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Abstract: Low-carbon building design requests an estimation of total embodied carbon as the
environmental performance metric for comparison of different design options in early design stages.
Due to a lack of consensus on the system boundaries in building life cycle assessment (LCA), the
carbon estimation results obtained by the current methods are often disputable. In this regard, this
paper proposes a method for estimating building embodied carbon based on digital twin technology
and LCA. The proposed method is advantageous over others by providing (1) a cradle-to-cradle LCA
and (2) an automated data communication between LCA and building information modelling (BIM)
databases. Because data for the processes in the life cycle are collected via digital twin technology in
a standard and consistent way, the obtained results will be considered credible. So far, a conceptual
framework is developed based on a comprehensive literature review, which consists of three parts. In
the first part, formulas for LCA are given. In the second part, a hybrid approach combining semantic
web with a relational database for BIM and radio-frequency identification (RFID) integration is
described. In the third part, how to design the LCA database and how to link LCA with BIM
are described. The conceptual framework proposed is tested for its reasonableness by a small
hypothetical case study.

Keywords: embodied carbon; early building design; life cycle assessment (LCA); digital twin;
building information modeling (BIM)

1. Introduction

Carbon dioxide (CO2) is a key greenhouse gas that drives global climate change. Being
the largest emitter of CO2 in the world, China has faced widespread criticism from the
international community. To demonstrate China’s role as a responsible country in the
international system, Chinese President Xi Jinping has pledged that the nation would
achieve carbon neutrality by 2060 and reach CO2 emissions peak before 2030. The building
sector is the contributor to more CO2 emissions than any other sector in the country—more
than transportation, agriculture, and industry. According to the China Building Energy
Consumption Research Report [1], the total carbon emission from the whole process of
construction in China in 2018 reached 4.93 billion tons, accounting for 51.3% of the country’s
total emissions. Thus, the architecture, engineering, and construction (AEC) industry is the
focal point for industry decarbonization.

In the path to net-zero emissions and limiting global warming, the first step for the
industrial stakeholders to understand their carbon reduction potential is to identify and
measure where their emissions come from. Emissions generated during the life cycle
of a building are generally put into two groups: operational emissions and embodied
emissions. Operational carbon emissions are caused by using energy to heat, cool, and
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power a building, while embodied carbon emissions are associated with building materials
across the life. Unlike operational carbon, which can be gradually reduced over time by
using renewable and clean energies, embodied carbon is locked in place once a building is
built. Hence, the only way to reduce the total embodied impact of a building is to select
low-carbon materials and products at the early design stages [2].

In the past several decades, reducing operational carbon has been the focal point.
With the decrease in operational carbon, the focus now shifts to reducing embodied carbon
because it also contributes a large portion of a building’s total carbon footprint. Whole-life
embodied carbon is associated with energy consumption and chemical processes during
the extraction, manufacture, transportation, assembly, replacement, and deconstruction
of building materials [3]. Life cycle assessment (LCA) is the popularly used method
for embodied carbon measurement [4,5]. The system boundary limits of LCAs can vary
considerably in different studies, such as different life cycle stages, e.g., cradle-to-gate [6]
and cradle-to-cradle [7]; different building types, e.g., low-rise buildings [8] and high-rise
buildings [9]; as well as different material quantification scopes, e.g., structural materials
and finishing materials [10], building materials that were included in the structure and
envelop [7]. Because studies often choose a system boundary subjectively, results of such
studies may not be comparative.

There are many important regulations and standards for embodied carbon assessment
of buildings and infrastructure assets worldwide, in light of the need to tackle embodied
carbon to stay within the carbon budget. The Journal of The American Institute of Ar-
chitects [11] summarized 34 regulations and standards prevailing in western countries.
China also published several regulations and standards, including “Regulation on En-
ergy Conservation in Civil Buildings” in 2008, “Standard for Sustainability Assessment
of Building Project” in 2012, and “Standard for Measuring, Accounting and Reporting
of Carbon Emission from Buildings” in 2014. Nevertheless, a fact behind the growing
number of rules and methodologies for quantifying whole-life embodied carbon is the lack
of consensus on exactly how it should be defined and calculated. To enable meaningful
comparisons between different structural schemes, it is recommended that the calculation
of embodied carbon follows the same rigorous way across all designs [12]. However,
undertaking assessment for embodied carbon is not as straightforward as assessment for
operational carbon, which is relatively simple to extrapolate from occupants’ energy bills.
Without agreed rules, data, and data structures, significant inconsistency can occur, leading
to wrong beliefs.

Building information modeling (BIM) is a digital representation of a building. BIM
is likely to provide a robust data foundation for quantifying the carbon footprint. Over
the years, BIM and its beneficial relationship with sustainable and sustainability, green
buildings, and life cycle assessment have been well established in the literature. Several
BIM-based carbon calculators have already been released, such as the AutoBIM Carbon
Calculator developed by Balfour Beatty, the AI-based Embodied Carbon Calculator by
Costain-Winvic, the Structural Carbon Tool developed by Elliott Wood and the Institution
of Structural Engineers, and in China, the Life Cycle Building Carbon Calculator developed
by PKPM technology. However, BIM itself can only provide static information. The need of
linking real-time data with BIM is identified based on the requirements of cradle-to-cradle
LCA, which considers the scheduled and unscheduled maintenance, repair, replacement,
and refurbishment events in the use stage. Therefore, rather than BIM, this study proposes
the use of a BIM-based digital twin. A BIM-based digital twin is the integration of real-time
sensing data and the static information provided by BIM.

