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Abstract: This study puts forward a logical framework for green innovation network analysis,
which includes a spatial dimension, a relational dimension, and a systems dimension. Here, we put
forward some basic research ideas concerning the optimization and regulation of green innovation
networks in terms of the systems dimension and we investigate the micro-dynamic mechanisms
of green innovation network expansion using a spatial econometric model. Our main research
results are as follows: The efficiency of green innovation in the Yangtze River Economic Belt has
improved significantly, however, the gap between cities has gradually increased, and a problem of
efficiency regression has emerged. The green innovation network has changed from the primary
stage dominated by Edge Network to the rapid growth stage dominated by Supporting Network, and
formed a complex network pattern with diversified hierarchical structure. Node symmetry is helpful
in forming more extroverted connections and promoting the expansion of green innovation networks.
Node proximity and connection symmetry inhibit the growth and development of networks, and
knowledge flow cooperation networks can accelerate the evolution of green innovation networks.
Finally, this paper holds that we should combine the actual development needs, emphasize the
basic principles of differentiated development, and construct the development pattern of regional
collaborative innovation. This can also provide a theoretical reference for enriching our understanding
of green innovation networks while narrowing the gap between cities.

Keywords: Yangtze River Economic Belt; green innovation network; social network analysis; gravita-
tional model

1. Introduction

The Yangtze River Economic Belt is an important part of the “T”-shaped spatial struc-
ture of China’s land development and strategic planning, and it is also an important channel
connecting China with other countries around the world. Its superior geographical location
and policy support make it one of the most active areas for innovation and development in
China [1–3]. In 2019, investment in science and technological research and development
in the Yangtze River Economic Belt reached 8466.30 billion yuan, accounting for 34% of
total investment. The total number of patent applications and authorizations reached
158,344—a nearly 5.6-fold increase compared with 2010 [4]. These data show that the
Yangtze River Economic Belt has strong development potential and innovative ability. With
the improvement of innovation capacity, there is also a serious environmental pollution
problem, especially in terms of water pollution and carbon emissions [5,6]. The Yangtze
River Economic Belt is an economic development area planned by the 11 provinces that run
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through the Yangtze River. The Yangtze River provides convenient shipping conditions for
economic activity and trade between provinces and cities, and it attracts a large number of
industrial enterprises on both sides. Chemical and traditional manufacturing industries
with high pollution and high energy consumption have brought major challenges in terms
of air and water quality for the Yangtze River basin [7]. In 2019, the industrial wastewater
discharge in the Yangtze River Economic Belt reached 314.02 million tons, and total carbon
emissions reached 3529.81 million tons.

The “black economic model”, which is characterized by high levels of energy consump-
tion and high environmental costs, is no longer suitable for the development of the Yangtze
River Economic Belt. Instead, green innovation provide a new idea for compensating the
environmental costs of economic growth. Green innovation describes an innovative form
with environmentally friendly characteristics [8,9], and emphasizes the development and
application of energy-saving and environmental protection technologies. The efficiency of
green innovation quantitatively shows the rationalization degree of innovative resource
allocation in a particular region from the perspective of input and output. It has laid a
foundation for investigating green innovation activities in the Yangtze River Economic
Belt from the perspective of space-time evolution [10]. However, the expansion of regional
trade, high-speed rail, aviation, and other modes of transportation has greatly reduced the
space distance between cities, resulting in the progressive strengthening of green innova-
tion links. Using traditional “central place theory”, it is difficult to effectively explain the
green innovation relationships between cities—in other words, green innovation network
is rooted in many fields such as economy, transportation, information, and markets among
cities, and weakens the limitation of geographical space.

A green innovation network is typically a large system with the basic characteristics
of openness, complexity, and nonlinearity [11,12]. The investigation of such structures
in terms of micro-organizational modes and influencing factors can help to accurately
characterize the green innovation links among cities in the Yangtze River Economic Belt, and
also help to provide effective development plans for areas with weaker green innovation
capabilities. However, the analysis of green innovation networks still lacks a comprehensive
and effective logical framework. The structure of green innovation networks, as well as
their behavior patterns and the micro-dynamic mechanisms of networks, have not yet
been resolved.

This study will specifically explain the formation and evolution mechanism of green
innovation network, and establish an analytical framework for green innovation network
in view of the shortcomings of existing research, and at the same time try to decompose the
micro-structure of green innovation network and discuss its micro-dynamic mechanism.
We addresses the above problems in the following ways: Related forms of data, such as the
number of patents granted and the comprehensive index of environmental pollution, were
obtained from the databases of China Urban Statistical Yearbook (2010–2019) and the China
Environmental Statistical Yearbook (2010–2019) in order to calculate the green innovation
efficiency for various cities. The green innovation network is constructed using a gravity
model and the indexes, such as network density and degree centrality, were investigated
using this approach. Finally, the micro-dynamic mechanisms of green innovation networks
were analyzed using spatial econometric modeling. Our main findings are that the efficiency
of green innovation in the Yangtze River Economic Belt has been significantly improved and
the intensity of green innovation networks continues to increase. The imbalance between
cities and an imbalance in terms of network structure will continue to exist, and shows the
group evolution trend of tripartite alliance.

