
����������
�������

Citation: Kour, R.; Castaño, M.;

Karim, R.; Patwardhan, A.; Kumar,

M.; Granström, R. A Human-Centric

Model for Sustainable Asset

Management in Railway: A Case

Study. Sustainability 2022, 14, 936.

https://doi.org/10.3390/su14020936

Academic Editors: Marco Guerrieri

and Armando Cartenì

Received: 30 September 2021

Accepted: 7 January 2022

Published: 14 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

A Human-Centric Model for Sustainable Asset Management in
Railway: A Case Study
Ravdeep Kour 1,* , Miguel Castaño 1 , Ramin Karim 1 , Amit Patwardhan 1, Manish Kumar 1

and Rikard Granström 2

1 Division of Operation and Maintenance Engineering, Luleå University of Technology, 97187 Luleå, Sweden;
miguel.castano@ltu.se (M.C.); ramin.karim@ltu.se (R.K.); amit.patwardhan@ltu.se (A.P.);
manish.kumar@emaintenancelab.com (M.K.)

2 Trafikverket, 97125 Luleå, Sweden; rikard.granstrom@trafikverket.se
* Correspondence: ravdeep.kour@ltu.se

Abstract: The ongoing digital transformation is changing asset management in the railway industry.
Emerging digital technologies and Artificial Intelligence is expected to facilitate decision-making in
management, operation, and maintenance of railway by providing an integrated data-driven and
model-driven solution. An important aspect when developing decision-support solutions based on
AI and digital technology is the users’ experience. User experience design process aims to create
relevance, context-awareness, and meaningfulness for the end-user. In railway contexts, it is believed
that applying a human-centric design model in the development of AI-based artefacts, will enhance
the usability of the solution, which will have a positive impact on the decision-making processes. In
this research, the applicability of such advanced technologies i.e., Virtual Reality, Mixed Reality, and
AI have been reviewed for the railway asset management. To carry out this research work, literature
review has been conducted related to available Virtual Reality/Augmented Reality/Mixed Reality
technologies and their applications within railway industry. It has been found that these technologies
are available, but not applied in railway asset management. Thus, the aim of this paper is to propose
a human-centric design model for the enhancement of railway asset management using Artificial
Intelligence, Virtual Reality, and Mixed Reality technologies. The practical implication of the findings
from this work will benefit in increased efficiency and effectiveness of the operation and maintenance
processes in railway.

Keywords: railway; asset management; model; virtual reality; mixed reality; AI; HoloLens 2

1. Introduction

The digital transformation within various industrial domains leverages the use of
various technologies. These new technologies encourage research in the domain of scientific
development such as application of Virtual Reality/Augmented Reality/Mixed Reality
(VR/AR/MR) or XR and Artificial Intelligence (AI) in various industrial domains. Some of
these industrial domains that have implemented XR technologies include health [1–3], avi-
ation [4–6], manufacturing [7–9], mining [10–12], and railway [13–15]. VR immerses users
in a fully virtual environment by using head mounted devices and hand controllers [16]. In
AR, users can see and interact with the real world while digital contents are added/overlaid
to it [16]. In MR, a user remains in the real-world environment while digital content is
added to it; moreover, a user can interact with virtual objects [16].

Researchers are active in providing virtual training using XR technology in the rail-
way domain. The ARIMA (Augmented Reality and Image Processing in Maintenance
Application) platform allows technicians to intervene in a machine breakdown using a
distant expert [17]. Researchers have also investigated challenges and applications of
AR technologies and their feasibility in maintenance operations [18]. In addition to this,
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authors have looked into the application of AR in industrial environments particular to
maintenance sector and development of framework for AR integration in maintenance
systems respectively [19,20].

Based on the initial idea of Granström [21] and a literature review, various XR tech-
nologies are available but not applied in railway for Asset Management (AM). Thus, there
is a need of a holistic human-centric design (HCD) model that provides the railway organi-
sations with a walkthrough how to implement these technologies for sustainable AM by
considering User Experience (UX) discussed at Section 3.1. Generally, in AM, an asset is
considered an item, thing, or entity with potential or actual value to an organisation [22].
The assets included in this research are railway infrastructure as well as natural assets.
Trafikverket (Swedish Transport Administration) is actively monitoring tall trees that can
have a risk of falling and creating accidents. The proximity of water bodies has a significant
effect on track degradation. This research work is restricted to geo located assets, meaning
that they have a fixed position or that its position changes marginally (e.g., grows and
shrinks). Rolling stock is, therefore, out of the scope of this research study. The reason is
due to the nature of the dataset (Light Detection and Ranging (LiDAR) and 360◦ images).
Currently, railway assets such as mast, catenary, and beam bridge are the assets being
considered for this preliminary research work.

