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Abstract: In Saudi Arabia, housing projects account for almost half of the total electricity consumed
by the construction industry because of the large number of housing projects compared to other
types of buildings. This paper proposes a quantitative approach using a multiple linear regression
assessment model to predict the energy cost and environmental cost of housing building in Saudi
Arabia. It was developed to assist house owners in Saudi Arabia in estimating the monthly energy
cost and associated operational carbon cost according to several predictor parameters. Based on
related literature, these parameters were reviewed and discussed by experts from the Ministry of
Housing. They included building location, wall type, number of occupants, window type, envelope
insulation, building age, building area, number of air-conditioning units and their systems, and
lighting system. The model development process included five main stages: collecting the energy
and carbon cost data from completed operating housing units, categorizing the collected data based
on parameters, diagnosing the quality of gathered data and filtering outlier data if any, building
and generating a model, and lastly, testing and validating the model. More than 77 datasets were
collected across the country during different times of the year. The findings of this study reveal that
the relationship between the number of users and the building area with the energy cost is significant
and that the number of users is more correlated to the energy cost than the age of the building or
the number of central air conditioners installed. Moreover, the results show that the developed
model has the ability to predict energy and carbon costs with high accuracy. The developed model
serves as a decision support tool for householders and decision makers in the Ministry of Housing to
control the predicted parameters. This would be beneficial for the housing unit owners for allocating
constrained budgets.

Keywords: energy cost; assessment model; regression analysis; energy parameters; carbon cost

1. Introduction

Buildings in Saudi Arabia are progressively demanding significant energy needs,
particularly during the summer season, due to rising air-conditioning demands associated
with extremely high outside temperatures across the country. Saudi Arabia’s electricity
expenditure accounts for over one-third of its total regular oil production [1]. The building
sector uses about 80% of the overall electricity produced [2].

Moreover, Saudi Arabia’s population is continuously increasing, and the economy is
rapidly expanding, resulting in a surge in suburban construction. In 2016, the Saudi housing
minister announced a new construction program that sought to build about 1.5 million new
homes over the next seven to eight years. Presently, housing projects use approximately
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half of the overall power use of the construction stock [3]. This is because of flaws in
construction code, layout procedures, metropolitan layout, and building products [4–7].
In comparison to the worldwide construction industry, which uses around 40% of overall
energy consumption, Saudi Arabia has the highest residential energy consumption. It
is expected to rise annually by 5–8% [8]. By 2035, domestic oil production will equal
the consumption of domestic oil. Thus, the Saudi government and major corporations
developed the new program of Saudi Energy Efficiency in an effort to cut energy costs by
30%. The Saudi government announced the establishment of the Saudi Energy Efficiency
Center (SEEC) in November 2010.

Furthermore, in April 2016, Saudi 2030 Vision was launched by the government
focusing on emerging towns and on how to attain ecological sustainability [9]. However,
while the government’s leadership has been trying to reduce the existing energy intake,
the energy consumption of buildings keeps increasing, leading to an increase in the energy
cost of buildings.

Realizing the impact of buildings’ energy consumption on overall energy costs, the
government issued the Saudi Building Code in 2018. With such a policy, it hopes to address
the perennial problem of high energy consumption and its associated costs.

A recent study has identified some of the issues that Saudi residential buildings
face [1]. It noted that a large portion of their electricity consumption had gone toward
AC units and around 70% of the constructed houses were not thermally sealed. In Saudi
Arabia, 1, 811.5 million kWh of electricity is generated daily using four million barrels of
oil, which represents half of the daily oil exports and one-third of daily oil production [1].
Furthermore, the building sector consumes 80% (649 million kWh) of the total energy
produced daily which is the highest rate in the region.

A construction project entails several phases, including incorporation of intangible
design, comprehensive design, development, building, and process and preservation as
shown in Figure 1. Despite the availability of many types of commercial software, it is
difficult to predict a project’s power, construction, and maintenance costs precisely at the
theoretical stage due to a lack and/or inaccuracy of information [1]. Data become available
as the development progresses, allowing more precise cost assessments. As the design
moves from the intangible to the tangible stage, adjusting it becomes a challenge [10–13].
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The energy consumption in Saudi buildings has been studied extensively [14–16]. Re-
searchers Taleb and Sharples [14] aimed to create strategies to provide sustainable housing
in Saudi Arabia by researching the country’s current energy and water consumption. This
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study endeavored to identify inherent design shortcomings in the existing Saudi buildings.
According to Taleb and Sharples, there are several methods by which Saudi buildings can be
made more energy-efficient. The insulation of exterior walls and roofs, the implementation
of superior glazing systems, and smart lighting are among the methods needed. Ashraf
and Almaziad [15] used an energy simulation program to assess the effects of a multilevel
educational building’s facades on its energy consumption. When it came to residential
facilities, Alrashed and Asif [16] studied the impact of factors such as weather conditions,
residence types, envelopes, cooking devices, and air-conditioning systems. Their study
used a 2012 survey of 115 residences, including 25 traditional houses, 28 apartments, and
62 villas. They suggested using double glazing and a mini-split air-conditioning system to
reduce energy consumption.

The previous studies indicated that there is scarcity of providing an accurate measure-
ment tool for evaluating architectural designs that were energy-efficient at the conceptual
design phase. In addition, there was a lack of computer-based applications, which could
guide owners and architectural engineers in Saudi Arabia to select the most energy-efficient
designs early in a project’s conceptual phase to minimize energy costs except that of Al-
shibani and Alshamrani [1]. The literature shows that software available for modeling
buildings had several limitations, including their lack of accuracy, the requirement for a
substantial amount of data for modeling, which could be unavailable in the conceptual
design phase, and the required time it took to finish the modeling process. The time taken
depended on the buildings’ and spaces’ dimensions [17]. Information technology advance-
ments have contributed to the development of many computer-based tools. A prominent
example is artificial neural networks, one of the greatest commonly used techniques for
developing prediction models across various fields [18,19]. There is a growing number
of applications for predicting energy consumption that utilize Artificial Neural Networks
(ANNs) [14,20–27].

