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Abstract: Transparency evaluation in open government is a process of measuring the extent of
transparency against a predefined set of indicators. In this paper, we address the existing initiatives
regarding data and government transparency evaluation as two separate indicators and present
the analysis of their advantages and drawbacks. Based on that analysis, we extend a part of the
OpenGovB benchmark related to transparency in open government. What is unique about this
benchmark is that it utilizes metadata of data published on the open government data portals to
calculate the majority of indicators related to data transparency indicators. For the government
transparency indicator evaluation, the benchmark utilizes some of the well-known transparency indi-
cators. The article shows concrete results obtained from the application of the defined transparency
evaluation model on 22 open data portals, thus demonstrating the possibilities of its application
as well as the gains regarding generated results. The proposed model bridges the gap between
available methodologies for evaluating transparency based on collaboration and participation and
methodologies for evaluating transparency based on open data.

Keywords: Open Government benchmark; transparency evaluation; data transparency; government
transparency

1. Introduction

Open government fulfills society’s demand for responsible and responsive government
and emphasizes the role of transparency as a determinant of government performance.
Thanks to the global initiative and rapid development of the e-government idea, the
concept of e-government has been raised to a higher, more sophisticated level of open
government [1,2]. This new e-government model involves data openness, transparency,
and participation as the main openness features, and is driven by modern technologies
and created concepts that enable greater online collaboration [3]. The concept of open
data has had the most impact on shaping the open government and directing its growth
towards data and not services [4]. Data openness represents an essential precondition for
building transparency, and it is promoted around the world as part of the open government
initiatives. Data openness is not solely focused on making information obtainable, but
also on ensuring that data are well-known, easily accessible, and open to all. Publishing
data is the first step, while the second step is the provision of data in a way that creates
opportunities for users to go beyond passive recipients [5].

Transparency cannot be separated from open data, as the principle of open data is
the main prerequisite for building transparency. A transparent government is one that
allows free access to open data and guarantees the authenticity of publishing agencies, data
integrity, accuracy, and quality, providing users with understandable datasets in reusable
formats. Harrison et al. [6] state that transparency cannot be achieved by mere download-
ing of data sets. The data must be useful and allow users to create more value. Jaeger
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and Bertot [7] emphasize that the issue of transparency does not have only short-term
considerations, regarding information availability to all, but also long-term considerations
referring to information usability by all. They further elaborate that such demands require
establishing tasks related to achieving information usability and accessibility, promoting
government and information and technology literacy, making appropriate and accurate con-
tent and services available, meeting user expectations, promoting trust, and encouraging
lifelong usage. The accomplishment of such defined tasks requires the definition of com-
prehensive descriptive information [8], as a form of transparent government information,
and its deliverance to the public through online services.

Evaluation of open government as a concept consisting of evaluation of data openness,
transparency, participation, and collaboration has not been addressed in the academic
literature in the manner we propose with the OpenGovB [2]. Furthermore, we could
not find a benchmark that evaluates transparency in the open government context, in a
way that allows automatic calculation of given parameters solely based on metadata of
published datasets. Automating evaluation would make the process of open data analysis
much faster, and it would contribute to the objectivity of results compared to analysis in
which data are gathered and analyzed manually. Another motive behind this evaluation
is to provide a comparison of the proposed evaluation framework regarding the existing
standards, or globally accepted definitions for values being measured, with a lack of
standards. The proposed framework for transparency evaluation in open government is
designed to address transparency by using government and data transparency. Combining
these indicators, we have gained a unique transparency indicator for open government,
which will be explained more thoroughly in the next sections of the paper. We will explain
the theoretical background of the evaluation model and provide results from the analysis
of transparency on 22 open data portals.

2. Background

Transparency is a noun that represents the condition of being transparent. However, if
we observe the adjective, it means that the associated object may be interpreted differently,
depending on the object itself. This preliminary remark is necessary since in this paper
we will look at data transparency and government transparency and embrace a particular
approach accordingly. Keeping this in mind, in the following paragraphs we will provide a
revision of the literature on transparency made up of these two important factors.

