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Abstract: In the face of growing concerns about urban problems, smart cities have emerged as a
promising solution to address the challenges, for future sustainable societies in cities. Since the early
2000s, 67 local governments in Korea have been participating in smart city projects, as of 2019. The
Sejong 5-1 Living Area smart city was selected as one of two pilot national demonstration smart cities.
The main objectives of this study are to introduce the Sejong 5-1 Living Area smart city project that is
currently in the planning stage, present travel and mode preferences focusing on external trips in
a smart city context to be built, and analyze a mode choice model according to the socioeconomic
characteristics of individual travelers. One of the distinguishing features of the Sejong smart city is
its transportation design concept of designating a sharing car-only district within the city to limit
private vehicle ownership to about one-third of residents, while bus rapid transit (BRT) plays a
central role in mobility for external trips among four transport modes including private cars, BRT,
carsharing, and ridesharing. This study was analyzed using the stated preference survey data under
hypothetical conditions by reflecting the unique characteristics of the Sejong smart city transportation
policy. Approximately two-thirds of respondents in the survey preferred to spend less than 1.25 USD,
traveling less than 35 min on BRT trips. On the basis of the survey data, we developed a mixed
logit mode choice model and found the overall model estimates to be statistically significant and
reasonable. All people-specific variables examined in this study were associated with mode choices
for external commuting trips, including age, income, household size, major mode, driving ability,
and presence of preschoolers.

Keywords: smart city; bus rapid transit; mode choice; mixed logit model; external trips

1. Introduction

The current city—experiencing rapid population growth and urban concentration—
faces other complex challenges, such as uncontrolled urban sprawl, traffic congestion,
environmental pollution, an aging population, and a lack of urban services [1–3]. Accord-
ingly, cities around the world have focused on the concept of smart cities as an alternative to
solving complicated urban problems and urban development [4,5]. However, the concept
of a smart city—which has been in use since the late 1990s—has not yet been clearly de-
fined [4,6]. Countries and cities around the world implement the concept differently, with
there being no uniform or widely accepted smart city definition [2,7]. Although concepts
and development goals for smart cities are being applied in various ways, depending on
each country’s environment and recognition of its urban challenges, smart cities can be
categorized into two types; one type highlights the use of information communication
technology (ICT) and modern technologies as a key to successful smart cities, while the
other focuses on the role of human capital in improving economic, social, and environ-
mental sustainability in addition to new technologies [6]. Whatever the case, all cities
advocating for a smart city have a common objective—that is, to solve urban problems and
improve the quality of life of citizens [7]. Consequently, a smart city is an umbrella concept
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that combines a number of ideas, including a smart economy, smart environment, smart
governance, smart living, smart infrastructure, smart mobility, smart technology, smart
health, and smart people [7–12].

Many countries and cities around the world have been implementing smart city ini-
tiatives, policies, plans, and projects. For example, following the Smart London Plan in
2013 (updated in 2016), the city of London launched ‘Smarter London Together’ in 2018 to
better integrate data and digital technologies and to build London to be the smartest city in
the world [13]. San Francisco is considered to be one of the most successful examples of
smart cities in the United States, with the city adopting innovative technologies for smart
transportation, smart energy, smart waste management, and smart communities [14]. The
city of Barcelona, Spain, integrated ICT to improve the accessibility, transparency, and
efficacy of its services. Barcelona’s Smart City initiative—in particular its 22@Barcelona
district project in support of various initiatives—has been an effective smart city strat-
egy [14,15]. Singapore established a Smart City initiative in 2014 to cope with the growing
urban problems of an aging population, urban density, and energy sustainability. The smart
nation program of Singapore incorporates ICT, networks, and data [16].

In Korea, a smart city is defined as “a platform to improve the quality of life for citizens,
enhance the sustainability of cities, and foster new industries by utilizing innovative tech-
nologies of the Fourth Industrial Revolution era [5].” The Korean government’s smart city
initiative—which started in the early 2000s—has progressed in three major stages: (1) the
construction stage (from 2003–2013), which created new growth engines by combining ICT
with the construction industry, (2) the connecting stage (2014–2016), which focused on con-
necting smart city services and building a governance structure; and (3) the enhancement
stage (2017–2020), which emphasized innovative smart cities and the creation of a smart
city ecology [4]. The Korean smart city initiative includes four core features: (1) research
and development, (2) the smart solution challenge (where private companies can receive
up to 20 million USD over 3 years to develop smart city projects), (3) deregulation, and
(4) a national pilot program for smart cities [4]. As of 2019, a total of 67 local governments
in Korea had participated in smart city government support projects [5]. In particular, two
cities, Sejong and Busan, were selected to be smart city national demonstration cities by
the Presidential Committee on the Fourth Industrial Revolution in 2018 [17]. The Korean
government supports the national pilot cities, aiming to create world-leading smart cities
based on various pioneering technologies by designing urban infrastructure—such as
mobility and energy—to improve citizens’ quality of life by exploiting the advantages of
greenfield land [17].

The Sejong 5-1 Living Area was selected to be one of the pilot cities as a model of
Korea’s future smart cities. The city was planned to lead national balanced development
benchmarks for national competitiveness and to create a sustainable model city for future
generations [17]. It was designed to be created from greenfield land and to implement the
technologies and services of the Fourth Industrial Revolution. The most notable feature
related to transportation in Sejong is that urban and transportation planning pursues the
development of a pedestrian-oriented city moving away from a vehicle-oriented policy.
A ‘sharing car-only district’ will be designated inside the city, while offering various
alternative transport modes such as personal mobility (PM) (i.e., electric kickboard) and
shared mobility. The Sejong smart city will be designed to promote mobility as a service
(MaaS) by developing a platform that facilitates transfers between transportation modes,
with bus rapid transit (BRT) playing a central role in mobility for external trips [5].

Many cities are interested in introducing a BRT system as a sustainable transportation
mode for urban mobility because of its advantages, including its low cost, operating flexi-
bility, rapid implementation, high performance, and environmental benefits [18,19]. Before
introducing a new transport mode, however, it was necessary to establish a transportation
plan and economic analysis, with the travel demand forecasting model being a useful tool
for accessing transportation projects and policies [20]. Mode choice analysis is one of the
most important stages in the traditional four-step travel demand model, having an impact,
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as it does, on various transportation policies [21–23], being the process of estimating the
number of trips for each available mode of transport. To quantify this, it is necessary to
understand travelers’ mode choice behaviors, obtained through surveys.