ANNs are more effective and accurate at predicting the energy consumption of build-
ings than ordinary simulation models or regression techniques [23]. For instance, the
Abductory Induction Mechanism (AIM), developed by Abdel-Aal et al. [20], estimates
the domestic consumption of energy in Saudi Arabia’s eastern region on a monthly ba-
sis. The model takes into account only demographic measures, economic indices, and
weather parameters [21]. Nasr et al. created an artificial-neural-network-based model for
electricity consumption based on weather-dependent variables and time series to predict
electricity use in Lebanon. A hybrid growth model devised by Meng et al. [22] was used to
predict China’s monthly electrical energy consumption by extracting the trend of cumula-
tive consumption. Although these models attempted to predict monthly electric energy
consumption, they neglected to consider the architectural design of the building and its
integration with the architectural elements. Using an ANN, Kumar et al. [24] assessed
the heat load and total carbon emissions for a multi-story building. Karattasou et al. [25]
suggested integrating statistical processes such as cross-validation, information criterion,
and hypothesis testing into ANN models to improve performance.

Using a three-layered back-propagation ANN, Ekici and Aksoy [26] predicted the
thermal energy requirement of different building types with a forecasting percentage at
94.8–98.5%. Mena-Yedra et al. [17] introduced a short-term ANN-based model to estimate
the electricity demand at a solar energy research center and found admissible results. Along
with ANNs, CAD tools have become advanced enough to estimate the building design
parameters with ease, accuracy, and speed. Alshiabani and Alshamrani [1] developed
an ANN/BIM model to predict the total electric energy costs of residential buildings in
Saudi Arabia using a neural network. With the Kingdom’s climate in mind, the system
aimed to help architects design residential buildings to reduce energy costs. Many models
and systems have been developed for different applications and jurisdictions for energy
consumption in Saudi Arabia’s building sector. Furthermore, regression [28] and neural-
network-based models [29] were developed to predict the energy consumption in school
facilities in Saudi Arabia. The findings indicate the capability of the proposed model to
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estimate the energy consumption. Gao et al. [30] also developed a model based on the
regression for estimating energy exchange efficiency. The results of the study indicate the
suitability of the developed model to predict energy-exchange efficiency under different
conditions. Mastrucci et al. [31] developed a statistical model based on a geographical
information system to predict the consumption of energy of residential buildings. The
important feature of the proposed model was the ability to predict consumption of energy
on a large scale using an accurate, fast, and simplified tool without using a huge input
dataset or assumptions. Gardezi et al. [32] developed a model based on multi-variant
regression and a life cycle assessment method for embodied carbon footprint prediction in
a residential building. The model was validated and made predictions against observed
values of five. More housing units different from case studies also ensured efficiency
and consistency.

Based on the aforementioned literature and to the best of the authors’ knowledge, the
previous developed models individually and collectively lack accurate prediction of the
monthly energy footage and associated carbon emission of Saudi buildings. For residential
structures, predicting the energy cost is a vital consideration, which can help the architect
select the most energy-efficient alternative that meets practical objectives. During the
conceptual design phase, engineers often have difficulty predicting power costs without
adequate data.

This research is intricate due to the complexities in the curve of energy expendi-
ture [33,34], along with incomplete data for the design of Heating, Ventilation, and Air
Conditioning (HVAC) and illumination systems and envelope system. Consequently, this
paper introduces a quantitative approach using a multiple-regression-based model to pre-
dict the monthly energy footage and associated carbon costs of Saudi housing buildings.
The carbon cost is embodied in the model in order to meet the Saudi government’s goal
that is reflected in the decarbonation strategy which, consequently, will help in reducing
the environmental impact, climate change, and global warming. In this paper, the factors
influencing operational energy and carbon costs are identified. In addition, the correlation
between the predictor parameters and the response factor is investigated. Moreover, the
average monthly energy and carbon cost of housing projects in Saudi Arabia are predicted.
The best regression model is then developed and validated using actual data from real-time
projects. The main findings show that building area, central air conditioning, building
age, and the number of users are the main factors that influence the model’s prediction of
energy and operational carbon costs.

The model can be used in other countries with climates similar to that of the Middle
East and Gulf region to estimate the energy costs of residential buildings. However, the
electricity tariff rate for a particular country needs to be taken into account. Since the
factors that influence energy costs are identified and the correlation between these factors
is investigated, the developed model can be used as a framework. The model could be
modified based on the residential building’s requirements for it to be adoptable for similar
applications in other countries. Furthermore, the developed model could be retrained
using new datasets rather than starting from scratch. This study is expected to serve as a
milestone, assisting professionals and researchers in making quick, effective, and long-term
energy cost assessments, decisions, and solutions.

2. Methodology

This study employed a real-time energy and carbon cost dataset of Saudi family
houses to develop an energy and carbon cost assessment model. The average cost of energy
for each month was determined by identifying and describing various input parameters.
These parameters included wall, window type, number of occupants, envelope insulation,
building age, building location, building area, air-conditioning type, the number of air
conditioners, and lighting system. In this study, data gathered to build a model were
as follows:
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- Wall type: concrete block, clay, Siporex, and precast;
- Window type: single, double, and triple glazing;
- Envelope insulation: applied or not applied;
- Building area: 150 m2 to 1000 m2;
- Building age: 1 to 40 years;
- Building location: Dammam, Khobar, Qatif, Dhahran, Thoqbah;
- Number of users: 2 to 15 occupants;
- Air-conditioning type: window, split, and central units;
- Number of AC units: 1 to 16 units;
- Lighting systems: fluorescent, condescend, and LED.