Despite the increasing adoption of the digital twin in the manufacturing industry [13],
safety domain [14,15], and occupational health [16], the application of digital twins in the
building sector is still in its infancy [17,18]. When BIM meets the Internet of Things (IoT),
interoperability is the main challenge. This paper thereby proposes an industry foundation
classes (IFC)-based data integration approach for the contextual information (BIM data)
and timeseries (sensor collected) data, which is considered robust for interoperability
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and automation. A radio-frequency identification (RFID)-based digital twin platform is
designed for real-time asset tracking in construction and the built environment. Based on
the RFID-based digital twin, the paper proposes an effective method for efficient whole-life
embodied carbon assessment for buildings. The design of the LCA database is compatible
with the granularity of the BIM model, facilitating a two-way automatic data exchange
between the two databases.

Assessing the total embodied carbon of the building is most useful in the early design
stages when large-scale design improvement opportunities exist. Because detailed infor-
mation about buildings is not available yet at this time, generic data are used. Generic data
are created based on similar designs of sample projects of similar building types. There
is a multitude of design options. Therefore, a fast method is needed to evaluate different
design options to facilitate decision making. The BIM-based LCA system designed in this
work can satisfy the need by offering a fully automated tool. The common data structure
and naming convention proposed in the LCA database and BIM model can promote the
establishment of standardized data collection and data entry among different stakeholders
in the value chain, which ensures the data consistency in heterogeneous systems as well as
at the different levels of development. At last, the method is considered reliable for its data
quality. The ultimate outputs from this work will include not only a total embodied carbon
estimation tool for buildings but also a public database that can be commonly shared in
the AEC industry for carbon assessment practice.

The remainder of the paper is structured as follows: Section 2 explains the research
methodology. Section 3 presents the comprehensive review of the related literature.
Section 4 describes the conceptual framework of the digital-twin-based LCA for mea-
suring building embodied carbon. Section 5 tests the proposed conceptual framework for
its reasonableness by a small hypothetical case study. Section 6 makes further discussions.
Finally, the paper is concluded with suggestions for future research in Section 7.

2. Research Methodology

To ensure a comprehensive review, the review of the literature was conducted in three
areas: (1) existing life cycle embodied carbon emission calculation methods; (2) current
integration of BIM and LCA in buildings; (3) digital twin use cases and applications in
the AEC industry. The search methodology is presented in Table 1. The authors found
450 papers from the search. Finally, 54 of the most relevant papers as summarized in
Table 2 were selected for a detailed analysis by analyzing the title, abstract, keywords,
paper contents, and journal’s main topic of interest.

The literature review was guided by the following questions:

• What are the future research directions in LCA?
• What is the best communication method between BIM and LCA databases?
• What is the best storage method for big data in different formats and how to query

information?

This study attempts to propose a good method for estimating building embodied
carbon from the answers to these research questions.

Table 1. Search methodology.

Search String
KEY (“life cycle” AND “embodied carbon, building”) OR (“life cycle
assessment” AND “BIM”) OR (“digital twin” AND “construction”) OR
(“digital twin” AND “IoT”) OR (“BIM” AND “IoT”)

Subject areas “Engineering”
Publication type Journal articles in English
Database Scopus
Period 2016–2021
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Table 2. Review sources of journals and the identified articles.

Journals Publisher
Number of Articles

Embodied Carbon BIM–LCA Digital Twin

Energy and Buildings Elsevier 8 2
Journal of Cleaner Production Elsevier 3 6

Building and Environment Elsevier 2 3
Automation in Construction Elsevier 2 3

Renewable and Sustainable Energy Reviews Elsevier 2 1
Journal of Building Engineering Elsevier 2

Habitat International Elsevier 1
Energy Elsevier 1

Sustainable Cities and Society Elsevier 1
Science of the Total Environment Elsevier 1

Journal of Architectural Engineering ASCE 1
International Journal of Building Pathology and Adaption Emerald 1

Sustainability (Switzerland) MDPI 3 3 1
Applied Sciences (Switzerland) MDPI 1 1

Sensors (Switzerland) MDPI 2
Buildings MDPI 1

Journal of Information Technology in Construction CIB 2
Total 22 20 12

3. Review of the Literature
3.1. Life Cycle Embodied Carbon

Two main methods—the process-based (i.e., the bottom-up) and input–output anal-
yses (i.e., the top-down)—are widely used in the LCA building emissions [4,19]. In the
process-based methods, the emission amount is expressed as the multiplication of material
quantity and embodied carbon factor (ECF), whereas, in the input–output method, the
emission amount is expressed as the multiplication of cost and intensity. Nevertheless,
both methods have limitations. Process-based methods involve truncation errors that are
likely to underestimate emissions, while input–output-based methods lack specificity. The
substantial disparity in carbon figures was found in the same project case using the two
methods [20]. Therefore, many researchers seek a more efficient method by hybridizing
the previous two. The hybrid one can be process-based [19], input–output-based [21], or
integrated [22], depending on its calculation frameworks and the type of data used.

The conventional LCA is static. Towards a whole-life cycle assessment, dynamic
LCA (DLCA) is recommended. DLCA can cover the dynamic factors and their interaction
with embodied carbon to obtain a better understanding of the environmental performance
in the building usage stage. Kang et al. [23] used system dynamics for DLCA simula-
tions to study recurrent embodied impacts caused by maintenance and repair activities.
Resch et al. [24] proposed a DLCA model in which future emissions are represented by a
random variable and adjusted by time-varying weighing functions, which indicate the
effects of technological progress and climate change over a time horizon.