The objectives of this study are to introduce the Sejong 5-1 Living Area smart city in
Korea to be newly built in the future, to present the travel and mode preferences regarding
smart cities, and to model travel mode choice behaviors, focusing on external commuting
trips between the Sejong 5-1 Living Area and areas outside of the city. Specifically, we
aim to answer the following questions: (1) How important are BRT, ridesharing, and
carsharing modes for external commuting trips in smart cities, while accessibility by
private cars is limited due to the smart city transportation policies? (2) How are individuals’
socio-demographic characteristics reflected in their travel mode choices? To answer these
questions, we used stated preference (SP) survey data as a smart city case study of the
Sejong 5-1 Living Area. The survey was conducted to identify user demands and mobility
preferences under the hypothetical conditions in a future smart city with the unique
characteristics of the transportation policy. In addition to sociodemographic characteristics
and general travel behaviors, important travel preferences for external trips connecting
to/from the smart city were obtained. Using the data, we developed a mixed logit (ML)
model and discussed the results.

The remainder of this paper is organized as follows: Section 2 reviews the literature on
mode choice modeling applied to various transportation applications. Section 3 describes
the concept of the Sejong 5-1 Living Area smart city and presents the survey methods and
an overview of the survey results. Section 4 presents the development and results of mode
choice modeling for external trips in smart cities, including BRT. Lastly, Section 5 summarizes
the findings and provides insights for future mode choice modeling for smart cities.

2. Literature Review
2.1. Mode Choice Model in General

Several different disaggregate model methodologies have been proposed to date, but
logit-based travel mode choice modeling remains the most popular and widely used model
because of its simple mathematical and closed form, ease of estimation and interpreta-
tion, and the ability to add or remove choice alternatives [24–26]. The logit model is a
type of econometric model based on the random utility maximization theory [27–29]. The
multinomial logit (MNL) model is one of the most widely applied logit-based models,
assuming that the error terms are independent—that is, independent of irrelevant alter-
natives, IIA—and follow Weibull distribution. While the MNL model has the advantage
of its simple procedure in model estimation, it has been frequently challenged for the
IIA assumption and the inability to account for taste variations among different individ-
uals [30,31]. To reflect individuals’ preference heterogeneity, ML and latent class (LC)
models have been proposed. The ML model avoids the IIA problem of MNL and allows
its parameters associated with the observed variable to vary with a known population
distribution across individuals [31–34]. Alternatively, the LC model has an advantage of
a quasi-parametric structure that does not require any prior assumptions about the para-
metric distribution [31,32]. More recently, additional types of modeling—other than the
discrete choice model—have been proposed, such as machine learning algorithms [35,36]
and artificial neural networks [37].

Previous studies have shown that variables including travel cost and time, trip
distance, and waiting time were statistically significant for mode choice. Al-Salih and
Esztergar-Kiss [29] developed MNL and nested logit (NL) models and found that the trip
distance variable had the most significant effect on mode choice, followed by travel time
and activity purpose variables. Liu et al. [26] investigated travel mode choice behaviors
for short-, middle-, and long-distance travel. The NL model showed that cost and waiting
time were the most significant factors for short-distance travel, while transfer walking time
was the most significant factor for middle- and long-distance travel. While most studies
have found that travel cost and time are two of the most important determinants of mode
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choice, significant research has been conducted to explore factors affecting mode choice
behaviors [38,39], as well as the impact of built environment [40,41] and land use and urban
form [42] on mode choice decisions.

Early studies on travel mode choice models have been examined in various cases
and applications with different research objectives. Many studies have been conducted to
understand mode choice behavior for specific modes of transportation. For example, Llorca
et al. [20] and Reichert and Holz-Rau [43] examined the mode choices for long-distance
travel. Shen et al. [44] studied the effects of rail transit-supported urban expansion in
suburban neighborhoods. Chavis and Gayah [45] proposed a mode choice model for transit
options, including traditional fixed-route and flexible-route transit systems. Gunay and
Gokasar [46] examined the effect of destination type on mode choice for airport access in
Istanbul, Turkey, using RP data, as well as MNL and ML models. Ye et al. [47] investigated
the impact of bike-sharing on travel mode choices among different resident types using the
ML model. Li et al. [25] compared different logit-based and Weibit-based models for the
new Swiss metro maglev system. Bastarianto et al. [48] investigated a tour-based mode
choice for commuters in Indonesia.

Although there are a considerable number of travel mode choice studies, only a few
have developed mode choice modeling for BRT systems, one of the travel mode alternatives
in our study. Deng and Nelson [18] examined public attitudes and perceptions to BRT in
Beijing, China. However, the study presented a statistical description of the survey and did
not develop a mode choice model. Kakar and Prasad [49] developed an MNL model using
SP survey data to introduce BRT along with existing transportation modes, such as private
vehicles, para-transits, and share-taxis between Kabul airport and the central business
district. They found that travel time, cost, and socioeconomic characteristics—such as age,
gender, and occupation—were significant factors in terms of modal shifts to the proposed
BRT system. The introduction of BRT in Santa Clara County, USA, was analyzed by Chen
and Naylor [50] using MNL models for work and nonwork trips. Cao et al. [19] examined
transit riders’ satisfaction with BRT compared to conventional bus and metro services
in China.

Some studies have analyzed mode choices for intercity travel or within small cities.
Hess et al. [51] analyzed intercity mode choices using a hybrid choice model in the USA.
Shanmugam and Ramasamy [24] developed an NL model to examine intercity mode
choice behavior in India. Mattson et al. [52] developed a mode choice model for rural
intercity bus services in North Dakota, USA. The ML model showed that sociodemographic
characteristics (gender, age, income, disability), trip characteristics (i.e., trip purpose), and
mode characteristics (i.e., travel time, cost, and access distance) significantly impacted
mode choice. Hu et al. [53] examined travel mode choices for small cities in China using a
multinomial logistic regression model.