To predict the monthly energy and carbon costs, different scenarios with various
parameter combinations were run. The tested scenarios were categorized based on some
changes to the alternatives for a single parameter while the other parameters remained
constant. Figure 2a,b show the predicted costs for various window types and wall systems,
respectively, whereas other parameters are held constant.
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Figure 2. Costs of energy and carbon predicted for different scenarios. (a) Window types, and (b)
wall system.

The developed model sought to diagnose any possible correlation between response
variables (monthly energy and carbon cost) and predictor variables (energy and building
factors). The model used multiple regression techniques to analyze the relationship be-
tween the monthly energy and carbon cost of Saudi family houses to develop a prediction
model. Figure 3 depicts the development of the multiple linear regression model in five
stages: the gathering of actual average monthly energy and carbon costs of existing houses,
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segmenting and identifying the input and output parameters, diagnosing the quality of pre-
liminary data, developing and generating the regression model, and testing and validating
the model.
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This study used Grubbs’ test, an outlier testing program, to identify the presence
of outliers, as they have the potential to influence the model’s predictive performance.
According to the null hypothesis, the sample belongs to the same normal population, but
the alternative hypothesis states that the extreme values are outliers. Results are shown in
Figure 4 and Table 1. Based on the results, there are no outliers at a 5% significance level,
and all data pertain to the same population.
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Table 1. Grubbs’ test results for outliers.

Parameter N Mean Standard Deviation Lowest Value Highest Value G P

Energy and
Carbon Cost (SAR) 76 1643 1116 201 5124 3.12 0.098

A total of 77 house-building datasets were collected in Saudi Arabia, throughout the
eastern region, to gather energy cost data. An assessment model was made using 85%
of the 77 datasets (65 points) to predict the energy consumption of Saudi family homes,
with the remaining 15% (12 points) chosen randomly to validate the developed regression
model. Table 2 shows a sample of the data gathered in this study.

Table 2. A sample of the collected energy costs data of projects.

Project Location Area Age Insulation Wall
Type

Users
No.

Window
Type WAC SAC CAC Lighting

System
Monthly

Energy Cost

1 1 335 35 0 1 13 1 6 6 0 2 1075

2 1 500 3 0 1 6 1 0 11 0 2 348

3 1 700 3 0 2 7 2 0 9 0 2 942

4 2 550 20 0 3 4 1 4 2 0 2 588

5 1 237 6 1 4 5 2 0 8 0 1 298

6 1 250 3 1 1 5 1 0 7 0 1 225

7 5 250 2 0 1 5 2 0 9 0 3 400

8 3 550 5 1 3 6 2 0 5 0 1 1000

9 1 370 5 0 1 6 2 0 9 0 1 320

10 2 300 3 1 4 7 2 0 10 0 3 395

11 2 200 30 1 1 5 2 6 0 0 3 150

12 3 500 25 0 1 7 2 0 7 4 1 600

13 1 350 5 1 1 8 2 0 7 0 1 112

14 1 500 9 1 4 7 2 0 0 13 3 2000

15 3 300 3 0 4 4 2 0 10 0 1 253

16 1 340 4 0 1 5 2 0 8 0 1 220

17 1 400 6 1 1 8 2 3 15 0 3 1160
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Preliminary data analysis consisted of two major tests: calculating the best subset
regression and identifying any data interaction and correlation. In order to develop a
model, four steps were taken: generating the regression model, reviewing elementary
factors, conducting the residual study, and selecting the validation model.

A correlation analysis was performed before the regression analysis, and the corre-
lation coefficient “R” expressed the relationship between variables. Table 3 shows the
correlation between the input factors. As can be seen from the table, the R-value be-
tween any two variables is less than 0.7. This indicates that all variables were part of the
regression analysis.

Table 3. Correlation coefficients among the input predictors.

A B C D E F G H J K L

A 1.00

B 0.09 1.00

C 0.33 −0.07 1.00

D −0.08 0.08 −0.46 1.00

E −0.25 −0.09 −0.05 −0.18 1.00

F −0.13 0.06 0.14 −0.03 −0.05 1.00

G 0.05 −0.03 −0.45 0.46 −0.03 −0.09 1.00

H −0.09 −0.02 0.58 −0.39 −0.01 0.24 −0.56 1.00

J 0.03 −0.03 −0.19 0.12 −0.02 0.14 0.21 −0.36 1.00

K −0.07 0.33 −0.26 0.30 0.10 −0.10 0.26 −0.30 −0.53 1.00

L −0.35 0.13 −0.16 −0.15 0.03 −0.01 −0.12 −0.14 0.01 −0.07 1.00

Furthermore, scatter plots were used to visualize and analyze the data and determine
the relationship between the input variables and their responses (i.e., energy cost). In
addition to their simplicity, scatter plots can accurately show the linear as well as the
non-linear relationship between two given factors. For instance, the relationship between
the number of users and the building area with the energy cost was significant, as shown in
Figure 5a,b. Moreover, Figure 5 reveals that the number of users was more correlated to the
energy cost than the age of the building or the number of central air conditioners installed.

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 18 
 

Preliminary data analysis consisted of two major tests: calculating the best subset 
regression and identifying any data interaction and correlation. In order to develop a 
model, four steps were taken: generating the regression model, reviewing elementary fac-
tors, conducting the residual study, and selecting the validation model. 

A correlation analysis was performed before the regression analysis, and the correla-
tion coefficient “R” expressed the relationship between variables. Table 3 shows the cor-
relation between the input factors. As can be seen from the table, the R-value between any 
two variables is less than 0.7. This indicates that all variables were part of the regression 
analysis. 

Table 3. Correlation coefficients among the input predictors. 