To extract all these railway assets from the dataset Artificial Intelligence (AI) has been
applied. AI is understood here as any technology which, in the presence of input data, can
perform tasks which require complex reasoning. More particularly, technologies which
automate the generation of MR environments and the interaction with humans will now
be discussed. These are divided here in three main areas: computer vision (CV), speech
recognition, and LiDAR data processing.

CV algorithms can be used for identifying and localizing assets of relevance in 360◦

images-Such images could form the background of VR environments where asset informa-
tion can be accessed upon request from the user. Simple and intuitive AIs for CV are often
preferred when the subject, objects and images have low complexity and variability. Simple
CV AIs such as Expert Systems have been proven effective in a variety of tasks, such as the
steering of drones inside tunnels [23,24] or the detection of cracks in railway tracks [25].
Object detection and localization are nowadays dominated by Deep Learning (DL) tech-
niques in the cases where images and objects have high complexity and variability. This
dominance over Expert Systems is only recent, due to advances such as the crowdsourcing
of images [26], the larger explainability of convolutional Networks [27] or the more efficient
training of networks [28,29].

Two traditional Deep Learning CV problems provide with value in the context of this
paper: (i) object detection and (ii) instance segmentation. In the object detection problem,
images are analysed to detect multiple instances of assets of interest as well as to return
bounding boxes indicating the location of such assets [30]. Instance segmentation also
targets the detection of multiple assets, but the difference is an enhanced localization by
identifying all the pixels in the image which belong to each specific asset.

Additionally, there is a potential to exploit the 360◦ images to detect faults which
could be communicated to the user of the MR environment. CV methods for inspection of
assets in the catenary system often include two steps: component localization and defect
detection. Previous work on CV applications in Overhead Catenary Systems Include: the
detection of bird nests reported in [30], a system has been introduced in [31] to detect
obstacles between the train and the contact wire, the automatic extraction of images of
droppers [32], detection of split pins [33].

Audio Speech Recognition (ASR) may be used for Human Computer Interaction (HCI)
in order to e.g., vocalize instructions to access or store asset information. ASR systems
are often composed by a Voice Activity Detection (VAD) and an Audio Feature Extraction
(AFE) [34]. The goal of the VAD is to extract audio segments containing speech [35,36],
which will be further processed for interpretation with support of the extracted features
from the Audio Spectrum Flatness (ASF). A widely used ASF method is the Mel Frequency
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Cepstral Coefficients (MFCC) [37]. The achievement of a semantic interpretation enables
the HCI to place simple requests. However, the ubiquity of assets will impose additional
challenges related to pervasive interaction.

LiDAR data processing consists of point cloud generation because of 360◦ or limited
angle scans. The point cloud data consists of position (X, Y, Z) and intensity data, and some
may have color (R, G, B) data. This data has been pre-processed and used for clustering
and segmentation to generate 3D models of the railway assets for XR environments in this
research work.

Creating content for MR representations requires that geometries of arbitrary com-
plexity need to be approximated by a number of convex primitives such as trihedra and
triangles. The hardware capabilities will place limitations on the number of primitives
to be used [38]. Delaunay Triangulations [39] are particularly well suited for connecting
LiDAR point clouds with trihedra due to the geometric properties which imply that points
are connected in a nearest neighbor manner and that triangles with large internal angles
are favoured.

The goal of this research work is to enhance the railway AM by proposing a holistic
HCD model using AI and XR technologies. The proposed model will help the railway
stakeholders in their decision support systems who work in different life cycle stages. The
proposed model will facilitate the following possibilities to enhance the railway AM by:

• providing the possibilities of using XR technologies to create virtual environment
to visualise the condition of the assets (e.g., railway assets lie within the middle of
a forest, remote area, or during COVID-19 pandemic-like conditions) remotely on
one’s desk

• visualising the areas where maintenance has been done and needs to be done by
matching the real coordinates of the real assets

• entering direct remarks in the maintenance register from visual inspections of various
railway assets

• automating the matching of railway asset registry in Computerised Maintenance
Management System (CMMS) with real visualised objects through VR environment

• Visualising natural assets, for example, monitoring trees that have a risk of falling and
creating accidents and water bodies that have a significant effect on track degradation

• visualising and identifying the leaning of railway assets
• making practical use of point cloud for example, by constructing 3D models of railway

assets that can be used during the design phase of the life cycle of an asset
• finding objects with fault in the surroundings from one’s desk

The above-mentioned possibilities will consider HCD to understand the context,
needs and requirements of the railway stakeholders to augment the Decision-Making
Process (DMP) within operation and maintenance. This will further enhance the overall
maintenance process as described at Section 4 by reducing the time to decision-making. In
addition, the above-mentioned points also show some of the possibilities how the railway
stakeholders’ make decisions in real time based on asset’s condition.