2.2. Mode Choice Model Related to Smart Cities

Although there have been many efforts to introduce smart cities around the world,
there is a lack of studies on mode choice behavior specifically targeting smart cities or
external trips in a smart city context [54,55]. Lee [54] identified the effect of bus information
terminal, which can be one of smart city transport service policies, on the increase in public
transport use or satisfaction, and discussed the effects and limitations of the smart city trans-
port policy. Using mobile sensed data collected from mobile phones, Semanjski et al. [56]
investigated mobility behavior and explored the potential of smart city platform. Bubeliny
and Kubina [57] reviewed the factors that smart city construction has on transportation and
emphasized that there are positive aspects that can improve the use of public transportation
and the quality of life of residents. Battarra et al. [58] also investigated the effect of smart
city policy and smart mobility initiatives on efficiency, sustainability, and quality of life in
11 Italian metropolitan cities.

While there has been no research on mode choice model explicitly targeting smart
cities, in recent years, emerging new transport modes applicable to smart cities and smart
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mobility for short-distance travel have been introduced. Studies on travelers’ mode choice
preferences for short trips could derive the significance of transportation policy for the
future smart cities or smart mobility. Several studies have explored the subject on smart
mobility or short-distance travel, although they have not been conducted in the context
of a smart city, including personal rapid transit [22], walking and public transport [59],
public transport, private car and bicycle-sharing [60], e-scooter, autonomous bus, sharing
bicycle and walking [5], and shared automated vehicle [61]. Using multidimensional ML
models, Choudhury et al. [62] examined three new and emerging smart mobility options,
namely, shared taxi, one-way car rental, and a novel combination of park-and-ride school
buses, in Lisbon, Portugal. Using smartphone-based SP data, Danaf et al. [63] developed
a binary logit model to consider a new on-demand mobility service in Boston, USA. Yan
et al. [64] investigated travelers’ responses to a proposed integrated system of ride-sourcing
services—that is, on-demand, app-driven ridesharing services—and public transit. Dias
et al. [65] examined the influence of socioeconomic and demographic variables on the choice
of ride-sourcing and carsharing services. The authors developed a bivariate ordered probit
model using the Puget Sound Regional Travel Study. There have been other applications
used to investigate mode choice behaviors in the adoption of the MaaS system [66–68] and
the use of smartphone GPS data in mode choice modeling [69].

Another research field that has recently gained increasing interest in the transportation
sector is the very short-distance trip and associated first and last mile (FLM) strategies,
which could be one of the components of a smart city. The transport modes of FLM
solutions include PM, autonomous buses, bicycles, and walking [55,70]. For example,
Azimi et al. [71] developed MNL models to examine the mode choices of FLM connections
for transit services in Orlando, USA. The transport modes included transportation network
company services, taxis, drive alone (park-and-ride), carpooling (kiss-and-ride, carpools,
or shuttles), micromobility modes (bike-sharing scooters), walking, and wheelchairs. Kim
et al. [22] analyzed mode choices in a short-distance trip for a new transport mode—that
is, personal rapid transit—using a logistic regression model. Scorrano and Danielis [72]
investigated active mobility choices by comparing them before and during the COVID-19
pandemic in Italy, while Memon et al. [21] studied mode choices focusing on park-and-ride
services, using logistic regression modeling.

3. Methodology: Study Area and Stated Preference Survey
3.1. Sejong 5-1 Living Area Smart City

Sejong Metropolitan Autonomous City, called Sejong City, is located in the central
part of Korea, approximately 120 km south of Seoul (Figure 1). It has been integrated into
a single administrative area as a self-governing city since 2012. The Korean government
has designated Sejong City as a center of research, education, and high-tech, and Korea’s
ministries and executive offices have been relocated from Seoul to Sejong. As a result, the
population of Sejong City and vehicle traffic density are continuously increasing. A total
of 46 bus routes are in operation in Sejong City, including five types of city buses: express
buses, red buses (regional bus), blue buses (operating main lines), green buses (operating
branch lines), and shuttle buses.

This study’s area of interest is the Sejong 5-1 Living Area smart city, located in the
northeast of Sejong City, about 10 km from the Daejeon metropolitan area (Figure 1).
The Sejong smart city pilot project covers 2741 km2 and plans to have a population of
approximately 19,000 residents and 8000 households [4,5]. The land-use plan consisted
of mixed use (31.4%), parks and green space (37.6%), facility land (12.5%), and public
infrastructure (18.5%).
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As a smart city, the Sejong pilot project established key elements with three values and
seven innovation factors; the three values were dematerialism, decentralization, and smart
technology, and the seven innovation factors were mobility, healthcare, education and
jobs, energy and environment, governance, culture and shopping, and life and safety. One
of the important elements of the project is mobility, aimed at reducing traffic congestion
using innovative smart mobility technologies—such as PM and carsharing services—and
an artificial intelligence-embedded traffic management system [4]. One of the objectives
of the transportation component of the project is to provide a safe and convenient user-
friendly mobility environment, a shared car-based service, smart mobility technology, and a
smart transportation system. Consequently, a shared mobility concept was proposed in the
master plan, in which the future of the city is that of a shared car-based city. The “owned
car-restricted areas” are designated in the city, such that only about one-third of residents
own a private car, all owned cars are parked at entrances, and people move inside using
autonomous vehicles, shared vehicles, and bicycles [17]. The ultimate impact expected of
implementing such a smart city in Sejong is to provide shared-based mobility services and
implement an integrated mobility system, supporting a city where mobility services (at the
level of owned vehicles) are possible, even without owning vehicles.

The concept of land use and space related to the transportation system in the Sejong 5-1
Living Area was prepared to realize a smart city that applied commercialized, innovative
technology, including FLM services, smart personal mobility, shared mobility, autonomous
shuttle buses on ring roads, and the expansion of the Sejong City BRT system. In particular,
a BRT line with two bus stops in the 5-1 Living Area plays a central role in the transport
network, crossing living areas as the central axis of the smart city, connecting to other living
areas and Sejong City itself (Figure 2). Ultimately, it is designed to accomplish MaaS through
a BRT-based public transportation connection with a convenient transfer system, such that
the city has a core in which smart technology and urban activities (living-area-centered
facilities) are integrated. Within the 5-1 Living Area, designated autonomous vehicles and
shared car-only lanes will be constructed. At the same time, owned-vehicle-restricted zones
will be adopted to encourage public transportation, shared vehicles, PM, bicycles, and
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walking on internal roads. Through the Sejong BRT line, autonomous vehicles, and shared
car roads, it is possible to traverse the entire 5-1 Living area within 10 min. Moreover, it
will be realized in a pedestrian-based city by building a pedestrian path connecting the
BRT stop and the transfer to/from the main parking lot.