The biggest challenge of conducting LCA is associated with data collection [25]. The
process-based methods need several iterations of data collection from the data sources
that are commonly distributed among several individual sub-contractors [26], and the
input–output methods rely on national data, which in most countries such as China, the
classification of sectors is too coarse to target a specific product [19]. As a result, deriving
useful results under the circumstances of limited data availability attracts interest from re-
searchers. For example, Gardezi et al. [6] developed a statistical technique of multivariable
regression analysis for the prediction of embodied carbon in conventionally constructed
housing units. Yeo et al. [25] proposed a streamlined technique that comprises a probabilis-
tic model of emission factor estimators that are used to estimate the required embodied
carbon. However, so far, there is no best method because every model has a different set of
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assumptions caused by uncertainties that affect the accuracy of the outcome. There is still a
lot of work to be done to achieve a standardized method.

After quantifying the amount of embodied carbon emissions of buildings, the concern
is then to reduce them. The greatest opportunity to reduce them comes at the design
phase [3]. Researchers have found the choice of housing typologies, construction process,
building shape, and building materials influence life cycle carbon emissions [26,27]. Low-
energy and zero-emission building design can be found by conducting a comparative
analysis of different design options. However, without a robust method, results from
comparisons may not be credible. Many researchers [28,29] demonstrated that some
technologies can significantly increase the embodied carbon impact of modern low to zero
energy buildings. In this regard, Pomponi and Moncaster [30] appealed that both greater
transparency and greater conformity must be embraced industry wide. Wolf et al. [31]
pointed out the necessity of establishing a public accessible benchmarking database of
embodied quantity outputs for building structures.

BIM gives opportunities to increase the data transparency and compliance check and
to automate the LCA assessment process. The capability of BIM to include details of indi-
vidual suppliers facilitates such product-specific databases that have accurate information
on the impact of material sourced from a specific supplier, which in turn promotes the
use of consistent methods to determine the embodied energy of their materials among
suppliers [32]. In the end, BIM–LCA integration is expected to play a significant role in
carbon quantification and mitigation in the future.

3.2. BIM–LCA Integration

LCA is a technique for assessing the environmental aspects and potential impacts
associated with a product. The LCA methodology in all sectors follows the four-stage
framework recommended by ISO 14040 and ISO 14044. The four stages are (1) goals and
scope definition; (2) life cycle inventory (LCI); (3) life cycle impact assessment (LCIA);
(4) interpretation. Generally, reliable LCA requires the use of a reliable LCI. As LCA results
vary a lot due to distinct regional characteristics, the LCI database is usually developed
with regional characteristics in a specific country or territory [33]. Sometimes, due to the
lack of local or regional databases, the use of a generic database based on foreign LCI
databases is also quite common [34].

The capabilities of BIM bring four main benefits within the LCA applications: (1) to
avoid manual data re-entry; (2) to allow real-time assessment; (3) to enhance whole-building
appraisals; (4) to implement user-friendly analysis interfaces [32]. Because of these benefits,
the integration of BIM and LCA is growing [33,35–40].

There are various approaches to integrating BIM–LCA. In summary, BIM is either used
to extract quantities to establish the LCI for LCA software or upgraded to 6D BIM to enable
LCA analysis [41]. Obrecht et al. [42] reviewed several studies that have classified them.
In the most comprehensive classification, they are divided into five types. In the first and
second types, BIM data are directly exported to other LCA tools through bill of quantities
or IFC files. In the third type, BIM data are processed in a BIM viewer before sending to
LCA tools. In the fourth type, LCA plug-ins are developed in BIM software. Additionally,
in the fifth type, LCA information is attached to BIM objects. Further, Safari and Jafari [43],
based on how the data are collected and used as well as the process of data exchange and
type of computation, classified the integration approaches into three types: conventional,
static, and dynamic. The conventional approach extracts the data from BIM in the form
of an Excel file and manually enters the data into LCA tools. The static approach applies
a semi-automated method by creating a plugin in the BIM software and streamlines the
data transfer from BIM to LCA with the IFC format. Finally, the dynamic approach, which
corresponds to the fifth type in the previous classification, enables two-way automatic
communication between BIM databases and LCA databases (i.e., LCI databases) to account
for temporal variations. According to the survey [44], the lack of interoperability between
LCA and BIM tools is currently the greatest difficulty faced by BIM-based LCAs. Although
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the existing IFC schema already contains mostly of the necessary properties, no IFC
classes for deconstruction exist. Hence, for a complete LCA, it still requires a considerable
improvement for encoding BIM classes adaptable to LCA databases [45].

LCA is most valuable in the early design stages because at the end of the design phases,
conducting an LCA for assessing different design options becomes not quite useful when
the most important decisions are already made and the large-scale design improvement
opportunities are lost [43]. However, the level of development (LoD) of the BIM model
is not sufficiently high for a detailed LCA in the early stages of design. Hence, where
actual data are not available, genetic data are used based on post-completion information
of similar building types [46]. While choosing, there are many design options. This brings
out a research question about how to assess various design options in a fast way.

Many generic LCA databases are compiling direct data surveyed in a specific
region (e.g., ICE database, Ecoinvent database, etc.). The AEC industry also widely adopts
environmental product declarations (EPDs) as a method of reporting and sharing environ-
mental data. However, the available LCA data usually refers to cradle-to-gate emissions
and are at the material level. Therefore, an entire LCA database that is matched to the
asset hierarchy classification within the BIM model is expected. Researchers suggested
developing the data structure of the LCA database following the granularity of the BIM
model, meanwhile directing towards the automatic compilation of data exchange by using
a common naming of elements [43,47–49]. Cavalliere et al. [50] suggested using different
LCA databases with different levels of details for the specific LoD of the BIM. Since dif-
ferent building elements may not be modelled with identical LoDs, one can mix the LCA
databases for building parts and materials with different LoDs and match them according
to the individual LoDs of the various BIM components.