 A B C D E F G H J K L 

A 1.00           

B 0.09 1.00          

C 0.33 −0.07 1.00         

D −0.08 0.08 −0.46 1.00        

E −0.25 −0.09 −0.05 −0.18 1.00       

F −0.13 0.06 0.14 −0.03 −0.05 1.00      

G 0.05 −0.03 −0.45 0.46 −0.03 −0.09 1.00     

H −0.09 −0.02 0.58 −0.39 −0.01 0.24 −0.56 1.00    

J 0.03 −0.03 −0.19 0.12 −0.02 0.14 0.21 −0.36 1.00   

K −0.07 0.33 −0.26 0.30 0.10 −0.10 0.26 −0.30 −0.53 1.00  

L −0.35 0.13 −0.16 −0.15 0.03 −0.01 −0.12 −0.14 0.01 −0.07 1.00 

Furthermore, scatter plots were used to visualize and analyze the data and determine 
the relationship between the input variables and their responses (i.e., energy cost). In ad-
dition to their simplicity, scatter plots can accurately show the linear as well as the non-
linear relationship between two given factors. For instance, the relationship between the 
number of users and the building area with the energy cost was significant, as shown in 
Figure 5 a,b. Moreover, Figure 5 reveals that the number of users was more correlated to 
the energy cost than the age of the building or the number of central air conditioners in-
stalled. 
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3. Results and Discussion

The monthly energy and carbon costs of Saudi family houses were assessed using
multiple linear regression modeling techniques. The developed model can assist building
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owners in selecting building systems, materials, and architectural design that can help
reduce the operating energy and carbon cost of their houses. The developed model can pre-
dict energy and carbon costs based on predictor variables. These variables include wall type,
number of occupants, window type, envelope insulation, building age, building location,
building area, air conditioner type, number of air conditioners, and lighting systems.

3.1. Best Subset Result

Table 4 displays the generated regression-based models in each line by analyzing the
subset regression output. The lowest standard deviation (S) and Cp values are 12.0 and
239.4, respectively. S is the standard deviation of residuals, and Cp is expressed in the
following equation:

Cp =
SSEP

MSE
(
X1 . . . Xp−1

) − (n − 2p) (1)

where Cp is used to evaluate the fit of a regression model estimated using ordinary least
squares, SSEP is the error sum of squares for the fitted subset regression model with p
parameters (p−1 predictors), MSE

(
X1 . . . Xp−1

)
is the unbiased estimate of variance, and

n is the number of observations.

Table 4. Best subset regression analysis.

Vars R-Sq R-Sq
(Adj)

R-Sq
(Pred)

Mallows
Cp S A B C D E F G H J K L

1 31.6 30.6 27 177.5 460.52 X
1 29 27.9 25 186.8 469.32 X
2 49.3 47.8 45 117.2 399.53 X X
2 46.7 45 41.3 126.6 409.94 X X
3 64.9 63.2 60.8 64.5 335.18 X X X
3 62.9 61.1 58.3 71.7 344.79 X X X
4 74.5 72.9 69.6 32.7 288.01 X X X X
4 71.6 69.7 67.4 43 304.05 X X X X
5 80.3 78.7 76.4 14.1 254.9 X X X X X
5 77.4 75.5 72.2 24.5 273.39 X X X X X
6 81.3 79.4 76.7 12.8 250.77 X X X X X X
6 81 79.1 76.6 13.8 252.71 X X X X X X
7 82.1 80 76.1 12 247.43 X X X X X X X
7 82 79.8 76.3 12.5 248.39 X X X X X X X
8 83.1 80.8 76.7 10.3 242.07 X X X X X X X X
8 83 80.6 76.8 10.9 243.33 X X X X X X X X
9 83.7 81.1 77.2 10.3 240.01 X X X X X X X X X
9 83.4 80.8 76.4 11.4 242.29 X X X X X X X X X

10 84.1 81.3 77.2 10.8 238.96 X X X X X X X X X X
10 83.8 80.9 76.7 11.9 241.32 X X X X X X X X X X
11 84.4 81.2 76.9 12 239.41 X X X X X X X X X X X

The best subset also indicates that the peak values for R2 and R2, (adjusted) in the
developed energy and carbon cost assessment regression model, are 84.4% and 81.2%,
respectively. According to the best subset regression analysis, all of the predictors in this
model are significant and need to be in the regression model development.

3.2. Developed Regression Model

The R2 value shows that the predictors account for 84.4% of the variance in “energy
and carbon cost” (response variable) for the developed regression model. The R2 (adjusted)
accounts for the number of predictors in the model. Based on these two values, the model
is most appropriate for the data. The developed linear regression model is:

AECC = (−698 − 28.1A + 1.074B + 11.8C + 120.9D − 18.5E + 76.6F+
139.7G + 80.7H + 22.4J + 88.5K − 167.1L)× 1.83

(2)
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where AECC is the average of monthly energy and carbon cost in Saudi riyals (SAR), A
is the building location (Dammam 1, Khobar 2, Qatif 3, Dhahran 4, Thoqbah 5), B is the
gross area varied (150 m2 to 1000 m2), C is the building age (1 year–40 years), D is the
insulation (applied 1, not applied 2), E is the wall system (concrete block 1, clay 2, Siporex
3, and precast 4), F is the number of users (2 persons to 15 persons), G is the window type
(single 3, double 2, and triple glazing 1), H is the number of window air-conditioning units
(1–16 units), J is the number of split air conditioners (1–16 units), K is the number of central
air conditioners (1–16 units), and L is the lighting systems (condescend 3, fluorescent 2, and
LED 1).

3.3. Assessment Tests of Model Adequacy

The analysis of the response factor (monthly energy and carbon cost) versus the
predictors indicates that some predictor variables have a positive correlation (direct pro-
portion) with the resulting cost, while others have a negative relationship (direct reflex).
For example, a positive relationship exists among building age, building area, insulation,
number of users, and air-conditioning types. A direct reflex correlation exists among wall
type, building location, and lighting system versus the corresponding energy and carbon
cost factor.