2. Literature Review

There are various types of cities in the Yangtze River Economic Belt and the evolution
of its green innovation networks is exemplary. In this sense, it can provide a model for the
development of green innovation efforts in other regions. Therefore, this study begins by an-
alyzing the relevant literature concerning green innovation and green innovation efficiency.
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2.1. Green Innovation & Green Innovation Efficiency

Green innovation is the expansion and supplementation of the concept of urban inno-
vation under the influence of a more comprehensive consideration of economic, social, and
ecological factors. This has a richer theoretical context and a deeper practical significance.
Green innovation is also referred to as ecological innovation, environmental innovation,
and sustainable innovation [13]. Its essence is to pay more attention to the negative impact
on the sustainable development of ecological environment while considering the economic
and social benefits in the process of innovation. It is the integration of various values, such
as economic value, social value, humanistic value, and technical value [14,15], emphasizes
the development and application of green technology, and reduces the negative externali-
ties of environment in the process of innovation. It is also a key step in the greening and
ecologicalization of urban innovation [16]. From another perspective, green innovation is
also an intangible resource with which to achieve sustainable development [17–19], and
thus to extend the concept of green innovation efficiency [20]. Green innovation efficiency
not only reflects innovation performance under certain environmental constraints but also
reflects ecological sustainability in the process of innovation and shows typical “double
attributes” characteristics, which makes it an important indicator in evaluating the coor-
dination between regional innovation and ecological economies [21]. It can be seen that
there are some differences in the understanding of the concept and connotation of green
innovation, but they are all based on economic development and ecological sustainability.
This paper holds that green innovation is an innovation activity in the process of realizing
the ecology and sustainability of economic growth, and the efficiency of green innovation
reflects the effectiveness of resource allocation. The measurement of green innovation
efficiency [22–24], temporal and spatial evolution [25–27], and influencing factors [28] are
the main research directions of existing research. However, with the development of an
urban agglomeration economic model and the implementation of a regionally coordinated
development strategy, cooperation barriers generated by administrative boundaries have
been gradually blurred, and the green innovation links between cities are becoming in-
creasingly proximate, the original top-down nested urban system has been broken and
the complementary advantages and resources, infrastructure sharing, intensive knowl-
edge, and high-quality talents gathered became the main driving forces to promote the
green innovation links between cities. The central place theory based on freight cost and
geographical distance is difficult to explain the law of the formation of inter city green
innovation network. Urban green innovation shows the trend of single center to network
based on “hierarchical scale”, which triggers an upsurge of research on green innovation
network [29,30].

2.2. Green Innovation Networks

The theory of flow space provides a methodological basis for the construction of urban
green innovation networks. The accurate description of network relationships serves as a
basis for investigating the structural complexity, evolutionary expansion, spatial directivity,
and micro-self-organization effects for inter-city green innovation networks [31]. The ex-
isting research is usually based on relevant data of a certain kind and it often employs a
gravity model or VAR model to simulate and calculate the green innovation relationships
between cities. Relying on property rights relationships between enterprises, it is often
difficult to remove the influence of enterprise scale, business type, market position, and
other factors on the network relationships. This can be done, however, by reconstructing
the innovative network relationships between headquarters and branches [32]. Innovation
networks based on science and technology parks, enterprise clusters, and industries are
usually small in scale and seriously affected by network embeddedness [21,33–35]. The
theory of knowledge absorption capacity provides a theoretical foundation for the con-
struction of innovation network between cities with the flow of high-quality talents [36].
Human capital, as a key factor to promote the expansion of innovation networks and the
realization of the complexity of network structure, has a high dependence on transporta-
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tion networks while the extension of high-speed rail networks will lead to the “reverse
urbanization” of innovation elements [37], which can hinder the expansion and formation
of innovation networks. In addition, the links formed by navigation, air transportation,
and innovation funds are also used to build innovation networks between cities and these
all reflect the structural characteristics and evolutionary laws of innovation networks to
some extent [38,39].

2.3. A Logical Framework for Green Innovation Network Analysis

To sum up, existing studies mainly focus on relationship building and the evolution
of network morphology and structure [40]. However, the complexity of urban green
innovation networks means that it is difficult to fully capture the growth laws and internal
organization structure of the whole network in a single dimension. In this respect, a more
complete logical framework is still needed. In order to compensate for this deficiency,
we explore a logical framework for green innovation network research, which includes
geospatial, network relationships, and system dimension.

Geospatial comprises a basic dimension of urban green innovation network research
and the spatial characteristics of green innovation network can be examined from the
perspective of “field space” theory [41]. The research of this dimension mainly focuses on
spatial distribution patterns, agglomeration characteristics, and the rationalization of the
allocation of the innovation elements of regional networks at the scale of provinces, cities,
and urban agglomerations (bay area, metropolitan area, etc.). However, the research of
geospatial dimension still does not get rid of the hierarchical nesting analysis model of
central place theory, but it reflects the influence of geographical distance on the evolution of
urban green innovation spaces to a certain extent, which provides a basis for the formation
of innovation networks and the analysis of relational dimensions [42]. On the basis of
spatial dimension, the process of further considering the green innovation connections
between cities and transforming it into a complete network topology is called relational
dimension. The relational dimension complements the research content of the spatial
dimension with the concept of a “green innovation flow”, and endows research units
with the characteristics of “double attributes”, that is, cities are not only in the network
relationship formed by the green innovation flow, but also cannot be separated from the
influence of geographical space. Research on the relational dimension tends to focus on
macro-scale analysis and micro-dynamic mechanisms in the exploration of green innovation
network [36]. The former focuses on the analysis of green innovation network structure
and the discussion of network form expansion. Its main task is to objectively describe
the hierarchy, balance, centrality, and directionality of the whole or local network. It
also summarizes and explains the evolutionary laws of green innovation network in
geographical space. The latter mainly emphasizes the key factors and driving mechanisms
that lead to the evolution of the morphological structure for green innovation networks
(centrality, directionality, center-edge, etc.). The essential attributes and embeddedness
of green innovation networks determine that the influence of node attributes, network
structure, and external collaborative network must be considered [43].