In addition, to evaluate the developed prototypes, a study group has been tested
within a laboratory setting, involving experts from railways, researchers, and students.
These researchers and students are from operation and maintenance background. The
whole evaluation process is discussed at Section 5.

2. Related Work

To obtain initial estimates of the scale of XR work in railway sector, a web-based search
was conducted. Articles related to XR in railway sector have been explored. The popular
databases used in this study are Scopus, Google Scholar, Web of Science, and the Institute
of Electrical and Electronics Engineers (IEEEXplore) Digital Library. Keywords used for
the search are “Virtual Reality”, “Augmented Reality”, and “Mixed Reality” along with
Railway. Example of search string in Google scholar is: “allintitle: Railway AND “Virtual
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reality” OR “augmented reality” OR “mixed reality””. Table 1 shows the comparison of the
existing XR solutions within railways.

Table 1. Comparison of existing solutions specific to railway.

Authors Years Railway Assets
Involved Main Points

Hermant and
Herrmann [40] 2011 Railway station (RS)

PTV VISSIM Traffic simulation
software 3D Studio-Max for object

creation

Guan et al. [41] 2013 Traction and braking control
3D computer graphics technology
Direct3D, a graphics application

programming interface (API)

Egger [15] 2016 RS

Using Definitely Affordable
Virtual Environment (DAVE)

projector with lightweight LCD
shutter glasses

Wei et al. [42] 2018 RS
3D models of railway buildings
3D software, like,3DS Max and

Maya

Xu et al. [43] 2018
Simulated 3D railway accidents
scenes involving train, catenary,

and railway crane

Using scale-invariant feature
transform (SIFT) CV algorithm

HTC Vive glasses

Liu et al. [13] 2019 Catenary Based on convolutional neural
networks (CNNs)

To design the RS, researchers have created a 3D VR simulation model by using PTV
VISSIM traffic simulation for pedestrian behaviour and 3D Studio-Max software for 3D
object creation [40]. To show the performance of the traction and braking for the train run-
ning process, researchers have simulated the train running in the virtual reality system by
using Direct3D, a graphics application programming interface (API) [41]. Researchers have
developed a guidance system for the RS in a fully immersive virtual environment [15,42].
Researchers have proposed a VR demonstrator for the training of people to learn the rail-
way accident rescue procedure [43]. In addition, researchers have proposed a methodology
for defect detection in railway catenary support using CNNs within a VR environment [13].

From the literature review, we can conclude that most of the solutions are using
simulation and software to create VR environment and 3D models, but no solution is
directly representing 3D models of the real physical assets of the railway using AI. For
example, this paper clearly specifies the usage of LiDAR technology for data acquisition
and application of Al for extracting 3D models of individual railway assets. The novelty of
this research lies in the usage of combined technology, i.e., AI for extracting 3D models and
XR technologies for visualisation of inspection information to augment the DMP within
maintenance process.

In addition, the search string TITLE: (“Virtual reality” OR “augmented reality” OR
“mixed reality”) AND TITLE: (“Asset Management”) has also been searched and only
3 articles have been found in all the above-mentioned databases. These articles are in
the field of construction warehousing facility, offshore oil and gas operations, and bio-
manufacturing industry [44–46]. This means that much work has not been done in the
railway AM using XR technologies. Therefore, it is a research gap and there is a need to
extend this research work

3. Materials and Methods

To conduct this research work, Trafikverket has provided us data that have been
collected through LIDAR scanner mounted over the train [21,47]. These data are transferred
to eMaintenance cloud in the form of point cloud. Figure 1 shows research methodology
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used within this research work starting from data collection to its analysis to generate 3D
models (See, Section 4.2), creating XR environments for interaction with digital railway
assets (See, Section 4.3), and finally laboratory tests for UX (See, Section 5). The hardware
and software used in this research are described in Section 2. The configuration of the
computer system used within this research work is:

OS Name: Microsoft Windows 10 Business
Processor: Intel(R) Core(TM) i9-9900K CPU @ 3.60GHz, 3600 Mhz, 8 Core(s), 16 Loical
Processor(s)
RAM: 64 GB
Graphics card: NVIDIA GeForce RTX 2080 SUPER

Figure 1. Research Methodology.

3.1. User Experience (UX)

There are various definitions for UX defined within standards and by researchers. The
definition of UX in standard ISO FDIS 9241-210 is “a person’s perceptions and responses
that result from the use and/or anticipated use of a product, system or service”. According
to Alben [48] UX is defined as “all the aspects of how people use an interactive product: the
way it feels in their hands, how well they understand how it works, how they feel about it
while they’re using it, how well it serves their purposes, and how well it fits into the entire
context in which they are using it”. Thus, it is very much necessary to consider UX that
can enhance the usability of the XR solution, which will have positive impact on the DMP
process within railway AM. Based on the UX and laboratory tests conducted on various
users, the process of evaluation is continuously improving the XR prototypes.