3.3. Digital Twin in the AEC Industry

From a static BIM to a web-based digital twin, Deng et al. [51] developed a five-level
ladder taxonomy. The five levels are Level 1—BIM; Level 2—BIM-supported simulations;
Level 3—BIM integrated with IoT; Level 4—BIM integrated with AI for predictions; Level
5—ideal digital twins, including not only real-time visualization and prediction but also
automatic feedback and control of the built environment. However, a smooth upgrade
path from a lower level to higher one does not exist. The major challenge is interoperability
because IFC is a static data format, which poorly supports the dynamic data update, and
IFC lacks a rich vocabulary for describing different sensors, though the IFC schema is
constantly evolving [52,53]. The recent IFC4 edition allows for a sensor to be defined using
IfcSensor. In total, 23 predefined object types for sensors are available in IFC including a
CO2 sensor and movement sensor [54]. For non-predefined sensors, the ambiguity problem
may arise using the user-defined way.

It is found in the literature that the BIM data and sensor collected data can be inte-
grated in several ways. A widely adopted approach is to use existing BIM tools’ application
programming interfaces (APIs) (e.g., Revit DB Link, Dynamo, Grasshopper) and relational
database (e.g., SQL server database, Microsoft Access). Such an approach is suitable for
small-scale problems with less complex BIM models and a limited number of sensors. An-
other approach is to transform BIM data into a relational database using a new data schema.
Sensor data can be linked to BIM through SQL queries. This approach is more flexible
for large-scale problems with more complicated spatial contexts and a large number of
sensors. The third approach is to use a new query language rather than SQL to query sensor
data over BIM models or IFC models. This approach can be applied to various kinds of
projects. However, new query languages may not gain widespread acceptance. The fourth
approach is to use semantic web technologies by linking BIM ontologies (e.g., IfcOWL) and
ontologies in the sensor devices domain (e.g., semantic sensor network (SSN)). Building
context data representing in IFC are first converted into resource description format (RDF).
All sensor data are also expressed in RDF. The standard query language and protocol for
linked open data and RDF databases—SPARQL—are implemented to query RDF data.
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This approach is useful in the case involving various heterogeneous data sources. The
last approach is a hybrid one that combines a semantic web with a relational database.
Contextual information, such as building context data, sensor information, and other
building information are represented in RDF format using the semantic web, while sensor
collected timeseries data are retained in the relational database. They can be linked either
using ontology or directly using standardized naming formats [55]. As this approach is
suitable for different kinds of projects, it is the most promising approach to facilitate IoT
deployment in the AEC industry [56,57].

Digital twins in construction heavily focused on the design and engineering phase,
while neglecting the demolition and recovery phase [18]. It is possible to add a layer of
information to each BIM object to prepare them for future end-of-life applications [58]. The
existing literature on digital twins is primarily model based [59]. There is no consensus
on specific technical components, protocols, or tools to create a digital twin [60]. Usually,
RFID sensors are used for asset tracking. Global positioning system (GPS) technologies are
often used for outdoor tracking applications [55], while indoor tracking applications rely
upon radio frequency technologies, for example, ultra-wide band (UWB), Wi-Fi, Bluetooth
low energy (BLE), Zigbee, and others [61].

3.4. Contributions of the Proposed Work

The contributions of this work are summarized as follows: (1) A novel digital-twin-
based LCA approach for measuring embodied carbons of buildings is proposed, which
extends the current LCA from partial life cycle to a whole-life cycle. (2) An aggregated data
structure design of the LCA database, which follows the granularity of the BIM model, is
proposed, facilitating a two-way automatic data exchange between the two databases to
enable fast assessment of total embodied impact of the building for different design options
in early design stages. (3) A consistent definition and decomposition method for building
parts is proposed, which helps standardize the data collection and data entry process
among different stakeholders in the value chain to ensure and sustain data quality in the
system. (4) A new application instance of digital twin in the AEC industry is provided, which
may create opportunities for the uptake and use of digital technologies in the domain.

4. Proposed Framework

The scope of the current paper is limited to the estimation of the embodied carbon
of buildings. LCA scope is cradle-to-cradle, following BS EN 15978 life cycle stages [12].
Figure 1 shows the proposed framework, which comprises three parts: LCA calculation,
BIM and IoT integration, and BIM and LCA integration.

4.1. LCA Calculation

The study adopts a process-based method to determine the embodied carbon esti-
mations during the entire life cycle. This study summarizes the exact equations used for
detailed calculation procedures in life cycle stages, which are ignored in previous works.
The material quantities may be expressed in mass, volume, or area, depending on the
ease of measurement. The ECFs tally with these units. The system boundary is known
as “cradle to cradle”, which includes the production stage, the construction stage, the use
stage, the end-of-life stage, and the beyond (reuse/recovery, and recycle) stage. Each macro
stage can be further divided into subsections. The total amount of embodied carbon of a
building (Eemb) is calculated by the sum of carbon emissions in each stage, see Equation (1):

Eemb = Epro + Econ + Euse + Eend + Ebey (1)