Based on the preliminary tests, the coefficient of determination, R2, and R2 (adjusted)
values are 84.4% and 81.2%, respectively. In the developed model, R2 indicates that
predictor variables explain 84.4% of the variance in the response variable (energy and
carbon cost). R2 (adjusted) is a modified value of R2 associated with several terms of
description in the developed model. The standard deviation value (S) is 12, and the R2

value shows that the model is suitable for the data.
Furthermore, the T-test determines whether the predictor variables significantly corre-

late with the response variable or not. Most of the p-values for the estimated coefficients
for each predictor in Table 5 are less than 0.05. Thus, in this case, the null hypothesis was
rejected, whereas the alternative hypothesis was accepted. The majority of the predictor
variables significantly correlate with the response variable “monthly energy and carbon
costs” at 0.1 α-level. There is, however, a different pattern when it comes to other predictors,
including location, wall type, and insulation, which have an insignificant correlation with
the response factor. In addition, Table 5 shows p-values for the input variables. The analysis
shows the significance of the developed model at 0.05 α-level. As a result, at least one
coefficient should not be zero in the selected regression model. Some of the predictors have
a high p-value which might not reflect the significance of these variables. However, as
proven by the best subset analysis, they should still be included in the model to achieve the
best predictions of energy and carbon cost.

The Pareto charts in Figure 6 with the absolute values of the standardized effects
represent all of the standardized effects on the response; they are t-statistics. However,
statistical significance was only found for effects that exceeded the dashed line. In Figure 6,
the dashed line marks the 2.00 abscissa for a 0.05 significance level. The statistically signifi-
cant variables and interaction factors in this test were the building area, AC systems, users,
and building age. The strongest predictor was the building area (B) with t-value = 5.73,
followed by central air conditioning (K) with t-value = 5.52, followed by window air con-
ditioning (H) and the number of users (F) with t-values = 4.38 and 4.03, respectively. The
factors of building age (C) and lighting system (L) had close t-values of ∼= 2.6. Based on the
t-test, factors such as wall type (E) predictor recorded the lowest significant correlation due
to the expected similar u-values of a different wall system. The second-lowest significant
correlated factor was location (A) since these distinct locations were within the same region
and climate zone.
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Table 5. Statistical diagnostics of the developed regression model.

Term Coef t-Value p-Value VIF

Constant −698 −2.89 0.006

Loc. −28.1 −1.38 0.174 2.04

Area 1.074 5.73 0.000 1.54

Age 11.80 2.79 0.007 2.42

Ins. 120.9 1.43 0.159 2.02

Wall −18.5 −0.89 0.379 1.21

User 76.6 4.03 0.000 1.44

Win. 139.7 1.60 0.115 1.80

WAC 80.7 4.38 0.000 3.70

SAC 22.4 1.79 0.078 3.90

CAC 88.5 5.52 0.000 4.52

Light −167.1 −2.57 0.013 1.76
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3.4. Residual Analysis Result

The normal probability graph shown in Figure 7 indicates that all error terms follow
an almost normal distribution. There are a few deviations from normality that can be
observed in the residuals’ normal probability chart. An analysis of these observations
reveals that they are possible abnormalities. By excluding these abnormalities, the values
of regression coefficients, such as R2, can be improved. However, the model would not
represent the real-world data available. The residual analysis results are accepted because
minor deviations from normality are not a cause for concern [25].

Figure 8 shows how outliers appear in the histogram of the residual plot. Small
bars on either side of the histogram indicate a high standard deviation from the mean
value, which means the data for these values do not agree perfectly with the model.
To estimate the probability of errors and outliers in the normal probability plots, the
output of Minitab for the outliers and unusual observations was analyzed in this study.
Table 6 presents standardized residual observations that have a considerable impact on the
characteristics of the developed model. These observations influence the normal probability
plot of residuals. Some of these observations are excluded from the model to improve the
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regression model without affecting the process for predicting the operational energy and
carbon cost (response factor).
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Table 6. Program output for unusual observations.

OBS Energy Cost Fit Residual Std Residual

29 2000 308 1692 2.93 R
41 3000 1769 1231 2.31 R
56 1590 3176 −1586 −3.23 R
67 1800 483 1317 2.26 R
68 1975 2633 −658 −1.81 X
77 4800 4470 330 0.70 X
78 5200 2822 2378 4.14 R

R Large residual, X Unusual X.

3.5. Economic Analysis

The economic analysis of the predictor parameters in the developed regression model
shows that the highest energy and carbon cost is caused by applying different lighting
types at 310 SAR followed by window types at 256 SAR. The triple glazing can reduce the
cost by 512 SAR compared to the single one. The second-highest energy and carbon cost is
recorded at 220 SAR when the thermal insulation is not applied in the external walls. One
hundred and sixty-two riyals is the energy and carbon cost value that will be added for
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each central air-conditioning unit while the window air-conditioning unit will increase the
cost by 148 SAR. The developed regression model shows that every family member can
increase the energy and carbon cost by 140 SAR. The location of the building will affect
the cost by 50 SAR while each split air-conditioning unit will increase the cost by 41 SAR.
Building a different wall system can help in reducing the cost by 34 SAR while the age of
the building (each year) can increase the energy and carbon cost by 22 SAR. Finally, the
outcome of the developed regression model shows that the energy and carbon cost will
increase by 2.0 SAR/m2, depending on the area of the house.