3.2. Human-Centric Design (HCD) Models

According to ISO 9241-210:2019, human-centric design is “approach to systems design
and development that aims to make interactive systems more usable by focusing on the
use of the system and applying human factors/ergonomics and usability knowledge and
techniques” [49]. HCD models are based on the requirements of the human to have great
experience, relevance, and usefulness of the application or solution designed and visualised
for the virtual and real environments. On the one hand, XR technologies have gone from
emerging technologies to established technologies in recent years [50]. But on the other
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hand, still there are some challenges in using these technologies regarding the UX. One
of them is occurrence of Motion Sickness in VR environment that has been tested and
validated [51]. In addition, the user inside a pleasant virtual environment endures less
motion sickness than in a horror environment [51]. There are also differences in results
between the genders, where males were less prone to Motion Sickness than females [51].

The ergonomics of VR has been evaluated by using RULA score to assess interaction
methods [52] which can be feedback to HCD models. These models should consider the
user’s posture, Field of Vision (FOV), viewing distances and resolution. According to
Chang [53] UX is defined by two features i.e., comfort and immersion. Comfort relates to
wearability, vestibular sense, visual perception, and social ability, while immersion includes
the field of vision, resolution, and gestures and haptic interaction [53].

Therefore, HCD models for XR should be designed by considering UX attributes/
features, as some of them are presented in Figure 2 because it’s only the human who must
interact with the digital assets within XR environments.

Figure 2. UX features for designing models.

3.3. Wearables

Wearables are the physical devices that can be worn by an individual to track, visu-
alise, and interact with digital assets in virtual or real environment. The weight of these
wearables can affect the amount of strain on user’s body [52]. Table 2 presents the general
characteristics of XR wearables that are commercially available and were used in research
study [54].

The Virtual Reality set-up within the eMaintenance LAB [60] has been shown in
Figure 3 that includes an edge computer, HTC Vive, hand controllers, and two lighthouses.
To visualize and interact with railway assets, HTC Vive (See, Figure 3, Right Bottom) has
been used as a Head-mounted display (HMD) along with two hand-held controllers and
two lighthouse base stations in this research. Researchers are active in using HTC Vive
devices for VR [61–64]. Authors have evaluated ten HMDs and their results indicate that
HTC Vive performs better with regards to comfort, display quality and compatibility with
glasses [65].

HTC utilizes two passive laser-emitting “lighthouses” that are attached to the ceiling
in two opposing corners of the eMaintenance Lab (shown in Figure 3 with red circles) to
transfer the player’s head movements into the virtual reality. To use the HTC Vive and the
HTC Setup Software, an account at the online gaming platform Steam is necessary. This
requires a stable internet connection, as both Steam and the HTC Setup software is free
to use. Since this device is one of the expensive ones on the market, it is used mainly for
academic or industrial research rather than private gaming [66].
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Table 2. List of XR wearables used in research.

Characteristic
Wearabless Google

Cardboard [55]
Oculus Quest2

[56] HTC Vive [57]
Samsung HMD

Odyssey (WMR) [58] HoloLens2 [59]

Company name Google Facebook HTC Samsung Microsoft

Initial cost $20 $299 $799 $499 $3500

Type With Mobile
Phone

PC-
independent

Headset with a
PC Headset with a PC Standalone

Platform Android, iOS
Oculus Mobile,

based on
Android 10

SteamVR,
VivePort

Windows Mixed
Reality Windows 10

Resolution Smartphone
Resolution 1832 × 1920 2160 × 1200 2880 × 1600 2048 × 1080

Display type Smartphone
Display IPS LCD OLED AMOLED

See-through
holographic

lenses

Field of view 90◦ 90◦ 110◦ 110◦ 52◦

Multiple concurrent users No Yes Yes Yes Yes

Controller Magnet IR LED-based
tracking

Vivecontroller,
PC compatible

gamepad

Samsung HMD
Odyssey

Gaze, Gesture,
Voice

Primary input device No Controllers Controllers Controllers Gaze & Gesture

Portability and setup Easy Medium Hard Medium Easy

Figure 3. Virtual Reality set-up in eMaintenance LAB.

For Mixed reality, HoloLens 2 wearable has been used within the eMaintenance LAB.
HoloLens 2 is the most advanced MR device available [67]. By wearing this device, we can
visualize the extracted 3D models of railway assets merged within the reality. We can also
interact with these extracted 3D models of railway using HoloLens 2.