Sustainability 2022, 14, x FOR PEER REVIEW 7 of 21 
 

owned-vehicle-restricted zones will be adopted to encourage public transportation, 
shared vehicles, PM, bicycles, and walking on internal roads. Through the Sejong BRT 
line, autonomous vehicles, and shared car roads, it is possible to traverse the entire 5-1 
Living area within 10 min. Moreover, it will be realized in a pedestrian-based city by 
building a pedestrian path connecting the BRT stop and the transfer to/from the main 
parking lot. 

 
Figure 2. Design concept of transportation system in Sejong 5-1 Living Area [75]. 

3.2. Survey 
The survey was designed with the goal of creating user-centered smart mobility by 

identifying user demands and requests through citizen surveys on the introduction of 
smart mobility. In particular, the survey was conducted to estimate the preference and 
demand for each transportation mode. It should also be noted that the original survey 
included both internal trips within the 5-1 Living Area and external trips to/from it. How-
ever, this study focuses on external trips because previous studies have focused on mode 
choice behaviors for smart mobility or short-distance travel, and there has been no re-
search on external trips. In particular, the Sejong 5-1 smart city has the characteristic of 
introducing the owned car restricted areas to limit private vehicle ownership to about one-
third of residents. Therefore, it is very interesting to investigate the effect of the character-
istics of smart city transport policy on external travel behaviors. For this purpose, the 
uniqueness of transport network and policy in the Sejong 5-1 Living Area smart city to be 
newly built in the future was explained to the survey respondents in advance (Figure 3). 
Various hypothetical scenarios (i.e., travel time and cost for each mode of transport) were 
then provided to survey participants to assist them in choosing their travel preferences, 
having been asked to select the most attractive options in the Sejong smart city. The avail-
able external transport modes included BRT, individually owned cars, carsharing, and 
ridesharing. The travel times for BRT and private car given in the SP survey were decided 
on the basis of the average external travel times in Sejong City from Korea Transport Da-
tabase [76], since the two modes are already available in KTDB. The travel times of the 
carsharing and ridesharing modes in the survey were given as the projected travel times 
differentiated from the private car and in consideration of operating conditions in the net-
work. As shown in Figure 3, the given travel times for external travel for each mode were 
fixed as 30 min (car), 25 min (carsharing), 20 min (ridesharing), and 40 min (BRT), while 
travel costs for all modes were selectively presented. There are various access travel times 
from very different departure locations, but it is difficult to consider them in the SP survey 
given limited survey conditions, e.g., a face-to-face interview. Therefore, travel time is 
understood to be defined as a symbolic concept for differentiation between transport 
modes regarding operation plan of carsharing and ridesharing modes.  

Figure 2. Design concept of transportation system in Sejong 5-1 Living Area [75].

3.2. Survey

The survey was designed with the goal of creating user-centered smart mobility by
identifying user demands and requests through citizen surveys on the introduction of smart
mobility. In particular, the survey was conducted to estimate the preference and demand
for each transportation mode. It should also be noted that the original survey included both
internal trips within the 5-1 Living Area and external trips to/from it. However, this study
focuses on external trips because previous studies have focused on mode choice behaviors
for smart mobility or short-distance travel, and there has been no research on external
trips. In particular, the Sejong 5-1 smart city has the characteristic of introducing the
owned car restricted areas to limit private vehicle ownership to about one-third of residents.
Therefore, it is very interesting to investigate the effect of the characteristics of smart city
transport policy on external travel behaviors. For this purpose, the uniqueness of transport
network and policy in the Sejong 5-1 Living Area smart city to be newly built in the future
was explained to the survey respondents in advance (Figure 3). Various hypothetical
scenarios (i.e., travel time and cost for each mode of transport) were then provided to
survey participants to assist them in choosing their travel preferences, having been asked to
select the most attractive options in the Sejong smart city. The available external transport
modes included BRT, individually owned cars, carsharing, and ridesharing. The travel
times for BRT and private car given in the SP survey were decided on the basis of the
average external travel times in Sejong City from Korea Transport Database [76], since
the two modes are already available in KTDB. The travel times of the carsharing and
ridesharing modes in the survey were given as the projected travel times differentiated
from the private car and in consideration of operating conditions in the network. As shown
in Figure 3, the given travel times for external travel for each mode were fixed as 30 min
(car), 25 min (carsharing), 20 min (ridesharing), and 40 min (BRT), while travel costs for all
modes were selectively presented. There are various access travel times from very different
departure locations, but it is difficult to consider them in the SP survey given limited survey
conditions, e.g., a face-to-face interview. Therefore, travel time is understood to be defined
as a symbolic concept for differentiation between transport modes regarding operation
plan of carsharing and ridesharing modes.
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The SP survey is the most commonly used method for understanding travel behaviors
under hypothetical scenarios [63]. This case study used SP survey data conducted by
KOTI [77] for a week, from 2 to 8 August 2018. The survey targeted citizens who worked
or lived in Sejong Metropolitan Autonomous City. SP surveys often ask individual respon-
dents multiple questions. In our case, 12 questions were asked for each respondent to
choose their preferred mode of transport according to various scenarios (i.e., different travel
costs and times for each mode of transport). The SP survey of this study was conducted in
a face-to-face interview method in public facilities (railway station, bus terminal, etc.) by a
simple random sampling method targeting adults between the ages of 20 and 65. A total
of 300 people responded to the survey. We analyzed 3200 SP observations out of a total
3600 observations, excluding 400 nonresponse observations. Louviere et al. [78] presented
a formula for calculating the minimum acceptable sample size when a respondent is asked
multiple questions. According to the formula (Equation (1)), the minimum number of
samples (N) required at the 95% confidence level (Φ−1

(
1− 1

2 α
)

= 1.96) was 45 in our case,
considering the number of 12 questions per respondent (S), the true choice proportion of
the most important alternative (the share of private car for external trips) of 74% (p) [76],
and the allowable deviation level of 5% (α). Because the SP survey in this study asked each
of the 300 respondents 12 questions, the deviation was 1.9% at the 95% confidence level.

N ≥ q
Spa2

[
Φ−1

(
1− 1

2
α

)]2
, (1)

where N is the minimum acceptable sample size, p is the true choice proportion of the
relevant population for an alternative, q is defined as 1 − p, S is the number of choice
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observations for each respondent, Φ−1
(

1− 1
2 α

)
is the inverse cumulative distribution

function of a standard normal evaluated at
(

1− 1
2 α

)
, and α is the level of allowable

deviation as a percentage between the desired level of accuracy of the estimated probability,
p̂, and p.