Spatial and relational dimensions, as well as the novel phenomena emerging from
their interaction and mutual influence, constitute the system dimensions that emphasize
the analysis of regulation and the optimization of green innovation networks from the
perspective of system science. At present, there is little research on green innovation
networks from a systems perspective. We especially point out the new characteristics of
green innovation network under the system dimension. For example, besides the flow of
personnel, capital, and other elements, the innovative links among innovative enterprises
will also form a credit system and contract spirit in the long-term cooperation process,
and the policy documents and institutional systems formulated by local governments to
promote the development of innovative industrial clusters. These new characteristics have
gone far beyond the essential needs of innovation cooperation among subjects, but they
play an important role in ensuring services, improving quality, and increasing efficiency.
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The core task is the analysis, optimization, and regulation of regional green innovation
systems and this paper provides some general steps to explore green innovation networks
from the perspective of the system dimension (Figure 1).
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Figure 1. Simulation and controls ideas of green innovation system.

System dimension analysis can be a basis for green innovation network analysis,
including system demand analysis, environment analysis and target analysis. Demand
analysis focuses on the bottleneck problem in the development of green innovation system
and provides an in-depth investigation of the problems faced by the innovation subject,
including imperfect systems, low market flexibility, and a lack of supervision mechanisms.
Environmental analysis includes attention to internal and external environments. The
external environment can be further subdivided into its economic, social, ecological, en-
vironment, and market contexts. The internal environment mainly refers to a system
composed of various subsystems and novel phenomena emerging between those subsys-
tems. Environmental analysis is the key to determining system impact factors and building
system simulations for the purposes of optimization. Goal analysis refers to the effect that
the green innovation network will achieve through system simulation and optimization.
By combining qualitative analysis with quantitative analysis, a model containing the char-
acteristics of green innovation network is built by means of big data and digital twinning,
and the optimal scheme of the system is explored through simulation optimization. System
regulation and control is a specific improvement measure to optimize the green innovation
system according to the simulation results, and objectively evaluates the implementation
effect of the scheme and provides reference for decision-making. In addition, we sum-
marized three empirical models for the regulation and optimization of green innovation
system. The purpose of the system prediction model is to reflect the development trend of
green innovation in a certain region, and it is an effective method to explain the system
evolution from a macro perspective. Multidimensional regulation model and dynamic
simulation model reveal the internal operation mechanism of green innovation system
and provide decision support for system optimization, which are the key contents of green
innovation system research.

3. Methods and Data
3.1. Research Method
3.1.1. The Undesirable Outputs SBM Model

(1) Model expression
Undesirable outputs SBM model is a universal tool for efficiency measurement [22–24].

Its advantage is that it considers the unexpected outputs resulting from green innovation,
it avoids the influence of radial and angle on the accuracy of measurement results in
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traditional models, and it has greater applicability and scientific rigor in terms of efficiency
measurement. The specific formula is as follows:
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1− 1
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∑

k=1

Sk
xk0

1+ 1
I+J (

I
∑

i=1

Sd
i

yd
i0
+

J
∑

i=1

Su
i

yu
i0
)

s.t



xk0 =
M
∑

m=1
µmxkm + s−k , k = 1, 2, · · ·, K

yd
i0 =

M
∑

m=1
µmyd

im − sd
i , i = 1, 2, · · ·, I

yu
i0 =

M
∑

m=1
µmyu

im + su
i , i = 1, 2, · · ·, J

1 =
M
∑

m=1
µm

µm ≥ 0, s−k ≥ 0, sd
i ≥ 0, su

i ≥ 0

(1)

where ρ∗ represents the efficiency of urban green innovation with a value range of [0,1]; K,
I and J represent the number of green innovation inputs, the expected outputs, and the
unexpected outputs respectively; s−k , sd

i and su
i are the relaxation variables of innovation

inputs, the expected outputs, and unexpected outputs respectively; sk0, yd
i0 and yu

i0 are the
innovation inputs, expected outputs, and unexpected outputs respectively; and µm is the
weight coefficient.

(2) Index selection
In this study, green innovation efficiency was chosen as the benchmark data for estab-

lishing green innovation links between cities. The reason for this is that green innovation
efficiency does not only reflect the rationalization of the allocation of green innovation
resources in regional cities, but it also describes the ability to transform innovation achieve-
ments into market products or services [21]. In other words, green innovation can also be
regarded as the sum of all things that can help improve the urban ecological environment
and achieve sustainable development, for example, the proposal of a new ecological-
economic governance theory or the development of new green technologies. Considering
the above problems, it is particularly important to construct a logical measurement index
system. Referring to the existing research, combined with the actual situation of green
innovation in the Yangtze River Economic Belt [4,19,24], and considering the diversified
characteristics of input and output in the process of green innovation, the index system
shown in Table 1 is established. The index system covers the main links of green innovation
activities, in which the input includes human capital (I1), natural resources (I5) and capital
(I2, I3, I4), the expected output index includes economic benefits (E1, E2) and product bene-
fits (E3), and the unexpected output consists of product risks (U1) and negative externalities
of environment (U2). Especially, it shows that the accounting scope of comprehensive index
of environmental pollution includes wastewater, waste gas, and solid waste, which is calcu-
lated by entropy weight method [14,15]. Among them, the accounting scope of wastewater
refers to the total amount of sewage generated in the process of green innovation, the
accounting scope of waste gas includes the total amount of sulfur dioxide, nitrogen oxides
and dust particles, and the accounting scope of solid wastes mainly includes general solid
wastes, such as solid particles and waste products.
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Table 1. Index system for measuring green innovation efficiency.