3.6. Model Validation

Model validation is the process of evaluating the proposed model’s performance and
accuracy with new data by applying it to new datasets. In this paper, twelve actual points
of the energy cost and associated operational carbon cost from real projects were used
to validate the developed model. These points represented 15% data points which were
plotted to compare the in-hand gathered data and the predictive model. The validation
relied on a mathematical model proposed by Zayed et al. [24]. It calculated the average
invalidity and valid percentage to test the validity of data using the following formula:

AIP =
∑n

i=1

∣∣∣1 − (
Ei
Ci

)∣∣∣
n

(3)

and AVP = 1 − AIP (4)

where AVP, AIP, Ci, Ei, and n denote the rate of average validity, average invalidity rate,
actual value, predicted value, and observation numbers, respectively. AIP value varies
between 0 and 1.

AIP =
0.249

12
= 0.0208

AVP = 1 − AIP = AVP = 0.9791

As seen from the AVP value, the predicted model’s accuracy is 97.9% which is adequate.
The validation plot chart in Figure 9 illustrates the comparison of predicted and actual

operational energy and carbon costs. Based on the graph, predicted values are close to
the real response values. The resulting outputs of the second validation test are, therefore,
deemed acceptable.
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3.7. Model Testing and Training

A hypothetical case study was assumed in this study to test and train the developed
multiple linear regression model for assessing the energy and associated carbon cost. A
new family house in the city of Dammam with a medium area size of (500 m2) was selected
for this case study. The total number of users was seven persons, and the number of air
conditioners was 10 units. The test was performed by applying different possible scenarios
for window types, air-conditioning systems, lighting systems, and various wall systems
while the insulation is becoming mandatory in the city. The various test scenarios were
conducted using the developed regression model in this study as follows:

AECC = (−698 − 28.1A + 1.074B + 11.8C + 120.9D − 18.5E + 76.6F+
139.7G + 80.7H + 22.4J + 88.5K − 167.1L)× 1.83

(5)

Various tested scenarios with different parameter combinations were conducted on
the selected case study to measure the economic impact of different parameter alternatives.
The tested scenarios were grouped according to some changes of the alternatives for one
parameter while the other parameters were kept fixed. The comparisons were conducted
based on the monthly predicted energy and carbon cost as well as the total assessed annual
energy and carbon cost as shown in Table 7. The lowest annual energy and carbon cost for
the different window scenarios is predicted for the triple-glazing window (10,780 SAR),
while the highest cost is predicted for the single-glazing window (16,900 SAR). Hence,
the triple-glazing window can reduce the cost by 36.2% compared to the single-glazing
window. The lowest annual energy and carbon cost for the different wall-system scenarios
is predicted for the precast concrete panel (18,700 SAR), while the highest cost is predicted
for the clay block system (19,500 SAR). Hence, the precast concrete panel can reduce the
cost by 4.1% compared to the clay block.

Table 7. Predicted energy and carbon cost for various tested scenarios.

Wall System Window Type Air-Conditioning
System Lighting System

Predicted
Monthly Cost

(SAR)

Annual Energy
and Carbon Cost

(SAR)

Different window-type scenarios

Concrete block single split fluorescent 1410 16,900

Concrete block double split fluorescent 1155 13,850

Concrete block triple split fluorescent 900 10,780

Different wall-system scenarios

Clay block triple window LED 1625 19,500

Siporex triple window LED 1590 19,100

Precast Panel triple window LED 1560 18,700

Different AC-system scenarios

Clay block double split condensing 1425 17,100

Clay block double window condensing 2490 29,900

Clay block double central condensing 2635 31,625

Different lighting-system scenarios

Precast panel single central condensing 2825 33,880

Precast panel double central LED 1950 23,475

Precast panel triple central fluorescent 2000 24,075

The lowest annual energy and carbon cost for the different air-conditioning-system
scenarios is predicted for the split AC unit (17,100 SAR), while the highest cost is predicted



Sustainability 2022, 14, 1278 16 of 18

for the central AC system (31,625 SAR). Hence, the split AC system can reduce the cost
by 46.0% compared to the central AC system. The lowest annual energy and carbon cost
for the different lighting-system scenarios is predicted for the LED system (23,475 SAR),
while the highest cost is predicted for the condensing lighting system (33,880 SAR). Hence,
the LED lighting system can reduce the cost by 30.7% compared to the central AC system.
For the overall tested scenarios applying the developed regression model, it was found
that the lowest annual predicted energy and carbon cost is recorded at (10,780 SAR), while
the highest is recorded at (33,880 SAR). The total annual energy and carbon cost can be
reduced by 68.2% when different systems are combined as presented in Table 7.

Hence, the developed multiple regression model can be a significant tool that will
help homeowners in predicting and reducing their annual energy and carbon cost. It can
be used as a supportive decision-making tool that will enable them in selecting the most
economical and environmentally friendly system options as proven in the tested case study.

The limitations of this study include applying multiple linear regression techniques to
create the operational energy and carbon cost. The assessment model was developed based
on a limited number of collected data and could be used only in areas in eastern Saudi
Arabia with a similar climate zone. The model is limited for application on family houses
with the following features: gross area (150–1000 m2), age of the building (1–40 years),
number of occupants (2 to 16 persons), and specific wall and window types. This study
is limited to investigating the correlation between parameters (predictors) and predicted
monthly energy and carbon costs.

4. Conclusions

This research proposes a quantitative regression-based model for predicting the
monthly energy footage and associated carbon costs of Saudi buildings. The proposed
model was adequately developed and verified using actual datasets. The results reveal that
factors affecting the energy consumption and carbon costs of family-houses the most are
large building area, central air-conditioning system, number of window air-conditioning
units, number of users, age of the building, and lighting system. The model was tested and
validated with a high accuracy of 97.9%, using mathematical and graphical validation. The
developed regression model can serve as a decision support tool to enable building owners
and decision makers in the Ministry of Housing to control the energy consumption, energy
cost, and emitted carbon cost of Saudi family houses based on some predictor variables.
Future work could extend the current research on energy and carbon cost to cover other
types of buildings at different locations with different climate zones. Other modeling
techniques, such as fuzzy logic, genetic algorithms, and hybrid methods, can be included.
Research can incorporate more data to ascertain the correlation with other parameters,
such as the wall system, thermal insulation type, and thickness. Moreover, the model’s
applicability would be enhanced further if it were integrated with other factors, especially
if the model were used in other countries. Furthermore, energy prices are influenced by a
variety of factors, including inflation. These elements could be incorporated into the model
in the future.

