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Abstract: Image recognition based on deep learning generally demands a huge sample size for
training, for which the image labeling becomes inevitably laborious and time-consuming. In the case
of evaluating the pavement quality condition, many pavement distress patching images would need
manual screening and labeling, meanwhile the subjectivity of the labeling personnel would greatly
affect the accuracy of image labeling. In this study, in order for an accurate and efficient recognition
of the pavement patching images, an interactive labeling method is proposed based on the U-Net
convolutional neural network, using active learning combined with reverse and correction labeling.
According to the calculation results in this paper, the sample size required by the interactive labeling
is about half of the traditional labeling method for the same recognition precision. Meanwhile,
the accuracy of interactive labeling method based on the mean intersection over union (mean_IOU)
index is 6% higher than that of the traditional method using the same sample size and training epochs.
In addition, the accuracy analysis of the noise and boundary of the prediction results shows that this
method eliminates 92% of the noise in the predictions (the proportion of noise is reduced from 13.85%
to 1.06%), and the image definition is improved by 14.1% in terms of the boundary gray area ratio.
The interactive labeling is considered as a significantly valuable approach, as it reduces the sample
size in each epoch of active learning, greatly alleviates the demand for manpower, and improves
learning efficiency and accuracy.

Keywords: deep learning; interactive labeling; U-Net; correction labeling; pavement patch

1. Introduction

With the continuous advancement of highway engineering globally, an increasing
road mileage has entered the maintenance stage. In-situ inspections are necessitated in
decision-making on the maintenance strategies [1], which calls for efficient and accurate
methods to evaluate the pavement technical condition. A rapid and accurate recognition of
distress types and evaluation of severity play a critical role in the pavement maintenance
engineering. The traditional road condition detection system, however, has mainly relied
on manual operation, which is labor-intensive and can be strongly affected by personnel
subjectivity, hence the lack of accuracy and efficiency. The automatic detection methods
have become an indispensable component of pavement condition detection in order to
improve this situation [2–4]. The image identification technique based on deep learning
offers the benefit of high precision, among other approaches. Chen et al. [5] applied the
graph cutting algorithm to segment the region and surface of the graph via an optimal
path identified by minimizing the boundary and region energy function. Sezer et al. [6,7]
applied the AlexNet model to the field of detecting solder paste defects. After optimizing
the algorithm, the tests on six types of solder paste defects showed that the network
provided a good performance on defect detection.
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It is important to mention, despite considerable progresses made in the field of pave-
ment crack detection, the deep learning method still requires a large amount of image-based
labeling data for model training [8,9]. The labeling work is known to be time-consuming
and laborious, and the imbalanced categorical data of the training set would result in
a poorly trained model. Some researchers artificially select samples with high value and
abundant information and add them to the labeled samples after labeling in order to
improve the accuracy of network recognition [10]. This method is called active learning,
which is generally comprised of two modules of learning and selection [11]. The learning
module is applied for learning the characteristics of the sample data. In the selection
module, samples are screened and labeled manually, and then added to the data sets in
multiple batches to train the recognition ability of the learning module. The introduction
of active learning method into deep learning allows to reduce the cost of manual labeling
as much as possible [12]. Qin et al. significantly improved the performance of an active
learning algorithm by comprehensively considering the information and representative-
ness of samples, formulating richness constraints, and effectively screening out valuable
samples [13]. Nevertheless, it is important to realize that these methods are still largely
subjective in selecting samples [14].

In order to reduce the dependence of deep learning network on the huge number of
samples and alleviate the subjectivity of sample selection in active learning method, an
interactive labeling method based on active learning is proposed for image recognition
of pavement distress patching. Compared with the existing image recognition work, the
interactive labeling method has the potential to improve the efficiency and accuracy. The
present paper is organized as follows. In Section 2, the U-Net neural network for predicting
patched asphalt pavement images is preliminarily constructed based on image preprocess-
ing and network training. Section 3 describes the improvement of sample quality by reverse
labeling and active correction, thus completing the interactive labeling. In Section 4, the
prediction results are obtained by the interactive labeling method, the parameter analysis
is provided, and the advantage of the method is visualized in case comparison.

