges EV immediately after it reaches home.
It is assumed that the optimal clothing level for the occupant is realized, which keeps
unchanged during all nonsleeping hours. Since the HEMS is not in place in this case, the
EV discharging is not considered. Therefore, the baseline case is designed to represent
what a typical household does for the time being with PV and EV. Figure 6 shows the
simulation results for the HVAC. As seen, the grey-dotted line, black-dotted line, and blue
bar represent the outside temperature, room temperature, and HVAC power, respectively.
At Day 1, there are two HVAC cooling actions between midnight and 4 a.m. to meet the
requirement of the desired temperature, i.e., 22 ◦C during the sleeping hours. From 6 a.m.
to 1 pm, the HVAC stays in the idle status such that the outside temperature mainly affects
the room temperature. The sets of cooling actions occur between 2 p.m. to 10 p.m. to
maintain the room temperature at the desired temperature (24 ◦C). Notice that the peak
price period is from 2 p.m. to 8 p.m., as highlighted in dark pink. At 11 p.m., the beginning
of the occupant’s sleeping time, there is almost rated HVAC power to ensure the room
temperature to be around the desired sleeping temperature. Then, the HVAC consumes
comparatively less power due to the lower outside temperature for maintaining the room
temperature. The HVAC acts similarly at Day 2.

Figure 6. HVAC simulation results in the baseline.

Figure 7 displays the EV simulation results in the baseline, where the maximum
charging actions are carried out once the EV returns home according to the current EV
operational practice. In Figure 7, the black-dotted line and red-dotted line depict the actual
SOC and expected SOC, respectively. The yellow bar represents the charging actions.
As seen, on both days, the EV is charged at the maximum charging power as soon as it
reaches home. The resulting charging schedule brings up the EV SOC as soon as possible,
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representing the quickest way to relieve the EV SOC concern. However, the schedule
overlaps with the peak and shoulder price in some hours.

Figure 7. EV simulation results in the baseline.

Figure 8 shows the power of the three appliances (EV, PV, and HVAC) and the power
exchange between the house and the power grid under the net metering policy. The blue
bar, orange bar, and olive bar represent HVAC input power, EV charging power, and PV
generation, respectively. The black-dotted line represents the net power exchange. Here,
the power sink is viewed as positive while the power supply is seen as negative. Therefore,
the PV generation is negative, which can be sold back to the grid in the baseline. It is seen
that the PV generation occurs from 9 a.m. It powers the HVAC between 2 p.m. and 5
p.m. at Day 1. Once the EV arrives at home, the EV charging power dominates the power
exchange and forms the peak demand starting from 6 p.m. at Day 1. In the baseline, the
HVAC is the only working appliance during the sleeping time at Day 1 and Day 2. A
slightly cloudy day and, in turn, lower PV generation is observed at Day 2. Unlike Day
1, the house purchased more power from the grid. Analogously, a large power purchase
happens after 9 p.m. at Day 2 for charging the EV.

Figure 8. Net power exchange in the baseline.

3.3. Proposed HEMS Simulation

The proposed ADP-HEMS is simulated in the exact same MPC framework with
identical parameters to facilitate a fair comparison between this case and the baseline.
In this case, the ADP-HEMS optimally schedule the HVAC, PV, and EV in the MPC
cosimulation framework while taking into account the occupants’ thermal comfort, clothing
behaviors, and EV SOC concerns. It is reasonable to assume that the occupant always
follows the clothing level adjustment suggested by the proposed ADP-HEMS for the
purpose of cost saving.

Figures 9 and 10 show the simulation results of the HVAC and the occupant’s clothing
actions by the proposed HEMS, respectively. In Figure 10, the discrete dot, red bar, and
blue bar represent the clothing level, donning action, and doffing action, respectively. It
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is seen in Figure 9 that between midnight to noon at Day 1, the HVAC is idle while the
room temperature slowly increases to 24 ◦C. At 6 a.m., a donning action is suggested by
the proposed HEMS immediately after the occupant wakes up. As the outside temperature
increases, the room temperature climbs up to 24 ◦C; thereby, a cooling action occurs at
noon on Day 1 to keep the optimal temperature for the occupant who is at clo 2. As the
temperature keeps increasing, the proposed HEMS recommends a doffing action at 1 p.m.
instead of turning on HVAC at the upcoming peak price. In such a way, the HVAC remains
on idle between 2 p.m. and 6 p.m. during the peak price. A small cooling action happens at
7 p.m. when the temperature is high up to 28 ◦C. This cooling action is scheduled to be small
due to the peak price for balancing cost saving and thermal comfort. Immediately following
this small cooling action, one maximum cooling action at 8 p.m. takes place at the shoulder
price (i.e., delayed cooling when the price decreases) to ensure the room temperature can
be cooled to the desired one during sleeping. At Day 2, the proposed HEMS suggests a
donning action at 6 am, which is similar to that at Day 1. As the temperature increases to
24.5 ◦C at 3 p.m. at Day 2, a doffing action is proposed by the HEMS, and a small HVAC
power is decided to cool the room at 4 p.m. subsequently. Then, a sequence of cooling
actions occurs after the peak price period between 8 p.m. and 11 p.m. Similar to the baseline
case, low-frequency cooling actions are observed during the sleeping time from 10 p.m. at
Day 1 to 6 a.m. at Day 2. The results in Figures 9 and 10 demonstrate that the occupant’s
clothing behaviors can provide the HEMS with an additional dimension of decisions, which,
in turn, enhances the cooling flexibility of the HVAC by better utilizing the thermal storage
of the residential house while considering the occupant’s thermal comfort. The results here
are consistent with those in the authors’ prior work, which takes into account the donning
and doffing into HEMS for both genders in different seasons (but without PV, EV, or EV
SOC concern). The result in [30] showed that if the occupant follows the optimal clothing
decisions produced, 53.8% and 29.8% of daily electricity cost savings can be achieved for a
summer-male scenario and a winter-female scenario, respectively. More simulation results
can be found in [30].