It is also possible that the developed model can be extended to incorporate the Life
Cycle Analysis (LCCA) model for economic analysis for the selection of architectural design
with the least cost.

Author Contributions: Conceptualization, O.A.; methodology, O.A., A.A. and A.M.; software, O.A.;
validation, O.A. and A.A.; formal analysis, O.A. and A.M.; investigation, A.A.; data curation, A.A.
and O.A.; writing—original draft preparation, O.A.; writing—review and editing, A.M. and A.A.;
supervision, O.A.; project administration, A.A. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Sustainability 2022, 14, 1278 17 of 18

Informed Consent Statement: Not applicable.

Data Availability Statement: It can be made available upon request to the corresponding author.

Acknowledgments: The authors would like to thank King Fahd University of Petroleum and Miner-
als and Imam Abdulrahman bin Faisal University for the support and facilities provided to carry out
this research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alshibani, A.; Alshamrani, O.S. ANN/BIM-based model for predicting the energy cost of residential buildings in Saudi Arabia. J.

Taibah Univ. Sci. 2017, 11, 1317–1329. [CrossRef]
2. Abd-ur-Rehman, H.M.; Al-Sulaiman, F.A.; Mehmood, A.; Shakir, S.; Umer, M. The potential of energy savings and the prospects

of cleaner energy production by solar energy integration in the residential buildings of Saudi Arabia. J. Clean. Prod. 2018, 183,
1122–1130. [CrossRef]

3. KAPSARC [Internet]. Electricity Consumption by Sectors. Available online: https://datasource.kapsarc.org/explore/dataset/
electricity-consumption-by-sectors/SearchinGoogleScholar (accessed on 13 February 2020).

4. Lin, J.S.C.; Hsieh, P.L. Refinement of the technology readiness index scale: A replication and cross-validation in the self-service
technology context. J. Serv. Manag. 2012, 23, 34–53. [CrossRef]

5. Malik, A. Saudi Arabia Seeks Partners to Build 1.5 Million Homes. 2016. Available online: https://gulfbusiness.com/saudi-
arabia-seeks-partners-build-1-5-million-homes/ (accessed on 19 October 2021).

6. Hovde, P.J. The factor method for service life prediction from theoretical evaluation to practical implementation. In Proceedings
of the 9th International Conference on Durability of Building Materials and Components, Brisbane, Australia, 17–20 March 2002.

7. Ginestet, S.; Marchio, D.; Morisot, O. Improvement of buildings energy efficiency: Comparison, operability and results of
commissioning tools. Energy Convers. Manag. 2013, 76, 368–376. [CrossRef]

8. Saudi Arabia, Public Utilities Report. February 2016. Available online: http://www.jeg.org.sa/data/modules/contents/uploads/
infopdf/2871.pdf (accessed on 19 June 2021).

9. Vision 2030, Saudi Arabia’s Vision for 2030. 2018. Available online: https://vision2030.gov.sa/en/media-center (accessed on 19
June 2021).

10. Pezzotta, G.; Sassanelli, C.; Pirola, F.; Sala, R.; Rossi, M.; Fotia, S.; Koutoupes, A.; Terzi, S.; Mourtzis, D. The Product Service
System Lean Design Methodology (PSSLDM): Integrating product and service components along the whole PSS lifecycle. J.
Manuf. Technol. Manag. 2018, 29, 1270–1295. [CrossRef]

11. Taylor, H.F.W. 1 Portland cement and its major constituent phases. In Cement Chemistry; Thomas Telford Ltd.: London, UK, 1997.
12. Halmetoja, E. The conditions data model supporting building information models in facility management. Facilities 2019, 37,

484–501. [CrossRef]
13. Kashkooli, A.M.S.; Vargas, G.A.; Altan, H. A semi-quantitative framework of building lifecycle analysis: Demonstrated through a

case study of a typical office building block in Mexico in warm and humid climate. Sustain. Cities Soc. 2014, 12, 16–24. [CrossRef]
14. Taleb, M.H.; Sharples, S. Developing sustainable residential buildings in Saudi Arabia: A case study. Appl. Energy 2009, 88,

383–391. [CrossRef]
15. Ashraf, N.; Almaziad, F. Effects of Facade on the Energy Performance of Education Building in Saudi Arabia; World Sustainable Building:

Barcelona, Spain, 2014; ISBN 978-84-697-1815-5.
16. Alrashed, F.; Asif, M. Trends in residential energy consumption in Saudi Arabia with particular reference to the Eastern Province.

J. Sustain. Dev. Energy Water Environ. Syst. 2014, 4, 376–387. [CrossRef]
17. Mena-Yedra, R.; Rodriguez, F.; Castilla, M.M.; Arahal, M.R. A Neural Network Model for Energy Consumption Prediction

of CIESOL Bioclimatic Building. In International Joint Conference SOCO’13-CISIS’13-ICEUTE’13 Salamanca; Springer: Cham,
Switzerland, 2014.

18. Kehily, D.; McAuley, B.; Horem, A. Leveraging Whole Life Cycle Costs When Utilising Building Information Modelling
Technologies. Int. J. 3-D Inf. Model. 2002, 1, 40–49. [CrossRef]

19. Kraus, W.E.; Watt, S.; Larson, P.D. Challenges in Estimating Costs Using Building Information Modelling; AACE International
Transactions: Morgantown, WV, USA, 2007; pp. IT11–IT13.