3.4. Gaming Platform

In this research work, Unity® [68] version 2019.4.18f1, a game engine platform by
Unity® Technologies has been preferred due to many available application programming
interfaces (APIs) and good compatibility with a variety of VR headsets [69]. Unity® runs on
Windows and Mac and a Unity®-built project can be run on almost all common platforms
including mobile devices like tablets or smartphones. Unity comes with many benefits; it
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is an easy and simple platform to learn game development and is a powerful tool that is
used by many researchers and professionals [70]. The results of a survey where the top
ten most utilized gaming engines and frameworks were listed shows that 23.3% of the
games were developed with Unity, 13.3% with Unreal, and 8.9% were developed using
Torque [71]. Therefore, the gaming environment for AM within railway is built in Unity®

engine [68]. This engine is used together with a graphical user interface (GUI) called the
Unity® editor, which supports 2D and 3D graphics as well as scripting in JavaScript and
C# to create dynamic objects inside a simulation. Visual studio has been used for scripting
in C# in this research work.

For VR configuration within UNITY, SteamVR plugin has been installed from the
Unity® asset store. The modern SteamVR Unity Plugin manages three main things for
developers: loading 3D models for VR controllers, handling input from those controllers,
and estimating what the hand looks like while using those controllers [68].

4. Description of Case Study and Results

Railway is a part of transportation and is complex in nature because of its inherently
widely distributed and networked nature with the long lifetime of its sub-systems and
components. It is one of the major contributors towards the elevation of the economy of
a country. In Sweden, Trafikverket is the government authority responsible for railway
infrastructure administration as well as the development of the railway sectors. Rail-
way infrastructure consists of tracks, catenary/carrier wires, wayside monitoring systems,
switches and crossings, bridges and tunnels, and railway platforms. In addition, railway
is one of the time-critical systems that follow strict timetables for maintenance activities.
Maintenance may be seen as a process that consists of combination of all technical, admin-
istrative and managerial actions during the life cycle of an item intended to retain it in, or
restore it to, a state in which it can perform the required function [72]. The purpose of the
maintenance process [72] is to sustain the capability of a system to provide a service [72,73].
The maintenance process consists of number of activities required for managing, support
planning, preparing, executing, assessing, and improving maintenance [72,74].

The maintenance process [72] is the context for the users in this research work and
we are going to augment the DMP for the users interacting at each step in this process.
This is an industrial context and these kinds of technologies have not been commonly used
and, therefore, there is less experience when it comes to HCD in the context of operation
and maintenance in industry. Therefore, this research considers UX that can enhance the
usability of the XR solution, which will have positive impact on the DMP process within
railway AM.

In addition, it is sometimes difficult to inspect the physical railway assets (e.g., tracks,
switches, mast, catenaries, etc.) in remote areas, under harsh weather conditions and during
pandemic situations like COVID-19 [75]. Thus, under such situations, use of advanced
technologies like VR [18] integrated with AI have been tested to accelerate the procedure
of maintenance activities to save time, cost, and energy. With these technologies, railway
personnel can visualize the assets’ condition or inspection information remotely on a screen
using VR devices. Visual inspection is an important part of the maintenance process which
makes management of assets easier and results in improved railway efficiency. This will
further improve the overall efficiency of DMP within maintenance process.

This research work has proposed a holistic HCD model that will enhance the railway
AM by using AI and XR. This will further help the railway stakeholders to augment
the DMP within all the stages of maintenance process. This model for railway AM has
been adapted from conceptual model of E365 Analytics® and eMaintenance solution for
Maintenance Analytics [76]. The 3D Analytics and Immersive Experience provides services
for the whole DMP, such as data fusion and integration, data modelling and analysis,
and context sensing and adaptation. 3D Analytics and Immersive Experience provides a
set of interconnected, loosely coupled services, which can be orchestrated to fulfil users’
demands on decision support. These services are built upon technologies such as big
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data, data analytics, CV, speech recognition, DL, context awareness, cloud computing,
and edge computing. When user interacts with such end solutions his/her experience is
very important to consider and, therefore, this model considers the human perspective for
the navigability, visibility, satisfactions, motivation, and usability of the solution. The AI
integrated human-centric design model is depicted in Figure 4.

Figure 4. AI integrated Human-Centric Design Model for Railway AM adapted from Karim et al.,
2016 [76].

This model consists of three components starting with various data sources involving
assets’ health data, maintenance data, and point cloud data for constructing 3D models; 3D
Analytics and Immersive Experience described in Sections 3.1–3.3; and decision makers
who will be benefited with these technological advancements to manage their assets.

4.1. Data Fusion and Integration

The purpose of this step is to integrate data from various sources i.e., condition
monitoring data (Optram), LiDAR data and 3D images of railway infrastructure, and main-
tenance data into eMaintenance cloud to construct 3D models and access assets information
in the later stages of the proposed XR model. LiDAR data are transferred to eMaintenance
cloud in the form of point cloud. Most of the data are stored into SQL server database and
retrieved later during data modelling and analysis and data visualization steps.