4.1.1. Product Stage

In this stage, raw materials are processed, and building materials (including precast
and prefabricated products) are manufactured. The emissions primarily originate from
chemical reactions and energy consumptions (e.g., diesel, gasoline, and electricity) in the
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process of producing a finished product from the raw materials (i.e., secondary production).
The common building products are made of concrete, steel, blockwork, brick, stone, timber,
aluminum, glass, plasterboard, or intumescent paint. The total amount of carbon emissions
associated with the product stage (Epro) is calculated by Equations (2) and (3):

Epro = ∑i(Qi × ECFA13,i) (2)

ECFA13,i= ∑
j

(
Qmat,j·ECFmat,j

)
+ ∑

k
(Qmac,k·ECFmac,k) + ∑

l
(Qene,l ·ECFene,l) (3)

where i refers to the type of building material (product), j refers to the type of raw material,
k refers to the type of machinery, and l refers to the type of energy. The three items in
Equation (3) represent emissions from raw materials, machinery operation, and energy
consumption, respectively.
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4.1.2. Construction Stage

Carbon emissions from the construction stage are associated with transporting materi-
als (products) and construction equipment to site, materials (products) wasted on-site, and
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energy used due to construction activity (e.g., energy use of machinery and temporary site
offices), as shown in Equation (4):

Econ = EA4 + EA5w + EA5a (4)

First, the amount of transportation carbon emissions (EA4) from the factory to the site
is calculated by Equations (5) and (6):

EA4 = ∑i(Qtra,i × ECFA4,i) (5)

ECFA4,i = ∑j
(
TDj × ECFj

)
(6)

where i refers to the type of building material (product) or construction equipment. j refers
to the type of transport mode (e.g., road, sea, air, rail).

Then, the amount of carbon emissions associated with the volume of each type of
building material (product) that is wasted on site during construction (EA5W) is calculated
by Equations (7)–(9):

EA5w = ∑i(WFi × Qi × ECFA5w,i) (7)

WFi =

(
1

1 − WRi
− 1
)

(8)

ECFA5w,i = ECFA13,i + ECFA4,i + ECFC2,i + ECFC3,i + ECFC4,i + ECFD,i (9)

where i refers to the type of material (product). In Equation (8), the item (WFi × Qi) refers
to the quantity of the surplus (i.e., waste). In Equation (9), the item (ECFA13,i + ECFA4,i)
refers to the cradle-to-site ECF, the item (ECFC2,i + ECFC3,i + ECFC4,i) refers to the relevant
end-of-life ECF, and the item (ECFD,i) refers to the ECF associated with the reuse and
recycling process. Depending on different disposal scenarios and kinds of site wastes,
different subsections are involved (see Table 3), corresponding to different selections of
items in Equation (9).

Table 3. Site waste scenarios.

Disposal to
Landfill/Incineration

Reuse or Recycling
On-Site

Reuse or Recycling
Off-Site Excavation

[A1 − A3] + [A4] +
[C2] + [C4]

[A1 − A3] + [A4] +
[C3]

[A1 − A3] + [A4] +
[C2] +[C3] [C2] + [C4]

Last, the total site activity emissions (EA5a) is calculated by Equation (10):

EA5a = ∑
i
(Qmac,i·ECFmac,i) + ∑

j

(
Qene,j·ECFene,j

)
(10)

involving the on-site machinery use and energy consumption. It should be noted that
EA5a is obtained using a lump sum calculation from the actual machine running times and
power bills. There is no need to find one-by-one correspondence to the specific type of
building material (or product) for the ease of data collection.

4.1.3. Use Stage

Carbon emissions in the use stage depend on the lifespan of the building. Usually, the
reference study period (RSP) of building projects is assumed to be 60 years. The amount
of carbon emissions in the use stage (Euse) is calculated by the sum of emissions of each
subsection, see Equation (11):

Euse = EB1 + EB2 + EB3 + EB4 + EB5 (11)
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First, material surfaces can absorb or release CO2 during a building’s life cycle. The
amount of carbon emissions in use (EB1) is usually a small percentage (e.g., 2.5%) of the
embodied carbon in the product stage.

Then, the amount of carbon emissions from recurrent maintenance activities (EB2) and
accidental damage repairs (EB3) is calculated by Equations (12)–(14):

EB2/B3 = ∑icei (12)

cei = ∑jEB3,j (13)

EB3,j = ∑k

[
Qrep,k × (ECFA13,k + ECFA4,k)

]
(14)

where i refers to the maintenance intervention repair instances in [B2] or repair instances
in [B3], j refers to the type of repair technique, and k refers to the type of repair ma-
terial (product). cei refers to the embodied carbon expenditure for the ith maintenance
intervention. The item (ECFA13,k + ECFA4,k) refers to the cradle-to-site ECF.

Next, the amount of carbon emissions associated with replacement of building com-
ponents during a building’s life span (EB4) is calculated by Equations (15) and (16):

EB4 = ∑i

(⌈
RSP
CLi

− 1
⌉
× Qrel,i × ECFB4,i

)
(15)

ECFB4,i = ECFA13,i + ECFA4,i + ECFC2,i + ECFC3,i + ECFC4,i + ECFD,i (16)

where i refers to the type of building component.
⌈

RSP
CLi

− 1
⌉

means rounding up the value
of (RSP/CLi)− 1 to its next integer, which refers to the number of times a component is
replaced during a building’s life. ECFB4,i represents the cradle-to-cradle ECF except the
use stage.