Figure 9. HVAC simulation of proposed HEMS.

Figure 10. Clothing behavior simulation of proposed HEMS.
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Figure 11 shows the EV simulation results by the proposed HEMS. As seen, in contrast
to the baseline case, the proposed HEMS enables the EV discharge actions given the
efficiency of charge/discharge is 90% (i.e., the round trip efficiency of 81%). In Figure 11,
the EV is discharged in the first two hours at Day 1 when the actual SOC is greater than
the expected SOC for making a profit. Notice that according to Equation (12), the EV SOC
concern exists only at times when the expected SOC is greater than the actual SOC. The
expected SOC increases when approaching the departure time, i.e., 8 a.m. at Day 1; thereby,
a series of charging actions are presented to charge the EV SOC to 98.5 % at departure
and to minimize the SOC concern. After the driving event at Day 1, the EV returns home
with around 60% SOC, which is higher than the expected SOC of 20% at arrival, i.e., the
minimum SOC. Note that the arrival time at Day 1 coincides with the peak price followed
by the shoulder price. As a result, the HEMS takes the great opportunity to discharge the
EV for monetary gains during the peak and shoulder time periods. When the peak and
should prices are over, the HEMS decides to charge the EV to satisfy the SOC requirement
on Day 2 and to keep the zero SOC concern. At 10 a.m. on Day 2, the EV reaches 98% of
SOC immediately before the shoulder price and stops charging. At 3 p.m. and 4 p.m., two
discharge actions that bring the SOC to 93% are observed for a profit due to the peak price;
however, those discharge actions cause a little EV SOC concern, but it does not affect the
occupant’s upcoming driving event. After the EV returns at Day 2, the low expected SOC
provides another chance for the HEMS to discharge the EV for more economic benefits. At
the end of the cosimulation, the actual SOC is 45%, which is still higher than the expected
SOC. The results in Figure 11 show that the proposed HEMS is capable of finding a balance
between the occupant’s monetary gains and the EV SOC concern by optimally charging
and discharging the EV. When compared with the baseline, it should be noted that the EV
SOC at the end of two-day co-simulation is 45%, which is much lower than that (100%) in
the baseline. The schedule by the proposed HEMS is reasonable since no driving event at
Day 3 is given in the two-day cosimulation. Consequently, the difference at the ending
SOC needs to be considered when comparing the EV results. This is discussed in greater
detail in Table 4.

Figure 11. EV simulation of proposed HEMS.

The power exchange of the proposed HEMS is shown in Figure 12. Unlike the baseline
case (see Figure 8), there is no power purchase from the grid during the peak price on both
days in the HEMS-optimized case. This leads to drastic cost savings. Additionally, three
power purchase actions (i.e., 8 p.m. at Day 1, noon, and 8 p.m. at Day 2) are observed
due to the high HVAC power at the shoulder price. Nevertheless, the EV discharge in the
following base price periods could compensate for those costs. The comparative results
between Figures 12 and 8 demonstrate that the proposed HEMS significantly change
the power exchange between the house and the grid by altering the actions from HVAC
and EV, while considering the occupant’s thermal comfort, clothing behaviors, and EV’s
SOC concerns.
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Figure 12. Power exchange of proposed HEMS.

3.4. Comparison and Discussion

Table 4 compares the occupant’s energy cost, thermal comfort, clothing levels, and EV
SOC concern between the baseline and proposed HEMS. As discussed before, although the
EV actions by the proposed HEMS are completely reasonable, there are differences in the
ending SOC between the baseline and the proposed HEMS. Therefore, additional charge
actions are included to increase the EV to the same level, i.e., 100%.

Table 4. Comparison of the occupant’s energy cost, thermal comfort, clothing levels, and EV SOC
concern between the baseline and proposed HEMS.