Target Layer Variable Code Variable Meaning

Input

I1 number of R&D personnel
I2 investment of R&D funds
I3 government investment in finance
I4 number of new product development projects
I5 total energy consumption

Expected output
E1 patent authorization amount
E2 turnover in technology market
E3 number of papers published

Unexpected output U1 patent unauthorized amount
U2 comprehensive index of environmental pollution

3.1.2. Gravity Model

Both technology diffusion theory and the new economic geography theory point out
that geospatial distance will hinder green innovation relationships between cities. How-
ever, with ongoing improvements to high-speed rail, aviation, and other fast transportation
networks, the constraint of geospatial space on green innovation networks is obviously
reduced [18]. Still, there is a significant correlation effect between the economic potential
difference between cities and the expansion of green innovation networks, which requires
that the influence of economic distance and geographical distance be considered simulta-
neously in the process of establishing green innovation relationships between cities [34].
Therefore, this paper modifies the original form of the gravity model as follows:

Qij =
Fi × Fj

D2
ijE

2
ij

RiK (2)

where Qij indicates the intensity of green innovation association between city i and city
j; Fi and Fj represent the green innovation efficiency of city i and city j respectively (F
equivalent to ρ∗ in Formula 1); Dij and Eij respectively represent the geographical distance
and economic distance between city i and city j. The geographical distances in the gravity
model were calculated as the linear distances after vectorization of the map. The economic
distance is calculated according to the difference of GDP between the two cities [2]; Ri
represents the full-time equivalent of R&D personnel in the city i; K is the correction
coefficient, which is used to adjust the data magnitude and enhance contrasts [2], its value
selection has little effect on the subsequent result analysis.

3.1.3. Characteristics of Green Innovation Network

According to the different research purposes, there are also differences in the selected
network characteristic indicators. In this study, network density and access degree are se-
lected as the main indicators, aiming at revealing the structural complexity and connection
direction of green innovation networks. Network density refers to the ratio between the
actual number of connections and the theoretical maximum number of connections in the
green innovation network. The larger the value, the stronger the relevance of the green
innovation network. The specific formula is as follows:

CRK =
S′

S
(3)

where: CRK represents the network density of the green innovation network. S′ and S
respectively represent the actual number of connections and the theoretical maximum
number of connections.
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Out-degree and in-degree respectively indicate the proportion of the number of con-
nections with a specific node as the starting point and the end point to the total number of
connections. The specific formula is as follows:

Ci,in =
Lin

(Lin + Lout)
(4)

Ci,out =
Lout

(Lin + Lout)
(5)

where Ci,out and Ci,in respectively represent the out-degree and in-degree values of node
i, and Lout and Lin respectively represent the number of connections with node i as the
starting and the end.

3.1.4. Spatial Econometric Model

(1) Spatial Lag Model
The Exponential Random Graph Model (ERGM) and QAP regression are common

tools for investigating the factors influencing network, though they can only deal with
cross-sectional data. Moreover, it is difficult to build such models and the results are often
unsatisfactory in terms of the iterative operational process. In this study, a spatial econo-
metric model is used to investigate the micro-dynamic mechanisms of green innovation
networks during the whole cycle. The specific model is as follows:

ln Ci,t = β0 + ρW ln Ci,t−1 + β2Xi + αi + γi + εi,t (6)

where Ci,t represents the comprehensive index of the green innovation network. From For-
mula 3, we can see that green innovation efficiency, innovation investment, and economic
distance are key factors affecting green innovation networks between cities, and changes in
their values directly affect the complexity and expansion of the network structure.

Therefore, this paper uses the comprehensive index to describe key factors in the
evolution of green innovation network structures, and Ct−1 is the comprehensive index
that lags 1 period behind; ρ represents spatial autocorrelation coefficient; W represents the
spatial weight matrix; X represents an explanatory variable; αi and γi represent individual
fixed effect and time fixed effect; and εi,t is a random interference term.

(2) Variable Selection
Previous studies have found that a city’s own attributes, network microstructure, and

other external networks have an impact on the expansion of green innovation networks [14,16].
Table 2 shows the selected explanatory variables and describes the meaning of each variable.

Note: each variable in Table 1 can be calculated by the software Ucinet. Gout and Gin
represent the out- degree and in-degree values of the green innovation network, respectively,
and qi represents the green innovation correlation values of all nodes associated with the
node i.

Node symmetry (X1) is used to reflect the convergence and divergence of network
nodes. The greater the deviation is from 1, the worse the symmetry of the node is. Among
these, a positive deviation (value greater than 1) shows divergent nodes, while a negative
deviation (value less than 1) shows convergent nodes. Node proximity (X2) can reflect
the relative size of the distance and the average distance between the target node and
the remaining nodes. If the value is greater than 1, it means that the path traversed by a
particular node through the remaining nodes is greater than the average distance. This kind
of node usually exhibits long-distance connections. Otherwise, short-distance connections
are more prevalent. Connection efficiency (X3) can effectively describe the ratio of the
connection strength between the target node and other nodes in terms of the average
connection strength. The greater the connection efficiency, the more stable the connection
relationship between the two nodes and the stronger the support for the network structure.
Otherwise, the connection relationship is more fragile. Connection symmetry (X4) is used
to reflect the relative strength of the receiving and sending connections of target nodes. The



Sustainability 2022, 14, 297 9 of 19

difference between connection symmetry and node symmetry is that the former emphasizes
the breadth of the connections of target nodes, while connection symmetry focuses on the
depth of connection with other nodes. In this paper, knowledge flow networks (X5) are
constructed according to the cross-city flow of high-quality personnel and its influence on
green innovation network is investigated by taking the sum of the connections between
networks as co-network factors.

Table 2. Explanatory variables of spatial econometric model.

Type Variable Variable
Code

Computational
Formula Variable Interpretation

Node
attribute

Node
symmetry X1 X1 = Gout

Gin

Goutand Gin represent node outputs and inputs,
respectively. Larger ratios indicates that the

nodes diverge; otherwise, the nodes converge.

Node
proximity X2 X2 = NPi

N
∑

j=1
Pj

Pi and P represent the closeness and average
closeness of node i, respectively. The larger the
value, the farther away it is from other nodes,

and the closer it is to other nodes.