Finally, the amount of carbon emissions associated with refurbishment (EB5) is calcu-
lated by Equations (17)–(19):

EB5 = ∑i(Qrem,i × ECFB5w,i) + ∑j
(
Qnew,j × ECFB5n,j

)
+ ∑k(Qmac,k × ECFmac,k) + ∑l(Qene,l × ECFene,l) (17)

ECFB5w,i = ECFC1,i + ECFC2,i + ECFC3,i + ECFC4,i + ECFD,i (18)

ECFB5n,j = ECFA13,j + ECFA4,j (19)

where i refers to the type of removed building material (product), j refers to the type of
newly installed building material (product), k refers to the type of machinery, and l refers to
the type of energy. The last two items in Equation (17) relate to the site activities. ECFB5w,i
concerns the end-of-life ECF, and ECFB5n is the cradle-to-site ECF.

4.1.4. End-of-Life Stage

End-of-life emissions are those associated with energy consumed during building
demolition and waste disposal processes. The amount of the end-of-life emissions is
calculated by the sum of carbon emissions of each subsection, as Equation (20):

Eend = EC1 + EC2 + EC3 + EC4 (20)

Emissions associated with deconstruction, transport (away from the site), waste
processing, and disposal are calculated by Equations (21)–(24), separately:

EC1 = ∑i(Qmac,i × ECFmac,i) + ∑j
(
Qene,j × ECFene,j

)
(21)

EC2 = ∑k(Qtra2,k × ECFC2,k) (22)

EC3 = ∑l

(
Qwap,l × ECFC3,l

)
(23)
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EC4 = ∑m(Qdis,m × ECFC4,m) (24)

where i refers to the type of machinery, j refers to the type of energy, k, l, and m refer
to the type of material in subsections [C2], [C3], and [C4], respectively. EC1 represents
the carbon emissions concern with on-site machinery operation and energy consumption
for deconstruction. ECFC2,k is similar to ECFA4,i in subsection [A4]. Scenarios of waste
processing [C3] and disposal [C4] are mutually exclusive.

4.1.5. Beyond Stage

This stage represents the benefits or burdens of building materials (products) be-
yond the end-of-life of the building under consideration. Calculating carbon emissions
in this stage requires quantifying the difference in carbon emissions between utilizing
recovered materials and converting them into equivalent secondary products, as given in
Equations (25) and (26):

ED = ∑i(Qrec,i × ECFD,i) (25)

ECFD,i = ECFA13,secondary product − ECFA13,substituted product (26)

where i refers to the type of building material (product). ECFD,i represents the difference
in carbon emissions for reuse and recycling.

4.2. BIM and IoT Integration

This study designs an RFID-based digital twin platform for real-time asset tracking in
construction and the built environment. By knowing the positions of the building materials
(products), one can infer the operations that have been experienced as the plant layout as
well as the site layout are fixed when a building project starts and the functional zones
are determined.

4.2.1. RFID

RFID technology has been widely used in the field of construction during the last two
decades to identify and track objects. RFID uses radio waves to transmit small amounts
of data from an RFID tag to a reader within a short distance. RFID tags are of two main
types: active and passive. An active tag has a built-in power source and its own transmitter,
whereas a passive tag does not. RFID tags can be affixed to a variety of surfaces and are
applicable for many different environments (e.g., wet, harsh).

Integrated digital delivery (IDD) is initially proposed by Singapore’s Building and
Construction Authority (BCA), which is the use of digital technologies such as BIM and
virtual design and construction (VDC) to better integrate work processes and connect
stakeholders working on the same project throughout the construction and building life
cycle. RFID technology is used in the IDD program to facilitate a seamless logistics process
from the precast plant to the construction site. Usually, passive RFID tags, which are
encoded with unique ID numbers, are affixed on the precast products or embedded in
them. The data in the RFID tags are then read by either a mobile RFID handheld or a fixed
RFID portal. The GPS function in the reader would determine the location. If a Wi-Fi
network is available, the data can be immediately sent to the back-end computer system.
As such, movements of the precast products are tracked, as illustrated in Figure 2.

4.2.2. Automated Storage System

Nowadays, an advanced automated storage system is developed for precast products,
as illustrated in Figure 3. Such a storage system can be constructed near the construction
site as its material supply point. According to dispatched orders, the precast products are
pre-sorted and stored in standard mobile racks, the sizes of which are compatible with
the standard truck size. The loaded racks are then placed in the multi-level storage cells
waiting for their delivery. When trucks come, overhead gantry cranes move the racks from
the cells onto the trucks. IDs of the trucks, racks, and individual precast products are linked
once they are physically together. Hence, by knowing the ID of a truck or a rack, IDs of its
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loaded products are known at once. Overhead RFID solutions, with fixed RFID readers
installed in the overhead gantry, which can be installed at the exits and entrances of the
plant, storage yard, and site, would automatically collect data remotely when trucks pass
by, thus enabling a continuous stream of valuable real-time data
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4.2.3. BIM and RFID Integration Method

Figure 4 illustrates the method proposed to link RFID to BIM. The BIM model in
software such as Revit is represented with the sensor information in the IFC data format
in the EXPRESS schema. The IFC needs to be transformed into RDF by transforming
an EXPRESS schema into RDF ontology using a semantic web approach. Following
the development of the ifcOWL ontology, an IFC-to-RDF converter is developed. The
underlying structure of any expression in RDF is a collection of triples, each consisting
of a subject, a predictive, and an object. The RDF data are stored in a NoSQL database
such as MongoDB database. On the other hand, the timeseries data collected by the RFID
reader are stored in a relational database. The two databases are linked by defining the
relationship between the virtual object globally unique identifier (GUID) and physical
object ID. Last, contextual information represented in RDF is queried by SPARQL, while
timeseries data stored in the relational database is queried using SQL. Since contextual
information and timeseries data are mapped, SQL queries can be created based on SPARQL
queries on RDF data.