Baseline Proposed HEMS (Modified EV Schedule)

Avg. PMV −0.09 0.24

Avg. Clo. Level 1.39 1.47

Avg. EV Concern 0% 1.17%

Endtime Actual SOC 100% 55% (100%)

Tot. Energy Cost $25.40 −$0.99 ($8.01)

In Table 4, the numbers in the parenthesis represent the results with modified EV
schedules to facilitate the comparison. As seen, the proposed HEMS leads to slightly higher
average PMV and average EV concern as opposed to those in the baseline, indicating
slightly higher thermal discomfort and EV SOC concern. However, for the proposed
HEMS, the resultant PMV value of 0.24 is still less than the discomfort threshold of 0.5, and
the EV SOC concern of 1.17% is quite low, meaning the occupant is still quite thermally
comfortable and has little EV SOC concern. Additionally, the average hourly clothing
levels in both cases are similar, signifying there is no significant change in the occupant’s
clothing behaviors. The most prominent difference lies in total energy costs. As seen,
the proposed HEMS reduces the energy cost from $25.40 in the baseline to $8.01 to the
HEMS with modified EV schedules, representing a 68.5% of energy cost saving. Notice
that this study only focuses on the controllable appliances while the energy consumption
of noncontrollable appliances (e.g., dishwasher, water heater, etc.) is exactly the same in
both the baseline and the proposed HEMS simulations. Although the 68.5% is higher than
the actual percentage savings of a residential house due to the exclusion of the power
consumption from noncontrollable appliances, the total dollar amount of savings for a
two-day simulation is quite substantial.

To understand how the energy cost is drastically reduced, Figure 13 shows the break-
down of the total energy cost in the baseline and proposed HEMS under the modified EV
schedule. The negative sign denotes a monetary gain from selling the electricity to the grid.
It is seen that the energy cost for the HVAC is much lower in the proposed HEMS. The
difference is mainly due to the delayed cooling to avoid the peak price in tandem with the
optimized clothing behaviors. In the proposed HEMS, both the cost for charging the EV
and the monetary gain for discharging the EV are much higher than those in the baseline.
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These results here suggest that even with 81% of round-trip efficiency, optimally charging,
and most importantly, discharging the EV by the proposed HEMS can profoundly reduce
the energy cost under the ToU. The overwhelming cost-saving benefits, in the long run,
can well justify the necessity of using V2H services in the future, taking into account the
decrease in the cost and the increase in the efficiency of the EV battery.

Figure 13. Total energy cost breakdown between the baseline and the proposed HEMS with modified
EV schedule.

3.5. Comparison of One-Week Simulations

To demonstrate the efficacy of the proposed HEMS on a longer scheduling horizon,
one-week simulations with and without the proposed HEMS were performed. Figure 14
shows the outside temperature, EV driving events, and electricity tariff for the one-week
simulation. Figure 15 depicts the one-week simulation results for both the baseline and the
proposed HEMS. As seen, the profits from PV generation are identical between the baseline
and the proposed HEMS simulations. The HVAC cost is comparably small due to the lower
outside temperature at Days 5–7. Analogous to previous two-day simulations, the EV
charging still dominates the total electricity consumption in the one-week simulation. It can
be seen that the proposed HEMS can reduce the electricity cost from $74.3 to $39.93, a 46.3%
of cost reduction from the baseline simulation, representing a significant cost saving for
residential occupants.

Figure 14. The one-week outside temperature and EV events.

Figure 15. Cost breakdown for the one-week simulation between the baseline and the pro-
posed HEMS.
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4. Conclusions

In this paper, the proposed HEMS integrates residential PV and EV into the HVAC
scheduling in an occupant-centric manner. To the best of authors’ knowledge, the pro-
posed HEMS, for the first time, takes into account the occupants’ thermal comfort, clothing
behaviors, and EV’s SOC concerns. A stochastic ADP HEMS model is proposed to op-
timally determine the setpoints of HVAC, occupant’s clothing decisions, and the EV’s
charge/discharge schedule. The uncertainty in the outside temperature, PV generation,
and EV’s arrival SOC is considered. The nonlinear and nonconvex thermal comfort model,
EV SOC concern model and clothing behavior model are embedded in the ADP-HEMS.
An MPC framework is further adopted to simulate a residential house under the ToU
tariff. Cosimulations are conducted to show the validity of the proposed ADP-HEMS.
The proposed ADP-HEMS is compared with a baseline case that represents the current
operational practice.

The simulation results show that the energy cost can be saved and a high level of
the occupant’s comfort can be retained by comprehensively incorporating the occupants’
thermal comfort, clothing behaviors, and EV’s SOC concerns in the HEMS model. Such
a user-centric manner can bring added value to the residential occupants, which, in turn,
increases the adoption rate of the HEMS. In addition, when the EV discharge is enabled
by the HEMS in the context of V2H, it can drastically save the electricity cost by optimally
charging and discharging the EV under the ToU. Future work will focus on improving
the proposed ADP-HEMS model with the help of deep machine learning techniques for a
variety of applications in next-generation residential buildings.
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