Network structure

Connection
efficiency X3 X3 =

N
N
∑

i=1
qi

N
∑

i=1

N
∑

i=1
qi

qi represents the total strength of green
innovation connections to node i. The larger the

value, the more stable the network structure;
otherwise, the more fragile it is.

Connection
symmetry X4 X4 = Sin

Sout

Sin and Sout represent the sum of receiving
intensity and sending intensity for the nodes,
respectively. The smaller the value, the more
active the nodes are in the network, showing

spillover effects. Otherwise, this shows a
siphon effect.

Knowledge flow
network

Collaborative
network connection X5 X5 =

N
∑

i=1
Mi

Mi represents the connection strength of the
target node to the node.

3.2. Data Exploration

In this study, 2010–2019 was selected as the study period and the relevant data were
collected from the China Urban Statistical Yearbook (2010–2019), the China Environmental
Statistical Yearbook (2010–2019), and the China Urban Database (http://olap.epsnet.com.cn,
accessed on 21 July 2021). The map resources are taken from the Standard Map Service Sys-
tem (http://bzdt.ch.mnr.gov.cn/, accessed on 9 July 2021) and the geographical distances
in the gravity model were calculated as the linear distances after vectorization of the map.
The economic distance is calculated according to the difference of GDP between the two
cities [2].

Checking and cleaning the collected data was an important step of this process in
ensuring the accuracy of our results, and a key task was to eliminate possible outliers.
After inspection, the standard deviation of the green innovation efficiency measurement
index data was within acceptable limits, and 15,480 green innovation efficiency values for
129 cities were obtained. On this basis, a gravity model was used to calculate the correlation
strength between cities, thus forming a 129 × 129 green innovation correlation matrix. Our
results show that there are many values in this matrix far below the mean. In order to avoid
undue influence from this kind of data, the furthest outlying values were eliminated and
the green innovation correlation matrix of 110 × 110 was obtained after this correction.

4. Results
4.1. Analysis of Green Innovation Efficiency Results

The green innovation efficiency of Yangtze River Economic Belt from 2010 to 2019
was calculated using an SBM model. Table 3 shows the descriptive statistics for green

http://olap.epsnet.com.cn
http://bzdt.ch.mnr.gov.cn/
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innovation efficiency, which were used to compare trends and the degree of differentiation
for overall green innovation efficiency in the Yangtze River Economic Belt at different times.
Using ArcGIS software to visualize the green innovation efficiency, Figure 2 shows the
spatial distribution of green innovation efficiency values.

Table 3. Descriptive statistics for green innovation efficiency in Yangtze River Economic Belt.

Year Max Min Ave Ran C.V Var Std Ske Kur

2010 0.864 0.152 0.323 0.712 1.578 0.262 0.511 0.430 0.228
2013 0.890 0.167 0.320 0.723 1.691 0.293 0.541 0.456 0.259
2016 0.917 0.182 0.347 0.742 1.713 0.353 0.594 0.525 0.346
2019 0.990 0.219 0.385 0.771 1.732 0.445 0.667 0.636 0.495
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4.1.1. Descriptive Statistics for Green Innovation Efficiency

The descriptive statistics for green innovation efficiency are shown in Table 3. Coeffi-
cient of variation (C.V) values are useful for comparing the degree of dispersion for green
innovation efficiency during different years. Skewness (Ske) is used to characterize the
asymmetry of the probability distribution for green innovation efficiency values and kurto-
sis (Kur) is used to characterize the steepness of green innovation efficiency distribution.

It evident from Table 3 that the average (Ave) efficiency of green innovation in the
Yangtze River Economic Belt is slowly increasing, with an average annual growth rate of
around 6%, with both maximum (Max) and minimum (Min) efficiency values increasing
slightly. The coefficient of variation (C.V) also shows a continuous upward trend. With
the passage of time, the green innovation efficiency for cities in the Yangtze River Eco-
nomic Belt is split, and the heterogeneity of inter-city innovation resource allocation and
platform service construction appears to have led to a widening gap in terms of green
innovation efficiency. From the changes of standard deviation (Std) and range (Ran), we
can conclude that the overall difference in green innovation efficiency in the Yangtze River
Economic Belt is growing over time. Combined with the changes in variance (Var), it is
evident that the distribution for green innovation efficiency is divided among two poles
around the mean value, though it is not significantly polarized in a formal sense. The
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skewness (Ske) and kurtosis (Kur) values show that the overall efficiency distribution
forms a left-leaning, long-tailed sample structure, and the high proportion of inefficient
cities has become a bottleneck problem, which hinders the overall improvement of green
innovation efficiency in the Yangtze River Economic Belt and which narrows the gap of
green innovation among regions.

4.1.2. Green Innovation Efficiency Shows a Dynamic Spatial Distribution Pattern

The efficiency of green innovation in the Yangtze River Economic Belt improved
significantly over the course of research period. The number of cities classified as either
High Efficiency or Highest Efficiency has increased from 9 in 2010 to 30 in 2019. Specifically,
only Shanghai reached the Highest Efficiency level in 2010, showing a spatial distribution
pattern in which one pole is dominant. The provincial capitals, such as Suzhou, Hangzhou,
Chengdu, and Changsha, all belong to the High Efficiency category. In 2013, these cities
also started to transition to the Highest Efficiency level and the number of cities in the
Lowest Efficiency category decreased significantly. At that time, cities with Medium and
High Efficiency levels began to appear in the middle and upper reaches of the Yangtze
River Economic Belt, which provided strong support for driving weaker cities in terms of
green innovation and elevating efficiency values at the lower end of the distribution. Until
2016, the spatial pattern of green innovation efficiency in the middle and upper reaches
of the Yangtze River Economic Belt showed strong dynamics. It is worth noting that the
dynamic spatial pattern of urban green innovation efficiency in the Yangtze River Economic
Belt decreased rapidly in 2019, with only a few Low Efficiency-level cities growing and
even some instances of efficiency degradation (Chuzhou, Bengbu, Panzhihua, etc.). This
change means that the green innovation efficiency of cities in the Yangtze River Economic
Belt appears to have reached a growth bottleneck at that time.