2. Pavement Distress Identification System Based on U-Net Convolutional
Neural Network

In this study, the pavement distress identification system is developed based on the
U-Net convolution neural network that has been widely used in the medical field. Figure 1
outlines the three steps of the implementation:
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(1) Sample data set processing, which aims to label the extracted image with the patch
boundary information.

(2) Image segmentation based on U-Net deep learning network model, that is, the sam-
ple data set is divided into training and test sets by the ratio of 0.8 to 0.2, the former for
network training and the latter for testing the ability of network segmentation.

(3) Evaluation of network identification ability, which aims at identifying randomly se-
lected samples and evaluating the network identification ability based on the identification
results, as well as the representativeness and richness of samples.

2.1. Image Preprocessing of Patched Asphalt Pavement

In this study, a line-scan digital camera equipped on a highway inspection vehicle was
applied to acquire the original image of pavement surface by line scanning. The scanning
width was 2 m and the obtained images had a resolution of 2048 by 2000 pixels. The training
set was prepared by labeling the original images of pavement surface.

Although most of the distress images were sufficiently clear, some were difficult
to identify the precise boundary of the patched area due to the influence of adverse
environment during image collection (e.g., poor lighting conditions, changes in pavement
surface reflection caused by water marks), and in certain cases it was challenging to confirm
whether there was a distress patching. For these practical reasons, image preprocessing
was of particular importance. In this paper, two Gaussian filters were used to equalize
the original road image in a straight direction, namely, denoising and defogging [15,16].
This approach combined the image spatial information with the adjacent pixel information
to smooth the image in filtering noise, and at the same time preserved the edge and
enhanced the image details [17–19]. Application of the filters improved the recognition of
the patch boundary and reduced the interference of background brightness to the marking
process, as shown in Figure 2.
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Figure 2. Image preprocessing to enhance the boundary information of patched pavement.

Next, the preprocessed images were labeled with the pavement distress area, as shown
in Figure 3a. Traditional labeling methods, such as YOLO, Faster RCNN, and SSD [20,21];
usually the labeled images or outline of the approximate distress areas were completed
in a direct manner, and the labeling accuracy could be relatively poor. Given this, the
semantic segmentation labeling method [22] was adopted; that is, labeling was conducted
by professionals with rich experience in pavement inspection and maintenance for the
purpose of accurate pavement distress areas in terms of geometry (shape and scale) of
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the distress edges, as shown in Figure 3b. Finally, the labeled images were vectorized for
training the convolutional neural network and prediction, Figure 3c.
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Figure 3. Illustration of image labeling process, original image of pavement distress (a), labeled
image (b), vectorized labeling image (c).

2.2. U-Net Convolution Neural Network Model

The U-Net convolutional neural network has been widely applied in medical image
segmentation and recognition [23]. This network includes two main parts of convolutional
coding and decoding units. Down-sampling is carried out in the convolutional coding
unit, and the deconvolution operation is performed in the decoding unit to up-sample the
feature image [24]. As shown Figure 4, U-Net down-samples four times and symmetrically
up-samples four times, so as to restore the high-level semantic feature map to the resolution
of the original image. The construction process of deep learning network based on the
U-Net model is divided into three steps: (a) data preparation, in which the training sample
set is prepared by random selection in the first epoch of recognition; (b) training, in which
the network is trained through multiple epochs of learning; and (c) prediction, in which
the network is to identify and segment the specified object.
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In the process of “Data Preparation”, the original and labeled images are cropped
into blocks of 512 by 512 pixels using a Python script. The step size of the cropping is set
to 256 pixels to clean the invalid image data, which helps reduce the number of images
involved in learning and improved learning efficiency. The training set is generated by
randomly selecting 80% of the images, and the remaining 20% makes up the verification set
that is used to automatically evaluate the learning progress of the network. The network
training will then work through the images included in the training set for several epochs.
Subsequent to each epoch, the algorithm will automatically compare the learning outcomes
against the labeling results of the test set to calculate the mean_IOU index, which is
positively related to the neural network accuracy and can be updated in real time. Generally,
after several epochs of learning, the mean_IOU index can ascend to a high level, and the
learning can be stopped when an increase in this index is marginal; additional learning
may result in a negative increment in the index. Completion of the network training is
followed by its verification via comparison between predicted and actual results.