SP survey questions were of four main types: (1) socioeconomic characteristics—that
is, gender, age, occupation, car ownership, driver’s license status, number of household
members, average household income—and travel behavior in general—that is, transport
mode used more than three days a week, and preference for convenience, cost, or travel
time; (2) preferences for transportation services related to smart cities—that is, the type
and priority of services required for smart cities among personal mobility, transportation
sharing services, autonomous vehicle services, etc.; (3) travel preferences for external
trips; (4) preferred fare system—that is, individual vs. integrated, uniform vs. distance-
proportional vs. both time- and distance-proportional.

It should be noted that the available transport mode choices could differ depending on
whether a traveler could drive (i.e., choice riders) or not (i.e., captive riders). Accordingly,
separate survey questions on their mode preferences were asked of them on the basis of
their driving ability.

3.3. Overview of Survey Data

Descriptive statistics of the SP survey conducted under the hypothetical conditions in a
new future smart city to be built are shown in Table 1. Among the 300 respondents, the age
distribution was highest in the 30s and 40s (63.6%), with office workers accounting for the
most (36.3%) in the occupational group. Families with three or more members accounted
for 78.3% of the total population. Approximately 72% and 49% of the respondents answered
that they could drive and that they used a car more than 3 days a week, respectively.

Table 1. Sample descriptive statistics of the survey on the hypothetical future smart city.

Categories Number of Respondents Percentage (%)

Gender
Male 145 48.3
Female 155 51.7

Age
20–29 45 15.0
30–39 97 32.3
40–49 94 31.3
50–59 48 16.0
60–64 16 5.3

Occupation
Student 33 11.0
Housewife 77 25.7
Office worker 109 36.3
Service worker 41 13.7
Production worker 6 2.0
Unemployed person 9 3.0
Part-time worker 8 2.7
Others 17 5.7

Car ownership
Yes 280 93.3
No 20 6.7

Driving ability
Yes 241 80.3
No 59 19.7
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Table 1. Cont.

Categories Number of Respondents Percentage (%)

Number of household members
1 19 6.3
2 46 15.3
3 69 23.0
4 136 45.3
Over 5 30 10.0

Presence of preschooler
Yes 241 80.3
No 59 19.7

Main transport mode used more than 3 days a week
Automobile 184 49.1
Bus 85 22.7
Taxi 22 5.9
Walking 72 19.2
Bicycle 12 3.2

Average monthly income (Unit: 10,000 KRW, equivalent to 8.33 USD)
Less than 200 5 1.7
200–300 28 9.3
300–400 68 22.7
400–500 107 35.7
500–600 63 21.0
Over 600 29 9.7

To identify the mode choice behaviors in general, a question asked respondents to
compare the preferences and important factors among convenience, travel time, and travel
cost. More than half of the respondents preferred transport modes with shorter travel times
than price and convenience, suggesting that convenience was more important if travel
times were the same. In the preference survey on two-wheeled vehicles, walking, and
autonomous driving, approximately 56% of the respondents said that they were more afraid
of two-wheeled vehicles than regular vehicles, with 52% of the respondents preferring
to walk rather than use vehicles. In addition, approximately 65% of the respondents
responded positively to the safety of autonomous driving systems.

The preference for transportation fare systems was also examined, with the integrated
fare system being the most preferred option (65%) for a one-time payment system. Among
smart mobility options within the 5-1 Living Area, the preference for autonomous shuttles
was the highest option in the case of a flat-rate fare system. However, if the distance-
proportional rate system was applied, the preference for carsharing became the highest
option. In the case of the time–distance simultaneous fare system, the preference for
ridesharing was the highest. As a result of examining the preferences of smart mobility
users for various incentive methods, approximately 36% of respondents said that the
transfer fare system was the most suitable incentive, followed by the resident discount
system (21%) and the mileage system (17%).

3.4. Willingness to Pay and Preferred Travel Time

We asked questions about the maximum fare respondents were willing to pay and
their preferred travel time per trip under the unique characteristics of transportation policy
and hypothetical conditions in a smart city to be built. Because people had different modes
of transport depending on their vehicle ownership or driving ability, a different set of
questions was presented for different scenarios. The first set of questions was used when
driving a private vehicle was not possible for external trips, with two transport modes,
BRT and ridesharing, being available in this case. When the ridesharing travel time was
20 min, the fare and travel times of BRT were 1.42 USD and 40 min, respectively, and
approximately 42% and 40% of respondents were willing to pay less than 3 and 4 USD,
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respectively (Figure 4a). The percentages of respondents willing to pay less than 1, 2, and 3
USD for BRT were 30%, 64%, and 6%, respectively (Figure 4b).
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Figure 5 shows the maximum preferred travel time for each transport mode when BRT
and ridesharing are available. Given that the travel time and cost of BRT were 40 min and
1.42 USD, respectively, and the travel cost of ridesharing was 5.42 USD, approximately 60%
and 19% of respondents chose preferred travel times of 20 min and 30 min for ridesharing,
respectively (Figure 5a). Conversely, approximately 37% of respondents preferred up to
30 min for BRT, and approximately 47% of them preferred up to 40 min (Figure 5b).

Sustainability 2022, 14, x FOR PEER REVIEW 11 of 21 
 

set of questions was presented for different scenarios. The first set of questions was used 
when driving a private vehicle was not possible for external trips, with two transport 
modes, BRT and ridesharing, being available in this case. When the ridesharing travel 
time was 20 min, the fare and travel times of BRT were 1.42 USD and 40 min, respectively, 
and approximately 42% and 40% of respondents were willing to pay less than 3 and 4 
USD, respectively (Figure 4a). The percentages of respondents willing to pay less than 1, 
2, and 3 USD for BRT were 30%, 64%, and 6%, respectively (Figure 4b). 

  
(a) (b) 

Figure 4. Response rates of willingness to pay for BRT (a) and ridesharing (b). (a) Ridesharing (20 
min), alternative: BRT (1.42 USD, 40 min). (b) BRT (40 min), alternative: ridesharing (5.42 USD, 20 
min). 