4.3. BIM and LCA Integration
4.3.1. Common Data Structure and Naming Convention

A common data structure and naming convention construct the basis for automated
data exchange between heterogeneous systems. They also facilitate a clearer and more
consistent communication of building information across disciplines, which is helpful for
the establishment of a public database.

There exist many classification systems for organizing information on buildings.
Among them, Omniclass is a widely used classification system for life cycle applications.
Omniclass consists of 15 hierarchical tables, each of which can be used independently to
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classify a particular type of information, representing a different facet of construction infor-
mation. In BIM software Autodesk Revit, classifications can be assigned to elements with
a single click through Classification Manager, which is a free tool. Once the classification
system is adopted, people can communicate without the use of misleading common names.
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4.3.2. Common Granularity in LCA and BIM

LoD defines the detailing levels in a BIM level. There are five different LoDs. From
LoD 100 to LoD 500, building objects are described in more and more detail. Most LCA
studies currently are based on LoD 300 to give roughly accurate results. LoD 300 level
and above have defined the main components and materials in their actual size, shapes,
and locations, so only for LoD 300 level and above can EPDs be used as a source, at the
time that the exact brands of materials are known. However, it is preferred to work with
LoD 200, i.e., with approximate volume, quantity, location, and orientation, for early-stage
design. Usually, generic data are used when exact details are not yet available. The generic
data are often created based on designs that serve similar functions of sample projects
with similar building types. Therefore, a fast method is needed to calculate total embodied
carbon impact for all possible design options to facilitate the process of making a decision.
Common granularity in LCA and BIM is expected for the development of such a method.
Figure 5 illustrates the general design idea for the LCA database.

4.3.3. Quantity Take-Off Process

Generally, a building part can be distinguished into two categories: discrete and
non-discrete [62]. A non-discrete part is recognized by the following features: (1) with
a viscous flow in the initial state (e.g., paint, spray, asphalt, or glue); (2) with small
particles (e.g., gravel, cobble, or sand); (3) whose exact amount of use cannot be estimated
before final installation (e.g., tapes, nails, or strip seals). Then, any part that cannot be
recognized as a non-discrete part is categorized as a discrete part (e.g., columns, beams,
doors, or windows).

The discrete and non-discrete categories enable appropriate building part quantifi-
cation. The discrete building parts are counted in pieces, as they have clear boundaries,
whereas the non-discrete building parts are measured by the amount of material. With
the definition of a building part and the way to quantify building parts, it is possible to
count the total number of building parts in a building project. Furthermore, using BIM, the
quantity take-off process is totally automated.

Observing architecture designs that demonstrate a high repeating pattern, it is possible
to use the number of building parts for certain sections to estimate the number of building
parts for other similar sections. Hence, for unknown sections, the authors suggest selecting
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sample areas in similar type of buildings that serve similar functions to estimate their
building parts.
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4.3.4. Link of BIM and LCA

The BIM model therein provides a bill of quantities, which is a complete list of the
materials including their properties (e.g., amount, area, and geometry) that are used in a
building project, while the LCA database provides information on the embodied impact
per unit of those materials. To establish an automated link between BIM and LCA database,
a custom API should be developed. For the Revit BIM model, visual scripting software—
Autodesk Dynamo [63]—can help. Dynamo can be run in either stand-alone mode or
as a plug-in in Revit. It is a Python-based visual programming language that allows for
retrieving and modifying information from a BIM model. One can connect elements to
define the relationships and the sequences of actions that compose custom algorithms.
Therefore, Dynamo can serve as a tool that links BIM and LCA.

5. Experimental Case

Because the integration method of RFID and BIM is a proven technology and the
software Dynamo is well known for its capability of exporting and importing Revit data
to and from an SQL database, the focus of this experimental case is placed on verifying
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the reasonableness of the database design using a small house example, as illustrated
in Figure 6.
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The total life cycle embodied carbon of the small house can be calculated based on
different LoDs from the sum of five life stages—product stage, construction stage, use
stage, end-of-life stage, and beyond stage—and four carbon emission sources—machinery
emissions, product emissions, energy emissions, and transportation emissions—as illus-
trated in Figure 7. The house structural elements are hierarchically decomposed into
multilevel systems according to Omniclass that are presented in Table 4. Data for higher
levels may only be available when LoDs are higher. Hence, the data structure of different
levels presents a downward-pointing triangular structure according to different LoDs, as
shown in Figure 8. Given the ECFs, it is not difficult to calculate the carbon emission for
each product/activity in each life stage from each emission source using the equations
described in Section 4.1. Although the actual embodied carbon is calculated based on the
LoD 500 model, it is also meaningful to convert the carbon emissions to lower LoD models
for the design comparison purpose.
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Table 4. Hierarchical decomposition of the house structure according to Omniclass.