The location endowment and strategic position of the Yangtze River Delta region
results in the fact that it has more abundant innovation resources. However, with the
improvement of the domestic innovation environment and changes in market demand,
the green innovation growth driven by factor inputs gradually loses its primacy. The
redundancy of innovation elements, inefficiency of organization and management, and lack
of supervision and supervision system have become elements of a “ceiling” hindering the
improvement of green innovation efficiency; Cities in the middle and upper reaches of the
Yangtze River Economic Belt still tend to be at the Low Efficiency level for green innovation,
and there are still constraints in terms of innovation elements and economic scale. Therefore,
improving the efficiency of green innovation in the Yangtze River Economic Belt must be
carried out according to the idea of adapting to local conditions, regional linkages, and
dislocations in the division of labor. That is, based on the bottleneck problem faced by green
innovation in different regions, establishing and perfecting regional linkage mechanisms is
crucial in ensuring the free and smooth flow of elements and information in order to create
a green innovation pattern with dislocation in the division of labor.

4.1.3. The Efficiency of Green Innovation Shows a Stubborn and Heterogeneous Evolution

The efficiency of green innovation has always shown a spatial imbalance across the
entire research period, forming a step-like morphological feature that the upstream region
is a high-value region and gradually decreases to the upstream region. The global Moran’I
increased from 0.027 in 2010 to 0.367 in 2019, and both were significant at the 10% confidence
level. This indicates that the spatial evolution pattern for green innovation efficiency
is not randomly distributed, and the degree of interdependence and mutual influence
between cities is gradually strengthening. However, the laws of local agglomeration are
characterized by and unbalanced feature in which the lowest values surround the highest
values. In other words, there is an agglomeration phenomenon with the provincial capital
or central city as the core and this fosters innovation spillover effects for the city with the
highest level of efficiency.
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4.1.4. Spatial Change in Green Innovation Efficiency in Local Areas Shows Heterogeneity
and Graduality

The Yangtze River Delta region has changed from a Shanghai-centered single-core
pattern to a Shanghai-Suzhou-Hangzhou multi-core spatial layout. In this way, it has
formed a concentrated and contiguous green innovation high-efficiency area, which has
experienced three stages of efficiency: a lower-efficiency balance, a medium-efficiency
imbalance, and a high-efficiency imbalance. The middle reaches of the Yangtze River
have always shown the characteristics of dependence on the provincial capital city, which
resulted in a trend of lowest efficiency equilibrium, lower efficiency imbalance, lower
efficiency equilibrium in its process of evolution. Similarly, the Chengdu-Chongqing region
also shows a similar evolution. By comparison, it is found that the upstream region has not
played a leading role in the radiation of innovation in Chengdu and Chongqing, which has
led to a slow spatial evolution in terms of green innovation efficiency.

4.2. Evolutionary Analysis of Green Innovation Network Structure

We can now visualize the corrected green innovation association matrix. Figure 3
shows the spatial structure of the green innovation association network. In order to investi-
gate growth-and-development rules and the structural evolution characteristics of the green
innovation network, this can be divided into four levels of sub-networks according to the
correlation strength between cities as follows: Core Network; Support Network; Basic Net-
work; and Edge Network. The Core Network refers to the sub-network composed of cities
with green innovation correlation intensity exceeding 3164.26, which has a strong spillover
effect on driving the green innovation development of a certain region (metropolitan area
and urban agglomeration). This is also the key to promote the complexity and advancement
of green innovation-related networks. The correlation intensity of urban green innovation
in the Support Network is in the range of [1934.34, 3164.26], which reflects the transition
state of the green innovation network to the core network and also determines the evolution
direction of the whole network. The connection intensity of urban green innovation in
the Basic Network is in the range of [524.34, 1934.34], which represents the general and
universal connection in the green innovation network. The Edge Network refers to the
sub-network composed of cities with less than 524.34 green innovation correlation intensity,
which reflects the weak ties in the network and the development potential of the network
from the side.
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4.2.1. The Density of the Green Innovation Network Has Increased Significantly

In 2010, the network density was only 0.013, and the green innovation network was at
the initial stage of growth and development dominated by Edge Network characteristics
of simplicity and sparsity. With the passage of time, a Basic Network structure began to
predominate, and the green innovation network began to enter a period of rapid growth.
Before 2019, network density rose to 0.164, initially forming a green innovation network
pattern with diversified structures. However, there are still a large number of isolated
nodes in terms of network density, which provides room for development in terms of the
extension of the green innovation network.

4.2.2. The Green Innovation Network Has an Unbalanced Structure and Level

In 2010, a strong connection across the green innovation network only appeared
among Shanghai, Hangzhou, Nanjing, and other major cities. Beginning in 2013, the
complexity of the green innovation network in the Yangtze River Delta region was further
enhanced, and the basic network connection began to appear in the river’s middle and
upper reaches. It is worth noting that Chengdu-Chongqing area has not been connected
with nearby areas, but rather to points in the Yangtze River Delta region that are farther
away. Therefore, it can be inferred that the green innovation network of cities in the
Yangtze River Economic Belt has the characteristics of preference attachment, and it is
easier for cities with similar attributes to form network connections. It also shows that the
expansion of the green innovation network gradually breaks the barriers of geographical
distance and administrative boundaries, and this change will be more conducive to the
integration of new urban nodes into the green innovation network, as well as promoting
the complexity and advancement of network structure. With the passage of time, the green
innovation network has further expanded to the middle and upper reaches of the region,
forming a horizontal “T”-shaped spatial structure. Sone spatial imbalance always exists,
especially in Guizhou, Yunnan, and western Sichuan, which is mainly due to tourism
and agricultural development in this area. It is difficult to effectively embed within the
overall green innovation network due to constraints of industrial support and insufficient
endogenous motivations for green innovation. The imbalance in terms of hierarchical
structures is mainly reflected in the low total connection strength with the Edge Network
category, though it accounts for a large proportion of the total number of connections.
Therefore, reducing the proportion of Edge Networks cases among the overall network,
eliminating redundant connections between cities, and developing support networks and
core networks are effective ways to achieve the balanced development of a green innovation
network hierarchy.