4.2. Data Modelling and Analysis

The purpose of this step is to generate 3D models of the railway assets using AI
technology. LiDAR is one of the main data sources of this research work.

LiDAR generates point cloud data having (X Y Z) coordinates, by scanning a laser
beam over the area. The reflected beams are used to compute the distance through time-
of-flight calculations. The scan results are stored in standard formats with each point
having its absolute GPS coordinates or other coordinate systems along with its altitude,
intensity, colour information, classification codes etc. In contrast to standard image formats
where the stored data of pixels location are relative to real world view, the point cloud
data generated by the LiDAR does not have any such relationship. A single LiDAR scan
may contain millions of points of which generally 10% fall in the region of interest i.e.,
railways specific assets. Following Sections 4.2.1–4.2.5 shows various steps involved in
the generation of 3D models from point cloud. Figure 5a shows a view of a point cloud
containing 8.5 million points.

4.2.1. Point Cloud Pre-processing

Pre-processing of point cloud involves decimation of points, a random selection of
25–50% of points reduces the time and space impact while computations are performed.
The final extraction of features for creation of models is taken from the original point cloud.
The LiDAR scan in the example data has a range of about 100 m forward but much lesser
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in other dimensions. (X Y Z) coordinates in the point cloud can be stored in different
formats and may have large values if absolute values are used for representation. During
computation, such large values can cause integer overflow and generate computing error,
hence transformation of data is required. Preservation of relative information is required to
maintain the aspect ratio along the (X Y Z) axis.

In addition, the Random Sample Consensus (RANSAC) method has been applied for
plane and lines detection. RANSAC is an iterative method to estimate parameters of a
mathematical model from a set of data containing outliers [77].

4.2.2. Classification

For clustering and segmentation, density-based spatial clustering of applications with
noise (DBSCAN) algorithm [78] has been used in this study. DBSCAN can find arbitrarily
shaped clusters and, therefore, very much suitable for LiDAR point cloud data. Thus,
point cloud clustering has been performed by applying DBSCAN algorithm as presented in
Expression (1).

DBSCAN(DB, distFunc, eps, minPts) (1)

where, DB is the database consisting of dataset to be scanned,
eps is epsilon that defines the radius of neighborhood around a point x. It’s called the

ε-neighborhood of x,
minPts is the minimum number of neighbors within “eps” radius, and
distFunc computes distance and check epsilon.
This algorithm groups points based on how closely packed the points are while

rejecting the points away from the cluster (Figure 5b). However, the algorithm is sensitive
to the parameter values and needs to be set based on the application and dataset. After
the classification is performed height of clusters and position relative to scan are used to
classify the clusters. Figure 5c,d show segmentation for the overhead catenary system and
track respectively.

Figure 5. Cont.
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Figure 5. (a) View of the Point Cloud t: 8.5 M points for a short track section (b) Point cloud Clustering
(c) Point cloud segmentation for the overhead catenary system (d) Point cloud segmentation for track
(e) Extracted tower shapes from Point cloud after labelling (f) 3D model of individual Mast (g) 3D
model of catenary (h) 3D model of beam bridge.
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4.2.3. Labelling

Once segmentation is completed through clustering, labelling of assets is performed
based on their features. Clusters of point clouds like masts, catenary/cables, beams etc., are
extracted and information about their centroid, bounding box as coordinates is extracted
and stored in database for further processing. The mast locations are used to form a convex
hull for next stage of processing.

4.2.4. Object Extraction

This stage involves extracting objects of interest such as railway masts (Figure 5e).
Authors have used voxelisation for the extraction of these assets. Extraction of individual
objects involves filtering all the points from the point cloud fitting inside a cylinder or a
cuboid at the location of the object within known asset dimensions and its geometry is
defined by length (l), width (w), and height (h). The index (i, j, k) of each point in the point
cloud is calculated using Expressions (2)–(4).

i = f loor(X − Xmin)/l (2)

j = f loor(Y − Ymin)/w (3)

k = f loor(Z − Zmin)/h (4)

where, (Xmin, Ymin, Zmin) are the minimum coordinate.
The extracted set of points corresponding to individual railway assets are stored as

separate files for further processing.

4.2.5. Model Creation

Generation of 3D model (Figure 5f–h) involves generation of a surface mesh of triangles
from the point cloud, discarding points not required for surface formation. For 3D model
creation, this research has used ball-pivoting algorithm [79].

4.3. Context Sensing and Adaptation

The purpose of this step is to create and adapt visualization models based on UX. In
this research work, railway has been considered as a case and three prototypes have been
developed based on user’s requirements for visualizing and interacting with railway assets
using XR technologies. The support of these XR technologies could improve efficiencies
in railway AM by augmenting DMP in the operation and maintenance that will further
enhance the maintenance process as discussed at Section 4. For example, fast transfer of
asset information via handheld mobile such as smart phones and tablets as well as directly
to railway personnel’s desk makes it easier and more efficient to manage assets remotely
for inspection and maintenance.