In literature, data transparency is often not separated from the concept of data open-
ness and is defined accordingly [9,10]. Tauberer [10] points out three principles of openness:
accessibility, authenticity, and accuracy. The accessibility principle complies with openness
demands which promote online availability of data and free access without discrimination
or the need to agree to a license. Authenticity relates to users’ trust in published data, as
well as data relevance. This principle refers to the authenticity of data sources in terms
of their reliability and reputation. Accuracy refers to data precision and represents one
aspect of data quality. Seen through these principles, transparency could be defined as a
measure of openness, data sources’ authenticity, and data accuracy and integrity. However,
there is more to transparency. Veljković et al. see data transparency as not only authenticity
of data and data sources, but also as data understandability and reusability [11]. Under-
standability denotes clarity of data—the principle that each user should comprehend the
information contained—and reusability refers to the possibility of using the same data in a
different manner.

The United Nations Global E-Government Survey on the quality of government ser-
vices and products for the UN Member States addresses e-government readiness and
e-participation [12]. An e-participation index addresses quality and information usefulness
and services aiming at engaging citizens in public policy through information and com-
munication technologies. It is related to data transparency since it focuses on data quality
and usability, as well as the aspect of data openness towards citizens. The Accenture E-
Government Leadership Survey shows the government performance by measuring service
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maturity and delivery maturity, which reflects different delivery aspects of government [13],
but it could not be related to the data transparency feature. The e-government benchmark
conducted by [14], popularly named eGovBE, has initially been focused on reviewing
twenty basic public services and e-government progress in terms of core indicators: so-
phistication, availability of services, user orientation, and national portal [15,16]. In 2009,
the model’s measuring criteria and core indicators were enhanced by replacing national
portal and user-centricity with eProcurement and user experience indicators, making the
benchmark more oriented towards outcomes and impact. In the light of these new features,
data transparency could be seen in user-centricity as an attempt to make citizens more
involved with governmental procedures.

These benchmarks were applied to earlier e-government models, which is why data
transparency is not their concrete area of focus. Considering that an official open govern-
ment benchmark still does not exist, we can come to the conclusion that there is no unique
evaluation model of data transparency as part of open government in general. This claim
is confirmed by the systematic research of Matheus and Janssen, who suggest a compre-
hensive model of determinants that will foster transparency enabled by open government
data [17]. These data are exploited through open data portals, which, according to Lnenicka
and Nikiforova [18], play the role of an interface that creates transparency. Release of
government data on open data portals influences the processes that go toward contribution
to transparency where corruption, wastage, and inefficiency take place the most. However,
there are some initiatives, amongst which Osimo’s is the most referenced one. Osimo
proposes a set of basic public data to measure data reusability and transparency [19]. For
the evaluation of basic public data, he recommends a five-level scale, the levels of which
gradually change from no data to sheer data availability and reusability. A similar proposal
for assessing the availability of open-linked data comes from Sir Tim Berners-Lee who has
defined a 5-star model for assessing data reusability based on formats of published data [20].
As data availability is one of the key features of data transparency, this model could also be
considered for building a framework for transparency evaluation in open government.

Based on addressed benchmarks and initiatives, we have identified that data trans-
parency is also affected by data quality in the form of data accuracy, data accessibility and
availability, data reusability, and data openness. These features are used to gain insight
into the e-government openness, but have not been analyzed as part of one transparency
evaluation framework. Our intention is to use all these features jointly in our open data
transparency evaluation, since their importance is clearly significant, considering their
presence in evaluation models applied in earlier stages of e-government. Keeping that in
mind, we will utilize OpenGovB transparency indicator and extend it to include identified
quality components.

Government transparency evaluation is a process of measuring the extent of trans-
parency against a predefined set of indicators. As transparency is also an e-government
feature, existing e-government benchmarks need to be considered to obtain a compre-
hensive view on assessment methods that will unveil the role of transparency in open
government. There are a variety of studies on the impact of transparency in the govern-
ment domain [21–24], but none of them consider quantitative indicators that will relate
transparency to the potential usage of government information by stakeholders.

When it comes to creating indicators of government transparency, we should start
from its definition. Government transparency is mostly defined as a measure of citizens’
insight into business, processes, and operations of the government [25]. It is about dis-
closure, providing citizens with a window to find and view information, process flows,
issues, events, projects, policies, and other matters of their interest. Meijer et al. [26] dis-
tinguish three types of government transparency: active, passive, and forced release of
information. Having this in mind, transparency is a complex measure that must encompass
all aspects of government interaction with the public. However, transparency is often
simplified to a single domain: the provision of information of public importance. For this
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simplified view on government transparency, there are some straightforward and generally
accepted indicators.