4.2.3. Micro-Self-Organization Structures Promote the Expansion of the Green
Innovation Network

Combined with the analysis of the micro-configuration calculation results for green
innovation efficiency in Table 4, Type 1© indicates that there are no isolated nodes con-
nected by green innovation and the number of instances belonging to this structure has
dropped significantly. This reflects the fact that more urban nodes are included in the
green innovation network, which is intuitively manifested by the improvement of network
density. Type 2© represents the basic connection form for the green innovation network
between cities and it is also the basis for network structure expansion. Type 3© reflects
the two-way connection of green innovation network relationships between cities and the
reciprocal characteristics of network connections. The sudden increase in its prevalence
means that the green innovation network is complicated and advanced. Types 4© and 5©
are interpreted as the divergence (out-2-star) and the agglomeration (in-2-star) of the green
innovation network, respectively. It is evident from their quantitative changes that the
expansion of the green innovation network is far greater than that of agglomeration. Type
6© is the situation in which the in-2-star contains a special form of preference attachment,

which expresses a more complex tripartite relationship. Types 7© and 8© reflect a context
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in which the green innovation network has the tendency for group relationship evolution
based mainly on closed tripartite association.

Table 4. Micro-configuration of the green innovation network.

Type Network Configuration 2010 2019 Type Network Configuration 2010 2019

1©
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package. In order to validate the results of the model, we choose the fixed effect model for
time and individual. By testing the Log-likelihood and adjusted R-square values, we find
that the spatial lag model has more advantages and better robustness than linear regression
in explaining the micro-dynamic mechanisms of green innovation network expansion.
Table 5 shows the regression results of the model.

Table 5. Regression results.

Variable OLS SLM

X1 0.061 0.167 **
X2 0.350 * −0.224 ***
X3 0.014 * 0.064 *
X4 0.035 ** −0.351 **
X5 0.164 0.235 *

R2-ad 0.420 0.696
Log-likelihood - 264.126

Individual effect Control Control
Time effect Control Control
Time effect 1100 1100

Note: *, **, *** mean significant at 1%, 5% and 10% confidence levels.

According to our analysis of regression results, the regression coefficient for node
symmetry is 0.167, which is significant at 10% confidence level. This indicates that the node
symmetry has a positive role in promoting the expansion of the green innovation network.
The symmetry of the nodes is the result of the game between out-degree and in-degree.
Divergent nodes tend to form more extroverted connections, and the expansion of the green
innovation network is realized by absorbing isolated or marginal nodes. These usually
have a high network status and influence, while convergent nodes focus on receiving
connections from other nodes, which results in path locking and structural rigidity for
the green innovation network. This is often the case in the marginal areas of the green
innovation network.

Node proximity can inhibit the growth and development of the green innovation
network, and a high level of node proximity leads to an increase in the distance spent on
green innovation network connections, which reduces the network’s transmission efficiency.
The regression coefficient for connection efficiency is 0.064, which is significant at 10%
confidence level. This shows that connection efficiency can promote the expansion of the
green innovation network and a high level of connection efficiency exists mainly between
core nodes of the green innovation network. In this way, it is helpful in establishing a more
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stable network architecture. The regression coefficient for connection symmetry is −0.351,
which is significant at 5% confidence level. This indicates that connection symmetry is
not conducive to the expansion of the green innovation network and a siphon effect is
helpful in the formation of new core nodes. However, it will also lead to the loss of the
innovation elements of neighboring nodes and increase their own hierarchy. The regression
coefficient for knowledge flow in the network is 0.235, which is significant at 10% confidence
level. This indicated that knowledge flow can promote the growth and development of
green innovation network. The cross-city flow of high-quality personnel will promote
the exchange and integration of new knowledge, experience, and technology. It will also
help to enhance the core competitiveness of urban green innovation, thus accelerating the
expansion of the green innovation network.

5. Policy Implications

The government always plays a dual role of manager and participant in the green
innovation development of the Yangtze River economic belt. Policy system and market
mechanism are the key factors affecting regional green development. Combined with
the above research results, the following targeted policy suggestions are put forward to
promote green innovation in the Yangtze River Economic Belt.

It is beneficial to focus on the planning and layout of high-tech industries represented
by new energy and new materials, equipment manufacturing, biomedicine and big data
in the middle and upper reaches of the study area. In addition, it useful to encourage
and support the flow of innovation elements to the region and to promote the formation
of a green innovation pattern with a misplaced division of labor. This can fill network
structure depressions, such as those in Yunnan and Guizhou, and narrow the gap in terms
of green innovation between regions. With the implementation of distributed innovation
in relation to local conditions, the Yangtze River Delta urban agglomeration continues to
play a leading role in the field of green innovation and it actively absorbs and introduces
advanced international technology. In relying on geographical advantages, it is constantly
improving its capability of independent innovation while focusing on breaking through
the blockade of technologies with strategic significance, such as lithography machines and
nano chips.