3. Interactive Image Labeling

Generally speaking, the deep learning network needs a large sample size in training,
which leads to tremendous labor and time requirements in image labeling. The active
learning method provides a good option to alleviate such burden. Yet it focuses on select-
ing some information-rich data, which are insufficient to represent the characteristics of
the whole data resulting in a poor generalization performance of the model. Moreover,
the accuracy of recognition results is not directly proportional to the number of samples fed
in [25]. In order to deal with this generally existing deficiency, using the images of asphalt
pavement distress patches, this study proposes an interactive labeling method that features
a two-part process of reverse labeling and correction labeling.

3.1. Reverse Labeling of Pavement Distress Images

Reverse labeling is a key step in the process of interactive labeling. It can be seen
from the above discussion that the sample size directly affects the outcome of active
learning. It is difficult to establish a connection between the manual selection and the
neural network, as there is subjectivity involved in processing samples. Reverse labeling
can help researchers find out the shortcomings and errors in neural network recognition,
and improve the efficiency and accuracy of manual sample correction. It consisted of
three steps. First, the gray image of the predicted result is segmented using a threshold
value. Secondly, the image background after segmentation (in black) is removed, and the
remaining (in white) is combined with the original image in the form of a mask. Finally,
the boundary of the white portion of the image is traced and editing points are added
for adjustment and modification. It is noted that the efficiency of reverse labeling can be
potentially improved by integrating this process in a labeling software.

As previously mentioned, threshold segmentation is a commonly used image segmen-
tation method, in which the difference in gray characteristics between the target object to be
extracted and its background in the image is applied. The grayscale of the image is divided
into two or more intervals by setting the appropriate gray threshold, in order to determine
the meaningful region or the boundary of the segmented object [26]. Generally, the gray
value continuously changing from black to white is discretized within the gray interval of
0 to 255.

It is important to select the appropriate gray value for threshold segmentation of
recognition results [27]. Taking the image recognition of patched pavement crack as an
example (Figure 5), the inappropriate gray value can easily yield a considerable difference
between the reverse labeled area and the actual area. For example, when the image is
segmented by a threshold value in the gray interval of 0–105, Figure 5b, the noise in the
segmented image is exposed too much as the gray scale value is too low, which greatly
increases the workload of subsequent label modification, i.e., correction labeling. Similarly,
it is easy to cause distortion of image details and information loss when the threshold
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segmentation is carried out in the gray interval of 180–255, Figure 5d. On the contrary,
when the image is segmented by a threshold value in the gray interval of 105–180, as shown
in Figure 5c, the image retains sufficient boundary and detail information, and the noise in
the original recognition result is reduced satisfactorily, which is suitable for reverse labeling.
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Figure 5. Comparison of binary images of patched crack in different threshold values of grayscales;
prediction results (a), segmented by a threshold value in the gray interval of 0–105 (b), segmented
by a threshold value in the gray interval of 105–180 (c), segmented by a threshold value in the gray
interval of 180–255 (d).

3.2. Active Correction of Image Recognition Results

The visualization operation of reverse labeling can directly reflect the recognition
result of network, while the correction labeling can generate a series of editable points
on the boundary of polygon through topological relations, making the image of labeling
area editable, as shown in Figure 6. Furthermore, correction labeling can remove the
redundant part of image in the reverse labeling, and modify the boundary and other
operations. Essentially, the correction labeling is an error correction process for the network,
which not only corrects the network recognition errors, but also guides the subsequent
sample selection. The images after active correction labeling are merged with those from
another original sample set to form a new training set for the next epoch.

Sustainability 2022, 13, x FOR PEER REVIEW 7 of 13 
 

The visualization operation of reverse labeling can directly reflect the recognition 
result of network, while the correction labeling can generate a series of editable points on 
the boundary of polygon through topological relations, making the image of labeling area 
editable, as shown in Figure 6. Furthermore, correction labeling can remove the redundant 
part of image in the reverse labeling, and modify the boundary and other operations. 
Essentially, the correction labeling is an error correction process for the network, which 
not only corrects the network recognition errors, but also guides the subsequent sample 
selection. The images after active correction labeling are merged with those from another 
original sample set to form a new training set for the next epoch. 

 
Figure 6. The process of active correction. 