Figure 5 shows the maximum preferred travel time for each transport mode when 
BRT and ridesharing are available. Given that the travel time and cost of BRT were 40 min 
and 1.42 USD, respectively, and the travel cost of ridesharing was 5.42 USD, approxi-
mately 60% and 19% of respondents chose preferred travel times of 20 min and 30 min for 
ridesharing, respectively (Figure 5a). Conversely, approximately 37% of respondents pre-
ferred up to 30 min for BRT, and approximately 47% of them preferred up to 40 min (Fig-
ure 5b). 

(a) (b) 

Figure 5. Response rates of preferred travel time for ridesharing and BRT. (a) Ridesharing (5.42 
USD), alternative: BRT (1.42 USD, 40 min). (b) BRT (1.42 USD), alternative: ridesharing (5.42 USD, 
20 min). 

< $1
5% < $2

4%

< $3
42%

< $4
40%

< $5
2%

Never 
choose

7%

< $1
30%

< $2
64%

< $3
6%

< 20 min
60%

< 30 min
19%

< 40 
min
9%

< 50 min
1%

< 60 min
2%

Never 
choose

9%

< 30 min
37%

< 40 min
47%

< 50 min
9%

< 60 min
5%

< 90 min
1%

< 120 min
1%

Figure 5. Response rates of preferred travel time for ridesharing and BRT. (a) Ridesharing (5.42 USD),
alternative: BRT (1.42 USD, 40 min). (b) BRT (1.42 USD), alternative: ridesharing (5.42 USD, 20 min).

A second set of questions was used when driving a private vehicle was possible. In this
case, four transport alternatives were available—that is, private vehicles, BRT, ridesharing,
and carsharing. The survey results are shown in Figures 6 and 7. Regarding the willingness
to pay for ridesharing, most respondents (49%) said that they were willing to pay less
than 4 USD (Figure 6a). The highest willingness to pay responses for carsharing, BRT,
and private cars were 66% (less than 3 USD), 64% (less than 2 USD), and 48% (less than
7 USD), respectively (Figure 6b–d). Figure 7 shows the preferred travel times for each
transport mode, given the travel time and cost of alternatives. The preferred travel times
for ridesharing varied; 43% of respondents selected up to 20 min, while 35%, 8%, and 4%
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of respondents selected up to 30 min, 40 min, and 60 min, respectively (Figure 7a). In the
case of carsharing, many respondents (41%) responded to a preferred travel time of up to
30 min (Figure 7b). The preferred travel times for BRT and private cars also varied, with
54% of respondents selecting up to 30 min for BRT (Figure 7c), and 40% selecting up to
30 min for private cars (Figure 7d). From these results, we could conclude that respondents
tolerated the fact that BRT travel times were longer than those of other modes of transport.
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(d) Private car (30 min), alternative: BRT, carsharing, ridesharing.
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4. Mode Choice Modeling and Results
4.1. Mode Choice Modeling Structure and Explanatory Variables

In the SP survey of this study, it was assumed that owned car-restricted areas will be
set in order to reduce privately owned cars. This is the uniqueness of the transportation
policy in the Sejong 5-1 Living Area smart city to be built in the future. This uniqueness
was explained to the survey respondents in advance, and they answered their mode
preferences accordingly. Therefore, the mode choice analysis in this study reflects the unique
characteristics of the smart city. We employed the discrete choice model to develop a mode
choice model for commuting trips between the smart city and external areas. In particular,
we used ML modeling of the discrete choice model by using the panel nature of the data
(i.e., multiple observations from each individual for BRT and other modes based on time
and cost options). The advantage of using ML modeling is its ability to explain the random
state variations of each individual with respect to the generic variable [31,79]. In particular,
we were interested in exploring the variations in taste preference across individuals (also
known as heterogeneity), as well as the potential presence of inter-alternative correlations.
Used widely to deal with panel data, ML models are extensions of the multinomial logit
model, adding an error term to the utility function as follows: the mode choice behavior of
individual i can be generally explained using the utility maximization theory, with it being
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assumed that individual i will choose mode m if the utility of mode m is higher than the
other modes.

Pi(m) = Pr(Umi ≥ Uni, ∀j ∈ Cm), (2)

where Pi(m) is the probability of individual i choosing alternative m, n is the other mode,
Umi is the utility function, and Cm is the choice set [28]. The utility function Umi in the ML
model can be expressed as follows:

Umi = β′iXmi + εmi, (3)

where β′i is the coefficient matrix, Xmi. is the vector of explanatory variables, and εmi is the
error term. The β′iXmi is the deterministic part of Umi. The random parameter β′i. is not
constant and varies among individuals to contain heterogeneity across them. The random
β′i. term can be expressed as follows:

β′i = β + γ′zi + δi, (4)

where β is the mean, and γ′ is the standard deviation of the random parameter β′i. The zi
vector includes heterogeneity with a mean and standard deviation of 0 and 1, respectively.
δi is the error term for βi [31,34,80].

In this study, the ML model was estimated using the logit R-package [81]. To estimate
a model using simulations, pseudo-random numbers must be drawn from a specified
distribution. For this purpose, what is needed is a function that draws pseudo-random
numbers from a uniform distribution between 0 and 1. These numbers are then transformed
using the quantile function of the required distribution. We used Halton draws to estimate
the ML model. This study had only a single random parameter for the travel cost variable;
hence, we used 100 as the number of Halton draws, as recommended [31].

4.2. Explanatory Variables

The explanatory variables used in this study for the ML model included several
individual-specific variables: (1) age and income variables (the middle value of each age
and income category was input. The input values for income less than 200 and over 600
were set to be 150 and 650, respectively); (2) car ownership and driving ability variables (if a
respondent owned a car and drove it, these variables were equal to 1; otherwise, they were
equal to 0); (3) employment dummy variable (if a respondent was an employee or student,
this variable was equal to 1; otherwise, it was equal to 0); (4) major mode variable (if a
respondent used a car, this variable was equal to 1; otherwise, it was equal 0); (5) presence
of preschooler dummy variable (if a respondent ha a preschooler, this variable was equal to
1; otherwise, it was equal to 0).

The generic variable in this study was travel cost selected by respondents to smart
cities from external areas when the average travel time was given. The average travel
times in the survey were 40, 20, 25, and 30 min for BRT, ridesharing, carsharing, and cars,
respectively.