At the same time, this region relies on the shipping advantages of the “golden water-
way” of the Yangtze River and the transportation networks such as the Shanghai-Kunming
Expressway and its riverside channels. This promotes the agglomeration of relevant tech-
nologies, personnel, and resources to the middle and upper reaches. The middle reaches
should actively undertake the industrial transfer from the Yangtze River Delta, and work
at the ongoing improvement of its level of urban green innovation. This can provide strong
support for the innovation and development of the western region. Due to the constraints
on leading industries, the Yunnan-Guizhou-Sichuan region has always been on the edge
of the green innovation network. We should actively promote and introduce innovative
industries and improve the endogenous driving forces of green innovation. For example,
we should carry out the research and development on the core technologies having to
do with new energy sources, such as wind and solar energy. We should encourage the
development of the green tourism industry and promote the application of ecological
agriculture technology. At the same time, our findings emphasize the complementary role
of small-sized and medium-sized enterprises in terms of green innovation, which supports
and encourages the upgrading of basic innovative technologies.

6. Conclusions and Prospects

This paper tentatively puts forward a logical framework for the analysis of green
innovation networks from the perspectives of spatial, relational, and system dimensions,
and it puts forward some basic ideas for the regulation of green innovation networks.
We employed an undesirable outputs SBM model, social network analysis (SFA), and
exploratory spatial data analysis (ESDA) to investigate rules of growth and development,
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structural complexity, and the micro-dynamic mechanisms of green innovation network in
Yangtze River Economic Belt from 2010 to 2019. Our conclusions are as follows:

i. The efficiency of green innovation in the Yangtze River Economic Belt has improved
significantly but the gap between particular cities has widened. Its spatial evolution
showed strong dynamic characteristics from 2010 to 2016, and there has been a problem
of efficiency degradation since then. The inefficiency of management and the lack of
supervision systems have become a ceiling that hinders the improvement of green
innovation efficiency in the Yangtze River Delta region, while the middle and upper
reaches of this region have fallen into the trap of the “Matthew effect” due to the lack
of endogenous motivation for urban green innovation. During the research period,
the spatial heterogeneity of green innovation efficiency was always present, and the
heterogeneity and gradualism of local spatial evolution promoted the formation of a
unique agglomeration pattern with provincial capitals and central cities as the core.

ii. The density of the urban green innovation network in the Yangtze River Economic
Belt has obviously increased and the green innovation network has changed from an
initial stage of growth and development dominated by Edge Network characterized by
simplicity and sparsity to a rapid growth period dominated by a Basic Network. In the
end, this formed a complex network pattern with rich levels and a tight structure. Both
structural and hierarchical imbalance in the green innovation network exist at the same
time. The preference attachment characteristics of network connections led Chengdu
and Chongqing has no connection with the neighboring areas and built connections
with more distant areas of the Yangtze River Delta region. This long-distance connec-
tion, which breaks down geographical distance and administrative boundaries, helps
new network nodes to be incorporated into the overall green innovation network.

iii. The green innovation network in the Yangtze River Economic Belt presents a hori-
zontal “T”-shaped spatial structure. Guizhou, Yunnan, and western Sichuan, which
are located in the marginal areas of the network, have become the key to limiting the
complexity and advancement of the green innovation network in the Yangtze River
Economic Belt. The total connection strength of the edge layer network is relatively
low, however, it accounts for a large proportion of the total number of connections.
Eliminating redundant connections and developing Support Network and Core Net-
work has become an effective way to achieve the balanced development of the green
innovation network hierarchy. The green innovation network shows reciprocity in its
micro self-organizational effects and it has the tendency for a group relationship to
evolve with a closed tripartite association.

iv. Divergent nodes under conditions of node symmetry help to form more extroverted
connections and to promote the overall network expansion by absorbing isolated
nodes or embedding subnetworks. The proximity of nodes leads to an increase in the
distance spent on green innovation network connections, which hinders the growth
and development of the network as a whole. Connection efficiency can promote
the formation of a more stable and resilient network structure and the siphon effect
in terms of connection symmetry leads to the improvement in network hierarchy,
which results in path locking and structural rigidity. Knowledge flow association
within the network drives the flow of new technology, thus promoting the growth and
development of the green innovation network.

Further, we extend the results of the research on urban green innovation network
in the Yangtze River economic belt to other regions or countries. The evolution of green
innovation network is not only affected by transportation, talent flow, trade activities,
and technology market factors, but also has a general structural imbalance. Therefore,
enterprises with green innovation potential must be selected as key support objects in
combination with the economic characteristics and industrial development of the studied
region, so as to enhance the supporting role of key core nodes in the complexity of green
innovation network structure. In addition, collaborative innovation of green technologies
among enterprises in different regions should be encouraged, and the formation of a
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mature cooperation system of inter-regional technological innovation and technology
market transactions accelerated. In particular, the edge nodes in the green innovation
network should strengthen the connection strength with the core nodes or enhance the
ability of independent green innovation, so as to ensure the stability and order of the
evolution of the green innovation network in the research area.

Although this study has made progress in the microstructure and self-organization
law of green innovation, there is still room for improvement. On the one hand, this study
does not deeply discuss the reasons for the evolution of green innovation network structure
and regional heterogeneity. Existing studies mainly focus on structural complexity and
evolution, lack of exploration of internal mechanism, and there is still a research gap. This
paper holds that the structural evolution and development of green innovation network
is the result of the game between “groups” composed of network nodes with similar
characteristics. Therefore, in future research, we will explore the internal mechanism of the
evolution of green innovation network. On the other hand, this study has limitations in
the selection of influencing factors of green innovation network. The economic attributes,
location attributes, and transportation network of network nodes play a key role in the
development of green innovation network. In the follow-up study, we will focus on the
impact of other networks and node attributes on green innovation networks.
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