If we look at the government transparency through enabling data openness, then we
can talk about two groups of indicators; first, one relies on generally accepted rules of
openness, while others are bound to legal regulations [27,28]. Generally accepted rules of
data openness depend on the country itself, its history and traditions, political preferences
of the nation, tradition, culture, etc. The methodologies that are based on these rules
depend on the views of researchers and can be freer in the choice of indicators. On the
other hand, legally binding regulations are defined by the law in the field and, therefore,
methodologies that accompany these regulations have predictable indicators. One of
the most easily measurable and comparable elements of government transparency is the
legislation on freedom of information (FOI) [24,29,30]. Methodologies for assessing FOI
are mainly based on expert assessment of whether there is an appropriate legal framework
that enables access to information of public importance. This kind of transparency is
often called passive transparency since dissemination occurs upon user request and is
not actively released by authorities. What governments often do is publish information
of public importance, which is proactive disclosure of information, and these published
data are considered by some authors as a proxy for measuring active transparency [31].
Nevertheless, Gonzálvez-Gallego and Nieto-Torrejón [32] reported that the availability of
government data to the relevant stakeholders, of which the most important are the citizens,
leads to them having more trust in public institutions, as well as the creation of trustworthy
governments [33]. In particular, this is achieved by promoting open government data
usefulness among them, thus making governments more accountable and trustable.

The Centre for Law and Democracy (CLD), a non-profit corporation from Canada,
created a methodology for comparative assessment of a legal framework for the right to
information (RTI). They define 61 indicators divided into seven groups: the right of access,
scope, requesting procedures, exceptions and refusals, appeals, sanctions and protections,
and promotional measures. Each indicator is scored between 0–2 points, and the total
number of points that can be achieved is 150. This methodology was launched in 2013, and
since it was oriented towards the legal framework only and not towards the implementation
of the framework, some of the most developed countries in Europe had a very low ranking.
For example, Scotland has an FOI law originating from 1766 and is ranked 40 (92 out
of 150 points), even though they had a long history of implementation. On the other
hand, Serbia, with its law on FOI from 2003 and very weak implementation of this law,
is ranked as first on the list (135 out of 150 points). If we exclude these negative effects
of the methodology, we can say that strong law is of great importance to government
transparency since it supports government openness and facilitates access to information
of public importance.

Other methodologies for measuring government transparency are aimed at certain
transparency aspects, such as budget transparency. The International Budget Partnership
(IBP) organization ranks countries based on a questionnaire with 125 questions related to
the transparency of government budget [34].

We can also observe the absence of corruption as one of the government transparency
aspects. The Corruption Perceptions Index (CPI) or Control of Corruption (CC) are the
two most famous indexes of corruption [35]. CPI takes the value from the range (0, 100)
where 0 indicates high corruption and 100 denotes the absence of corruption in the govern-
ment administration. CC indicator takes values from the range (−2.5, +2.5), whereas the
upper and lower range limits are related to low and high corruption respectively.

As can be noted, government transparency is a multifaceted concept that is often
measured by looking at only some of the facets, such as corruption or FOI law. Moreover,
as there is a lot of effort coming from non-governmental organizations and academic
institutions to measure different aspects of government transparency, they will be included
in our transparency calculation. According to the above, we can conclude that RTI and
CPI indicators represent a valuable source for measuring government transparency. These



Sustainability 2022, 14, 1407 5 of 16

two will be used for the utilization and extension of the OpenGovB transparency indicator,
which will be further evaluated as a constituent of transparency in open government.

3. OpenGovB Transparency Indicator

OpenGovB is a model for assessing the extent of a government’s openness in accor-
dance with well-defined and globally embraced openness principles [2]. The benchmark
addresses openness of government through four main principles: open data, transparency,
participation, and collaboration, and is unique in this approach. In essence, it serves to
determine the extent of fulfillment of the main goals of open government. The focus of
this paper is on the transparency evaluation using the transparency indicators given in
OpenGovB and the usage demonstration on open data portals.