To investigate application of XR technology in the railway, especially in AM, three pro-
totypes as XR proof-of-concept (POC) application for railway AM are developed. These
three XR prototypes for AM contains a railway track section (approx. 200 m) as one com-
plete game scene. Once all the 3D models are ready (extracted from point cloud), they
were imported into the Unity environment for interaction with them. C# script has been
used to create dynamic objects inside a simulation. All associated assets, including mast,
catenaries, and beam bridge are included and offer a prominent level of detail. It also
contains a relevant code that executes the interactions of the objects mentioned. Thus, users
have all the desirable components for an experiment in one consistent package. These
three prototypes are developed as a GUI to visualize and interact with railway assets using
XR technologies.

Prototype 1 (Figure 6a) uses 3D models extracted from point cloud data (Figure 5f–h)
during the second step of the proposed model using AI algorithms. These models consist
of railway mast, catenaries, and beam bridge. The present prototype has two views to
visualize and interact with railway assets i.e., front view and top view. Within prototype 1
for railway AM, each individual asset is intractable. By using VR laser pointer of hand-held
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controllers, information can be displayed related to inspection/condition monitoring of
particular assets (mast, catenary, and beam bridge) within the VR environment. A person
wearing VR glasses can move forward, backward, left, or right in this VR environment.
Thus, instead of going out in the field, the 3D models of railway assets are constructed from
the point cloud within the eMaintenance LAB to overlay asset’s inspection information
as presented in Figure 6a. This information will help the railway stakeholder to visualize
health information of the assets and the next due time of the inspection.

Figure 6. (a,b) Virtual reality prototypes and (c) mixed reality prototype.

Prototype 2 has been developed by using 360◦ images Figure 6b. By using gaming
technology, this 360◦ VR environment is user interactive. By using VR laser pointer, the
condition of the present railway asset can be displayed within the VR environment using
hand-held controllers. In prototype 1, three traffic light buttons have been used to show the
condition of railway assets (Figure 6b). To visualise 360◦ images within Unity environment,
these images were imported from eMaintenance cloud data source. To play these 360◦

images with VR glasses following steps within the Unity are required:

1. In the Inspector window set Texture Shape of 360◦ image to Cube and apply the
changes and this will create a cubemap of the 360◦ image.

2. Next step is to create a material. In the inspector window of created material, set
Shader to Skybox/cubemap.

3. Next, drag and drop the created cubemap of 360◦ image in the material window.
4. In the last step, drag this created cubemap material to the scene window.

To interact within this 360◦ image environment various interactive buttons have been
created. On the click of these buttons, visual inspection/condition monitoring information
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is displayed in the VR environment. The initial idea is to feel how the mixed reality
environment will look like when used within the physical real railway environment.

Prototype 3 also uses 3D models extracted from point cloud data (Figure 5f–h) using
AI. However, in the mixed reality these digital objects are merged within the real world as
shown in Figure 6c. The person wearing HoloLens 2 (Figure 6c) can interact with these 3D
models in the real world to see the overlaid inspection or condition monitoring information
of the railway asset. The 3D models used for HoloLens 2 are optimized using AI technology.

All three prototypes have been tested on a group of experts from industry and
academia. Their evaluation results from interviews, workshops, seminars, and ques-
tionnaire show that the proposed model will help the railway stakeholders in augmenting
their DMP within operation and maintenance.

5. Evaluations

To evaluate the usage of XR for AM within railway, this study has used qualitative
data within laboratory-based settings with a population sample of about 50 users. These
users involve railway stakeholders, academic researchers, and a group of students. Some
of these railway stakeholders include project manager, investigation coordinator, fleet
controller, and business developer IT. Other end-users are mostly from operation and
maintenance background.

The whole evaluation process is summarised as:

1. Verbal interviews were conducted with railway stakeholders to investigate if the XR
solution design meets their requirements and expectations.

2. Two workshops and one seminar were conducted with railway stakeholders to get
feedback and UX for the developed prototypes. The data collected is usually verbal data.

3. Questionnaire has been sent to railway stakeholders, academic researchers, and group
of students to get feedback on the developed prototypes. We got responses from
15 users (three female and 12 males). The average result of XR user experience is
shown in Figure 7.