Level 1 Level 2 Level 3 Level 4

Shell

Superstructure

Floor construction
Floor structural frame

Floor decks, slabs, and toppings
Floor construction supplementary components

Roof construction
Roof structural frame

Roof decks, slabs, and sheathing
Roof construction supplementary components

Exterior vertical enclosures

Exterior walls

Exterior wall veneer
Exterior wall construction
Exterior wall interior skin

Fabricated exterior wall assemblies
Exterior wall supplementary components

Exterior wall opening
supplementary components

Exterior windows Exterior fixed windows

Exterior doors and grilles Exterior entrance doors
Exterior door supplementary components

Exterior horizontal enclosures Roofing Low-slope roofing
Roofing supplementary components

Interiors

Interior construction
Interior partitions Interior fixed partitions

Interior partition supplementary components

Interior doors
Interior swinging doors

Interior door supplementary components

Interior finishes

Wall finishes
Wall painting and coating

Wall finish supplementary components

Flooring
Flooring treatment

Tile flooring
Flooring supplementary components
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6. Discussion

The biggest challenge in developing such a system is the big data problem. LoD
refers to the amount of information in the BIM model. For example, an LoD 300 for a
seven-floor residential building that has a gross floor area of approximately 40,000 m2 can
contain approximately 100,000 over virtual elements. Therefore, along with the progress of
a building project, the amount of data is explosively increasing. A way to scale down the
data size is to organize them in a hierarchical structure. As such, details in the low rank can
be lump sum represented by the element in the high rank. However, the existing systems
for organizing information on buildings usually do not go down to the detailed product
level. It thus needs specific definitions that should be tailored to give clear guidance on the
decomposition of different building parts.

Since the current IFC schema is not complete, a lot of new IFC elements may have
to be developed. One example is the end-of-life stage, as abovementioned, in which no
IFC classes for deconstruction exist. Another example would be product classification in
which products come with details of sub-assemblies; generally, they are under-represented
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in the IFC schema. Furthermore, though BIM can include process-related data, the data
are only used for scheduling purposes, a semantic approach for linking process data with
carbon emissions is needed. Therefore, research is necessary to create new IFC elements
for calculating the total embodied impact of the building.

7. Conclusions

The lack of a credible methodology for estimating embodied carbon limits the im-
provement of low-carbon design in the AEC industry. This paper thereby proposes a
method that is based on digital twin technology and LCA as a better method. The proposed
method is advantageous over the existing ones by providing (1) a cradle-to-cradle LCA and
(2) a common granularity design of the LCA database and the BIM model for automatic
data exchange. Because a process-based method is used for calculating the embodied
impact of the building, and the processes are monitored via digital twin technology, while
the data are collected in a standard and consistent way, the proposed method is considered
more reliable.

This paper so far gives a conceptual framework that is supported by a comprehensive
review conducted on a large amount of relevant literature. The proposed framework
consists of three parts. The first part is about LCA calculation. The authors proposed a
cradle-to-cradle LCA following the BS EN 15978 life cycle stages. Formulas for calculating
the carbon emissions in each subsection of the life stages are given. Dynamic factors such as
recurrent embodied impacts caused by maintenance and repair activities are also included.
The second part is about BIM and IoT integration. An RFID-based digital twin platform is
designed for real-time asset tracking in construction and the built environment. The main
purpose to use the digital twin technology is to enable automated data capture to prevent
data inconsistencies and errors in the process of entering data and updating information
into the database system. With the digital twin, the system empowers the capability to
react to future scenarios and changing conditions. For BIM and RFID integration, the
authors recommended a hybrid approach that combines semantic web with a relational
database, which is suitable for different kinds of projects including those large-scale and
complex ones. The third part is about BIM and LCA integration. The key point in this
part is to design one-to-one mapping between them to facilitate automated two-way data
communication. The authors recommended using the same granularity in LCA and BIM
databases, meanwhile using the same data structure and naming convention in them.
The authors gave clear guidance for how to design the LCA database, how to make BIM
elements following the same classification chosen for LCA, as well as how to link LCA and
BIM. As assessing embodied carbon is most useful in early design stages when detailed
information about buildings is not available yet, the proposed system BIM-based LCA
system can provide a fast and automated method for evaluation of different design options
to assist a low-carbon building design.

In the future, the authors will concretize the proposed idea to achieve a real system.
Although the proposed framework represents a universal tool for estimating building em-
bodied carbon, the LCA database and the classification system for organizing information
on buildings exhibit regional characteristics. As a result, the authors have to adapt the
system to China’s local conditions. A survey on the current status of different types of
buildings in China is necessary.
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Nomenclature

Eemb Embodied carbon of a building
Epro Emissions in the product stage
Econ Emissions in the construction stage
Euse Emissions in the use stage
Eend Emissions in the end-of-life stage
Ebey Emissions in the beyond stage
EA4 Emissions associated with transport from factory to site
EA5w Emissions concerned with waste in construction
EA5a Site activity emissions in construction
EB1 Emissions associated with use
EB2 Emissions associated with maintenance
EB3 Emissions associated with repair
EB4 Emissions associated with replacement
EB5 Emissions associated with refurbishment
EC1 Emissions associated with deconstruction and demolition
EC2 Emissions associated with transport away from site
EC3 Emissions associated with waste processing
EC4 Emissions associated with disposal
ED Emissions associated with reuse and recycling
Qi Quantity of type i building material (product)
Qmat, i Quantity of type i raw material
Qmac,i Time of type i machinery operation
Qene,i Quantity of type i energy
Qtra,i Quantity of type i transport material (product) or construction equipment to site
Qrep,i Quantity of type i repair material (product)
Qrel,i Quantity of type i material (product) for replacement
Qrem,i Quantity of type i removal material (product) in refurbishment
Qnew,i Quantity of type i newly installed material (product) in refurbishment
Qtra2,i Quantity of type i transport material (product) or construction equipment from site
Qwap,i Quantity of type i material (product) for waste processing
Qdis,i Quantity of type i material (product) for disposal
Qrec,i Quantity of type i material (product) for reuse and recycling
TDi Transport distance for type i transport mode
WFi Waste factor for type i material (product)
WRi Waste rate of type i material (product)
RSP Reference study period
CLi Lifespan of type i material (product)
lECF Embodied carbon factor
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