20. Abdel-Aal, R.; Al-Garni, A.Z.; Al-Nassar, Y.N. Modelling and forecasting monthly electric energy consumption in eastern Saudi
Arabia using Abductive Networks. Energy 1997, 22, 911–921. [CrossRef]

21. Nasr, G.E.; Badr, E.A.; Younes, M.R. Neural networks in forecasting electrical energy consumption: Univariate and Multivariate
Approaches. In Proceedings of the Fourteenth International Florida Artificial Intelligence Research Society Conference, Key West,
FL, USA, 21–23 May 2001; pp. 489–492.

22. Meng, M.; Shang, W.; Niu, D. Monthly electric energy consumption forecasting using multi-window moving average and hybrid
growth models. J. Appl. Math. 2014, 2014, 243171. [CrossRef]

23. Al-Hamed, S.; Wahby, M.F. Prediction of potato yield based on energy inputs using artificial neural networks and C-sharp under
Saudi Arabia conditions. Biosci. Biotechnol. Res. Asia 2016, 2, 631–644. [CrossRef]

http://doi.org/10.1016/j.jtusci.2017.06.003
http://doi.org/10.1016/j.jclepro.2018.02.187
https://datasource.kapsarc.org/explore/dataset/electricity-consumption-by-sectors/Search in Google Scholar
https://datasource.kapsarc.org/explore/dataset/electricity-consumption-by-sectors/Search in Google Scholar
http://doi.org/10.1108/09564231211208961
https://gulfbusiness.com/saudi-arabia-seeks-partners-build-1-5-million-homes/
https://gulfbusiness.com/saudi-arabia-seeks-partners-build-1-5-million-homes/
http://doi.org/10.1016/j.enconman.2013.07.057
http://www.jeg.org.sa/data/modules/contents/uploads/infopdf/2871.pdf
http://www.jeg.org.sa/data/modules/contents/uploads/infopdf/2871.pdf
https://vision2030.gov.sa/en/media-center
http://doi.org/10.1108/JMTM-06-2017-0132
http://doi.org/10.1108/F-11-2017-0112
http://doi.org/10.1016/j.scs.2013.11.002
http://doi.org/10.1016/j.apenergy.2010.07.029
http://doi.org/10.13044/j.sdewes.2014.02.0030
http://doi.org/10.4018/ij3dim.2012100105
http://doi.org/10.1016/S0360-5442(97)00019-4
http://doi.org/10.1155/2014/243171
http://doi.org/10.13005/bbra/2079


Sustainability 2022, 14, 1278 18 of 18

24. Kumar, R.; Aggarwal, R.K.; Sharma, J.D. Energy analysis of a building using artificial neural network: A review. Energy Build.
2013, 65, 352–358. [CrossRef]

25. Karatasou, S.; Santamouris, M.; Geros, V. Modeling and predicting building’s energy use with artificial neural networks: Methods
and results. Energy Build. 2006, 8, 949–958. [CrossRef]

26. Ekici, B.B.; Aksoy, U.T. Prediction of building energy consumption by using artificial neural networks. Adv. Eng. Softw. 2009, 5,
356–362. [CrossRef]

27. Kumar, R.; Aggarwal, R.K.; Sharma, J.D. Estimation of total energy load of building using artificial neural network. Energy
Environ. Eng. 2008, 2, 25–35. [CrossRef]

28. Mohammed, A.; Alshibani, A.; Alshamrani, O.; Hassanain, M. A regression-based model for estimating the energy consumption
of school facilities in Saudi Arabia. Energy Build. 2021, 237, 110809. [CrossRef]

29. Alshibani, A. Prediction of the energy consumption of school buildings. Appl. Sci. 2020, 10, 5885. [CrossRef]
30. Gao, H.; Li, Z.; Qiu, S.; Yang, B.; Li, S.; Wen, Y. Energy exchange efficiency prediction from non-linear regression for membrane-

based energy-recovery ventilator cores. Appl. Therm. Eng. 2021, 197, 117353. [CrossRef]
31. Mastrucci, A.; Baume, O.; Stazi, F.; Leopold, U. Estimating energy savings for the residential building stock of an entire city: A

GIS-based statistical downscaling approach applied to Rotterdam. Energy Build. 2014, 75, 358–367. [CrossRef]
32. Gardezi, S.S.S.; Shafiq, N.; Zawawi, N.A.W.A.; Khamidi, M.F.; Farhan, S.A. A multivariable regression tool for embodied carbon

footprint prediction in housing habitat. Habitat Int. 2016, 53, 292–300. [CrossRef]
33. Abdel-Aal, R.E.; Al-Garni, A.Z. Forecasting monthly electric energy consumption in eastern Saudi Arabia using univariate

time-series analysis. Energy 1997, 22, 1059–1069. [CrossRef]
34. Alshamrani, O.S.; Alshibani, A. Automated decision support system for selecting the envelope and structural systems for

educational facilities. Build. Environ. 2020, 181, 106993. [CrossRef]

http://doi.org/10.1016/j.enbuild.2013.06.007
http://doi.org/10.1016/j.enbuild.2005.11.005
http://doi.org/10.1016/j.advengsoft.2008.05.003
http://doi.org/10.13189/eee.2013.010201
http://doi.org/10.1016/j.enbuild.2021.110809
http://doi.org/10.3390/app10175885
http://doi.org/10.1016/j.applthermaleng.2021.117353
http://doi.org/10.1016/j.enbuild.2014.02.032
http://doi.org/10.1016/j.habitatint.2015.11.005
http://doi.org/10.1016/S0360-5442(97)00032-7
http://doi.org/10.1016/j.buildenv.2020.106993

	Introduction 
	Methodology 
	Results and Discussion 
	Best Subset Result 
	Developed Regression Model 
	Assessment Tests of Model Adequacy 
	Residual Analysis Result 
	Economic Analysis 
	Model Validation 
	Model Testing and Training 

	Conclusions 
	References