In the SP survey, it was assumed that survey respondents understood the unique
characteristics (i.e., introducing smart mobility and setting the owned car-restricted areas to
reduce private vehicle ownership to about one-third of residents) and various hypothetical
conditions of the Sejong 5-1 smart city to be built in the future. Because the unique
characteristics of the smart city were assumed to be reflected in respondents’ preference in
the survey, a variable describing the role of the smart city was not separately adopted in
the analysis.

4.3. Modeling Results

Table 2 shows the ML model results, which include variables with statistically signifi-
cant (at least 90%) confidence levels. From the results, we found that variables including
age, income, household size, major mode, driving ability, and presence of preschoolers
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affected the mode choice for external commuting. The ML model output was reasonable
in terms of overall model fit, based on chi-square values, and the likelihood ratio test was
found to be significant (greater than 99%). The standard deviations of the cost parameters
were significant, according to the assumption of a normal distribution. This is because other
distributions did not generate significant standard deviations for random parameters, or
their empirical distribution shapes did not follow the shapes of specified distribution types.

Table 2. Summary of the mixed logit model.

Variable Coefficient Std. Error Z-Statistic (p-Value)

Constants (car is base)
BRT (bus rapid transit) −11.243 1.556 −7.226 (0.000) ***
Carsharing −10.769 1.3685 −7.869 (0.000) ***
Ridesharing −7.523 1.563 −4.813 (0.000) ***

Alternative Specific parameters
Cost −0.0007 0.0001 −9.737 (0.000) ***

Individual specific parameters
Age (car is base)
BRT (bus rapid transit) −0.0321 0.0147 −2.1923 (0.028) *
Carsharing −0.0072 0.0143 −0.5000 (0.617)
Ridesharing −0.0063 0.0193 −0.3251 (0.745)

Income (car is base)
BRT (bus rapid transit) 0.0024 0.0013 1.841 (0.066) *
Carsharing 0.0013 0.0013 0.992 (0.321)
Ridesharing 0.0007 0.0016 0.379 (0.708)

Household size (car is base)
BRT (bus rapid transit) 0.596 0.134 4.452 (0.000) ***
Carsharing 0.376 0.1259 2.985 (0.002) **
Ridesharing 0.154 0.1603 0.964 (0.335)

Major mode
BRT (bus rapid transit) −0.4024 0.1317 −3.055 (0.001) **
Carsharing −0.1973 0.1408 −1.402 (0.161)
Ridesharing −0.1474 0.1823 −0.8087 (0.418)

Driving ability
BRT (bus rapid transit) 0.6749 0.5491 1.229 (0.219)
Carsharing 1.0106 0.5623 1.797 (0.072) *
Ridesharing 0.4164 0.7244 0.575 (0.565)

Presence of preschooler
BRT (bus rapid transit) 1.1017 0.3578 3.095 (0.001) **
Carsharing 1.5445 0.3206 4.8185 (0.000) ***
Ridesharing 1.852 0.3819 4.8497 (0.000) ***

Standard deviations (random
parameters)
Cost (normal distribution) −0.001
LL(C) −1078.37 0.0001 −3.2416 (0.000) ***
LL(B) −957.79
Chi-squared test stat (p-value) 302 (0.000)
McFadden R2 0.1364
No. of observations 3200

Significant at *** α = 0, ** α = 0.05, and * α = 0.1.

Since the purpose of this study was to investigate the SP for smart city external
commuting trips, we focused on individual-specific variables. A quick review of the
results summarized in Table 2 reveals that including alternative specific attributes and
socioeconomic demographic variables showed reasonable coefficient values in terms of both
sign and magnitude. Note that because the car was set as the reference mode, alternative
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specific variables and nonrandom parameters were presented only for the BRT, ridesharing,
and carsharing modes. The random variable, i.e., the travel cost, had a negative coefficient,
as expected. This means that, as the travel cost increased in a certain mode, that mode was
less likely to be chosen over other modes. The p-values of cost in the model were 0.000;
consequently, the cost variable was significant. Conversely, another random variable, i.e.,
travel time, was not included in the final ML model because it caused a singularity problem.
When the determinant is equal to zero in a Hessian matrix, called a singularity problem,
we cannot obtain the variance matrix, which is equal to the negative inverse of the Hessian.
In our SP survey, both travel time and cost were given to the respondents; travel costs for
all modes were selectively presented whereas travel times for each mode were fixed. This
means that there is absolutely no variation between alternatives to explain choice behavior.
This leads to a computationally singular Hessian. In order to have the travel time as a
random variable in the model structure, we attempted other modeling methods, including
the MNL and latent class logit model, but none of them resulted in meaningful and robust
outputs. Similarly, the study of Gunay and Gokasar [46], which developed mode choice
models for airport access, had the travel cost as the only generic variable in the final model
structure. The total travel time variable was not estimated in the final model, while the
duration time variable at the airport for each mode (car, taxi, public transit) was included
as a nonrandom variable.

We found that not all coefficient estimates were statistically significantly different from
zero for all alternatives. From the coefficients of individual-specific variables, the insights
from results can be explained as follows: for the age variable, only the coefficient of BRT
was significant, meaning that age was significantly associated with BRT use relative to
the baseline (car). This coefficient was negative, suggesting that older people were less
likely to use BRT than younger people, meaning that older people were more likely to use
cars to commute to smart cities. Similarly, the income variable was positively associated
only with BRT at the 90% confidence level, indicating that people were more likely to
use the BRT mode as income increased. This suggests that the BRT fare defined here to
be 1.42 USD seems to be expensive for residents in smart cities for regular commuting
trips. The household size variable was statistically significant for the BRT and carsharing
alternatives. The coefficients were positive, suggesting that, as household size increased,
BRT and carsharing were more likely to be chosen over cars. It is clear that the greater the
number of household members, the more diverse the destinations, making it less likely to
choose cars for commuting trips. For the major mode variable, only the BRT was statistically
significant. The negative coefficient of the variable shows that people who usually drove a
car for commuting trips were less likely to choose the BRT option. As one might expect, car
users were less likely to choose the BRT mode. Consequently, the driving ability variable
was statistically significant only for the carsharing alternative, indicating that one who is
able to drive a car could choose the carsharing option. The carsharing option requires the
driving ability of the driver to be appropriately verified according to the driver’s license
and physical conditions. Conversely, all coefficients of the presence of the preschool child
variable were positively significant. All three modes were more likely to be chosen than
cars, suggesting that the easy availability and door-to-door access service from carsharing
and ridesharing were more attractive than cars.