4. This evaluation process is iterative in nature and provide us continuous feedback for
further improvements.

Figure 7. Average result of XR user experience of 15 responses received on a scale of 1 to 5, for each
of the 6 XR user experience parameters (1 being the minimum and 5 being the maximum level of UX).
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The above-mentioned questionnaire has been developed using XR user experience
parameters i.e., learnability, navigability, visibility, satisfaction, usability, and motiva-
tion [80,81]. Learnability considers how easy it is for the end-users to interact within XR
environment for the first time to become efficient after repetitions. Navigability considers
user interactions and movements within XR environment. Visibility considers the display
of the information within XR environment. Satisfaction considers meeting the expecta-
tions of the end-users. Usability considers how well end-user can use the XR solution to
achieve a defined goal effectively and efficiently. The motivation attribute will stimulate
the end-users to act i.e., to use these technologies for Railway AM.

Figure 7 shows evaluation results for the above-mentioned parameters. Out of these
parameters, usability, visibility, satisfaction, and motivation were rated higher by many end-
users. This can be due to their higher interest in using these technologies for augmenting
DMP in operation and maintenance. Parameters such as, learnability and navigability were
on lower priority for the end-users. This can be due to the completely different interface
presented while using the HoloLens device i.e., gesture and haptic interface as compared
to traditional keyboard, mouse, and joystick. Since most of the users are experiencing
haptic interface for the first time, therefore, navigability becomes an issue which has been
observed in the usage pattern. However, users who have spent more than 1–2 h. find no
problems during learnability and navigability.

Continuous evaluation of these experiments is important to determine the optimums
and the limits of the implemented solutions. The qualitative data used in the evaluation
showed a holistic view of the developed prototypes for further upgrades. The whole
process of evaluation is iterative to meet the requirements and expectations of the rail-
way stakeholders.

6. Discussions and Future Directions

Digitalisation in railway is bringing positive changes in the operation and maintenance
of railway systems. The use of AI and XR technologies have proved to benefit many
industries to accelerate the procedure of maintenance activities to save time, cost, and
energy. Generated 3D models of the railway assets can be used during the design phase of
the life cycle of an asset. These technologies can benefit the railway industry for example,
railway personnel can visualize the assets’ condition or inspection information remotely
on a screen using VR devices and save considerable amount of time and money. The use
of these technologies within railway enhances the UX in visualising railway assets either
virtually or in reality. With the use of these technologies, visual inspection data are either
overlaid or merged on the railway assets on reality. This will help the railway personnel to
directly interact with the railway assets either virtually or in reality. In future, the railway
personnel can directly enter remarks in the maintenance register from visual inspections of
various railway assets through graphical user interface.

Literature supports that, previously, these technologies were used in the railway for
employees’ training and maintenance using a distant expert. There is still a gap in utilizing
these technologies for the AM in railway. Thus, this research is an attempt for the appli-
cations of AI and XR as supporting technologies and their feasibility for the management
of railway assets by proposing a holistic human-centric design model. The results from
this research work can be used by railway organisations to augment their decision-making
process within operation and maintenance using AI and XR technologies. The results
from the three prototypes also show the possibilities of interacting with individual digital
railway assets (mast, catenaries, and beam bridge). By using virtual laser pointer of hand
controller devices in VR environment, inspection or condition monitoring information are
overlaid on individual railway assets.

In future, this research will use Building Information Model (BIM) based on cloud
technology and combining BIM with MR. Combining BIM and MR with cloud technology
will realise real-time data correlation and automate the matching of railway asset registry
in Computerised Maintenance Management System (CMMS) with real visualised objects
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through MR environment using GPS location data. This will help to upload the results
in real time directly into the registry system through the mobile phone, tab, or other
devices remotely. In addition, 3D LiDAR scanner combined with BIM in operation and
maintenance can realize the monitoring of railway and natural assets deformation. The
extracted 3D models will also help in the designing of the railway assets in future. We will
also investigate more into latency, movement, speed, and environment optimisation within
VR environment.

7. Conclusions

A human-centric design model has been proposed that will help the railways to
enhance AM using AI and XR. This model will provide the opportunity to railway stake-
holders to interact with digital assets of the railway virtually and in reality. It will further
help them in augmenting their DSP within operation and maintenance to further enhance
the maintenance process. Based on the results, it has been concluded that the proposed
model will benefit in increased efficiency of the operation and maintenance processes in
railway. In addition, the constructed 3D models of railway assets within this work can be
used during the design phase of the life cycle of an asset.

The resulted prototypes have been evaluated within laboratory-based settings and it
has been found that end-users and railway stakeholders are highly satisfied and motivated
with these prototypes. Thus, the developed prototypes within the railway context provide
the feasibility of using AI and XR technologies for railway AM. This will further lead to
augment the DMP within operation and maintenance processes in railways.

In this research work rolling stock is out of the scope and the reason is due to the nature
of the dataset (LiDAR and 360◦ images). Currently, railway assets such as mast, catenary,
and beam bridge are the assets being considered for this preliminary research work.
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