As shown in Figure 6, the active correction labeling is able to eliminate the noise 
points in the upper left corner instead of treating them as a pavement distress patching 
area. In addition, in the lower right corner, the unrecognized distress is supplemented by 
added labels. Further, the edge details of some patch areas are adjusted by a series of 
editing points, and the corrected image labeling are more consistent with the actual 
geometry of the patched area. 

4. Evaluation of Image Prediction Results of Pavement Repair 
It is important to point out that the sample images through interactive labeling 

cannot be used as test sets for prediction again. Therefore, it is necessary to reserve a test 
set with appropriate capacity by random selection for network evaluation (Figure 7). This 
test set does not participate in interactive labeling, but is only used to compare with 
prediction results from different epochs of learning process in terms of noise, boundary, 
and morphology, etc. Meanwhile, the recognition ability of network can be evaluated 
additionally using the mean_IOU index. 

Figure 6. The process of active correction.

As shown in Figure 6, the active correction labeling is able to eliminate the noise points
in the upper left corner instead of treating them as a pavement distress patching area.
In addition, in the lower right corner, the unrecognized distress is supplemented by added
labels. Further, the edge details of some patch areas are adjusted by a series of editing
points, and the corrected image labeling are more consistent with the actual geometry of
the patched area.

4. Evaluation of Image Prediction Results of Pavement Repair

It is important to point out that the sample images through interactive labeling cannot
be used as test sets for prediction again. Therefore, it is necessary to reserve a test set



Sustainability 2022, 14, 861 7 of 11

with appropriate capacity by random selection for network evaluation (Figure 7). This
test set does not participate in interactive labeling, but is only used to compare with
prediction results from different epochs of learning process in terms of noise, boundary,
and morphology, etc. Meanwhile, the recognition ability of network can be evaluated
additionally using the mean_IOU index.
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4.1. Boundary Accuracy of Patched Distress

Theoretically, the image gray value of accurately identified pavement distress patched
area should be 255, and 0 for other areas. In this study, the region with gray value between
5 and 250 is treated as the fuzzy portion (gray area). The smaller the proportion of gray
area, the clearer the boundary of the image. Through calculation, it is found that the
boundary fuzzy issue generally exists in the first-epoch recognition results, and the gray
area accounts for about 17.77%. The insufficient recognition is attributed to the small sample
size (45 images). The boundary definition in the recognition result is improved significantly
by increasing the sample size and using the interactive labeling method proposed in this
paper. For instance, as shown in Figure 8, through two epochs of interactive labeling and
learning, the proportion of boundary gray areas in the recognition results decreases from
17.77% to 12.08% and 4.38%, respectively. For the third epoch, the incremental improvement
lowered (the proportion of gray areas is as low as 3.67%), indicating a stabilizing trend.
This observation shows that the accuracy of recognition results with the U-Net network
can be significantly improved through interactive labeling and learning, which effectively
solves the issue of fuzzy boundary.

4.2. Image Noise of Recognition Results

In the process of interactive labeling, the images with noise or misidentification are
screened, and some noise can be eliminated by appropriately choosing the gray values
for threshold segmentation. The remaining noise can be removed by the active correction
labeling process. It is thus suggested that attention should be paid to the non-patched
area during network learning. The recognition results of noise points are to be verified by
distress-free images. Theoretically, the recognition results of distress-free images should all
be black with the gray value of 0, and misrecognition would result in color spots (noise)
with gray values greater than 0. In this paper, the noise is labeled and analyzed by threshold
segmentation with gray values of 5, 10, and 15, respectively, as shown in Figure 9.
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Figure 9. The noise ratio of recognition results after multiple epochs of learning; the first epoch (a),
the second epoch (b), the third epoch (c), the fourth epoch (d).

It can be seen from the left plot in Figure 9 that the proportion of network recognition
noise gradually decreases, and the recognition ability is improved under multiple epochs of
interactive labeling and learning process. As shown in Figure 9a–c, the interactive learning
of the first two epochs has pronounced effects. For instance, using the gray value of
5 provides an extremely high de-noising performance, while for gray values greater than 5
a reduction rate of 13% is noted during the first two epochs. In the third epoch, the de-noising
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rate and the proportion of noise are less than 1% and 0.5%, respectively, for gray values of
5 and beyond. The interactive labeling and learning play a significant role in improving
error recognition of the U-Net network.