5. Discussion and Conclusions

Developing sustainable transportation systems and smart cities can be supported
by promoting environmentally friendly transport modes such as walking, cycling, public
transport, and other modes using recently developed technology rather than depending
on private vehicles. As various urban problems arise, interest in developing smart cities is
growing. Along with an increasingly urbanized society, many governments have taken
active interest in introducing new transit modes in smart cities.

The Sejong 5-1 Living Area has been established as one of two national pilot cities
for future Korean smart cities. In this study, we introduced a smart city, presented travel
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preferences, and developed a ML model focusing on external trips between the Sejong 5-1
Living Area and those outside the city. Some of the distinguishing features of the Sejong 5-1
Living Area smart city are its transportation and smart mobility design concepts toward the
development of a pedestrian-oriented city. A sharing car-only district will be designated
inside the city to discourage private cars. About one-third of residents in smart cities will
be allowed to own private vehicles inside the city, while PM, carsharing, and ridesharing
options are available for door-to-door mobility. Consequently, drivers are encouraged to
park their cars at parking lots and transfer to internal transport modes, such as shuttles and
PMs, to reach their final destination. The BRT system plays a central role in the mobility
of such external trips. While most of previous studies on smart cities have focused on
smart transport policy in general, short-distance travels, or smart mobility, there has been
no research on external trips in a smart city context. Unlike other smart city transport
policy or non-smart cities, the Sejong 5-1 smart city will have unique characteristics of its
transport policy such as owned car-restricted areas to limit personal vehicle ownership to
about one-third of residents. In this study, we analyzed the effect of these discriminatory
smart city transport policy on the mode choice behaviors for external trips according to the
socioeconomic characteristics of individual travelers. From the SP survey, we found that
the introduction of BRT service as a public transportation for external travel is urgently
needed in the smart city, considering travel cost, time, and convenience of BRT.

For further analysis using SP survey data, we developed the ML mode choice model
for external trips. The transportation options for external trips included private car, BRT,
carsharing, and ridesharing. ML modeling is typically used for explaining the random
state variations of each individual with respect to the generic variables such as travel time
and cost. We applied other types of modeling, including MNL and latent class logit model
to test the generic variables. Unfortunately, none of them resulted in meaningful and
robust outputs except the ML model. The ML model only included travel cost as a random
variable in the model structure, while both travel time and cost were not meaningful in other
methods. However, we were interested in identifying the variations in mode preferences
across individuals, as well as the potential presence of inter-alternative correlations in
this study. The estimated model output in terms of the likelihood ratio was statistically
significant, and the overall model fit was reasonable. All individual-specific variables were
found to be significant—that is, variables including age, income, household size, major
mode, driving ability, and the presence of preschoolers were significant, with the signs of
each coefficient being reasonable. However, the statistical significances of variables differed
by alternative mode. In the case of BRT, the significant factors affecting mode choice
decisions were age, income, household size, major mode, and the presence of preschoolers.
Variables such as household size, driving ability, and the presence of preschoolers were
statistically significant for the carsharing alternative, while ridesharing alternatives were
significant only in the presence of preschoolers.

Considering the Sejong smart city’s external transportation plan, the following insights
were obtained from the results of the mode choice model. The need or preference for public
transportation, such as a BRT system, was relatively high because private vehicles would
restrict the entry of apartment complexes into smart cities. The preferences for BRT and
carsharing increased as the number of household members increased because of the low
accessibility of private vehicles. However, it was found that older smart city residents had
a lower preference for BRT compared to private cars. Because of a higher income indicating
preference for BRT, we suggest decreasing the BRT fare for commuting to work to promote
the use of public transportation.

In the case of living with preschool children, the preferences of all three modes were
higher than cars, which means that transporting preschoolers was an essential trip for
residents in smart cities. As the number of household members increased, the preference
for BRT increased, with it being understood that it is difficult to satisfy the travel demands
for as many destinations as the number of household members with a car. A significantly
high preference for carsharing appears to play a critical role as a transportation mode in
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situations where the use of passenger cars is limited. However, the statistical significance
of ridesharing did not appear in this study, as it seems that it is difficult to find options
with a similar destination during commuting times and because the ridesharing experience
is unfamiliar to Koreans.

While the results of our study were encouraging for increasing the BRT modal share in
our study area, there were limitations that should be addressed in future studies to improve
the accuracy and usefulness of the model. First, it was assumed that survey respondents
understood the unique characteristics of the Sejong smart city (i.e., introducing smart
mobility and setting the owned car restricted areas to reduce private vehicle ownership
to about one-third of residents) and various hypothetical conditions of transport modes
in the future smart city. The mode choice behaviors in a non-smart city context were not
surveyed; hence, a variable describing the role of the smart city was not separately adopted
in this analysis. Accordingly, it is difficult to directly compare the results of this study with
those of non-smart cities. This study focused on external trips from a smart city. A future
study should analyze the internal travel patterns of smart cities and investigate the impact
of mode choices on smart mobility within the city, including the PM mode. Our research
was based on a single data timeframe, and the sample size was small. For an agency to
make better strategic decisions, it would be useful to run the model with large datasets
and different dates to reflect the various characteristics of travelers. Moreover, detailed
aspects of BRT operations were not considered in this analysis. In reality, operational
characteristics such as headway, capacity, and bus or station amenities in the BRT system
may also impact users’ decisions. Because the survey in this study was conducted to
estimate users’ preferences and transportation demand for each transport mode, various
questions related to accessibility and the built environment, as well as exogenous factors
such as safety, comfort, convenience, and perception, were not included. In addition to
travel cost, time, and personal characteristics, other factors may be important in mode
choice decisions. There is also a limitation in that it is difficult to consider the differentiation
of travel time variable by means of use by providing fixed relative travel times because there
is no experience in access travel times to the smart city for carsharing and ridesharing. For
this reason, it is understood that the singularity problem occurred because of the invariant
travel time variable in our model. In order to solve this problem, it is necessary to apply the
differentiated travel times in the model according to the specific services of carsharing and
ridesharing for individuals. This issue is left for future research. Another suggestion for
future work includes the transferability of the model. This study is limited to the dataset
used in Sejong City, and future studies should be expected to apply the methodology to
other areas. Other types of advanced mode choice models can be expected in future studies.
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