4.3. The Learning Process Based on Interactive Labeling

In order to illustrate the benefit of interactive labeling and learning process on the
recognition result of pavement distress patching, two typical scenarios are compared in
terms of different training set sizes and labeling processes. In Scenario 1, the 180 labeled
images are directly fed into the U-Net convolutional neural network model for training
and prediction. As a comparison, in Scenario 2 the proposed interactive labeling and
learning is applied for image recognition. Specifically, the labeling and learning process is
described as follows: after 45 labeled image samples are trained and predicted by U-Net in
the first epoch, the recognition images are reversely labeled and actively corrected using
the interactive labeling method. Another 45 unlabeled images are then predictively labeled,
which are combined with the corrected 45 images to form a new training set for the next
epoch of training and prediction. This process is repeated for several epochs until the
sample size reaches 180.

For Scenario 1, as shown in Figure 10f, since the misrecognition is not corrected in
the learning process, the average ratio of noise points is 16.56%, indicating strong noises
with high gray value (about 250–255). In addition, the proportion of gray area of boundary
reaches 9.28%, and hence a poor boundary definition. On the contrary, in Scenario 2,
as shown in Figure 10a–e, 45 learning sample images are fed into the U-Net, and after
three epochs of interactive labeling and learning, a substantially better recognition accuracy
is achieved. The accuracy of the U-Net represented by the mean_IOU index reaches
90.6% under the interactive labeling of 135 images in three epochs, compared to 84.6% for
180 sample images, Figure 10g.
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In addition, due to the continuous optimization of the network itself, the recognition
accuracy in each epoch shows an uptrend, while the number of images that need to be
reversely and correctively labeled decreases. This observation contributes to reducing
the work in reverse and correction labeling. Compared with the traditional labeling and
learning process, the interactive labeling and learning has demonstrated higher efficiency in
improving the noise points and boundary definition in image recognition, while requiring
a smaller sample size.
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5. Concluding Remarks

Image recognition requires a large number of samples for neural network training.
Its application to pavement distress patching images generally demands tremendous time
and manpower resources for manual screening and labeling. A further complication lies in
the subjectivity of labeling personnel, which generally has a great impact on the accuracy
of image labeling. In this paper, an interactive image labeling method based on the U-Net
convolutional neural network is proposed to deal with these issues and shortcomings.
The developed method includes reverse labeling of pavement distress images and active
correction of image recognition results.

Reverse labeling helps the labeling personnel find out the shortcomings and errors
in the U-Net recognition, and improves the efficiency and accuracy of manual sample
correction. Active correction of image recognition results allows the network to actively
correct errors, thus improving the accuracy of image recognition. The corrected image set is
then merged with the images of the original sample set to form a set with improved quality
for the subsequent learning. In order to demonstrate the efficiency and accuracy of the
interactive labeling method in image recognition of pavement distress patching, this study
compares the recognition accuracy of boundary and image noise between the one-time
feed of all samples (180 images) and multiple feeds of 45 images each time.

The following conclusions can be drawn:
(1) The interactive labeling method provides a satisfactory solution to the issues of

boundary blur, background noise, misrecognition, and detail loss in image recognition of
pavement distress patching, based on the U-Net convolutional neural network.

(2) The recognition ability after interactive labeling is remarkably enhanced after
two epochs of network training and tends to stabilize after the third epoch, which demon-
strates a much higher efficiency than the one-time feed of all samples for training.

Overall, the proposed interactive labeling method considerably improves the quality
of image samples, alleviates the workload of image labeling, and significantly improves
the image recognition accuracy. This method is considered suitable for general image
recognition applications based on deep learning and is not limited to image recognition of
pavement distress patching as a showcase presented herein. The advantage of the method
can be shown particularly when the number of samples is small. Implementation of this
algorithm in typical image detection systems (e.g., built in inspection vehicles for road
condition surveying) is expected to improve efficiency and further promote automation.
The findings suggest that the human-computer interaction should be enhanced to take
further advantages of computers.

Admittedly, the proposed interactive labeling method still has limitations in practical
application. It requires a high labeling accuracy that should be fulfilled by experienced
professionals. Additionally, the interactive labeling is not yet fully automated, which is the
topic of the follow-up study.
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