Online data are organized into various data categories; however, OpenGovB examines
only nine categories: Finance and Economy, Environment, Health, Energy, Education,
Transportation, Infrastructure, Employment, and Population [4], to establish a standard
evaluation measurement model. This source is used for assessing BDS, DOI, and T indi-
cators. Additionally, BDS indicates the presence of a predefined set of high-value open
data categories, which is necessary for the automatic evaluation of data transparency. User
involvement is considered to be a valuable indicator of government transparency, and it
is included in the benchmark model in order to express the willingness and readiness of
the government to accept and utilize users’ perspectives and points of view. It only influ-
ences the evaluation of user participation indicators in the proposed model. In OpenGovB,
transparency is viewed as the average function of all types of transparency, data, and gov-
ernment, which are equally important for the constitution of the transparent government.

3.1. Transparency Evaluation Model

Based on research on transparency and its meaning in the context of open govern-
ment, we define transparency in open government through two separate indicators: data
transparency and government transparency. Data transparency is measured through au-
thenticity, understandability, and reusability of data available on the government’s open
data portal. These three measures tell us whether the government publishes necessary
information about data sources, whether their formats are reusable, and if they are properly
described, which are prerequisites for automatic processing. Furthermore, they are also
used for the calculation of e-government openness. Government transparency utilizes
existing transparency indicators, primarily RTI and CPI. The final value of transparency is
the average value of the two indicators as given in Equation (1).

T =
DT + GT

2
(1)

3.2. Data Transparency (DT) Indicator

Keeping in mind the fact that an open data portal publishes large amounts of datasets
organized in different data categories, using the complete data collection may have large
time and cost impacts. To calculate data transparency, it is necessary to choose a rele-
vant subset of datasets for each category as a sample for the calculation process. Data
transparency evaluation is thus a two-phase process where the first phase relates to choos-
ing a relevant subset of datasets, while the other implies formulas’ application to key
dataset features.

Generating results from sample data, rather than from the complete population, is a
statistical challenge that we are confronted with. When we have a reason to believe that the
sampled and the unsampled data have essentially similar or equivalent characteristics, we
can make conclusions about the entire population based on an incomplete subset of the
population. To ensure that the sample is representative not only of itself but also of the
unsampled group, it is necessary to consider the level of confidence, the margin of error,
and the expected accuracy [36]. The confidence level usually takes a value of 95% or 99%,
which corresponds to the standardized value of the confidence interval of ±1.96 and ±2.58.
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The confidence interval is the interval within which we expect the mean of the population
to be, while confidence level denotes the probability that an unknown population mean
value is within the interval. We have chosen a 95% confidence level for which Z takes
the value of 1.96 in the calculation, according to the table of standard normal curve areas
values. The margin of error allows for a deviation of the sample size results in comparison
to population results. In our calculations, the margin of error is valued at 10%. Accuracy
denotes a percentage of sampled data that would truly satisfy the required characteristics.
As there is no trustworthy way for a reliable prediction of such percentage, we have used
the 50% value. For choosing the sample size of the population, we are using the following
equations [37]:

n0 =
Z2 × p × (1 − p)

e2 (2)

n =
n0 × N

n0 + (N − 1)
(3)

Equation (2) determines the sample size using the confidence level (Z), the margin of
error (e), and expected accuracy (p), while Equation (3) represents a correction of calculated
sample size according to the true size of data category (N).

After choosing a sample size for each data category, the data transparency indicator
is calculated as an average of authenticity (A), understandability (U), and reusability (R)
for datasets contained in the sample (see Equation (4)). We equally weighted all three
components as our conducted research on transparency definition and its meaning showed
that they are all equally important for building transparency.

DT =
A + U + R

3
(4)

Authenticity is a measure of trust in data publishers and the accuracy of data itself,
and it could be seen as a complex feature comprised of two parameters: Data Sources (DS)
and Data Accuracy and Integrity (DAI). Considering that DAI represents a summary value
based on data characteristics from a sample subset and that, by nature, it is a measure
of trust in the precision and credibility of published data, while DS is a global view on
data providers by which we can obtain insight into the reliability of data providers, we
have decided that DS should constitute 40%, and DAI 60%, of the Authenticity indicator
(Equation (5)).

A = 0.4 × DS + 0.6 × DAI (5)

Data sources are governmental and non-governmental authorities, institutions, and
agencies that provide raw data for publishing on an open data portal. For users to utilize
data safely and without prejudice and trust in published data integrity, it is necessary for
publishers to be well-known and have a good reputation. Most of the responsibility for this
requirement is on governmental authorities and we define it through the maintenance of a
list of data sources available on the data portal (F1), the possibility of reviewing datasets
published by a particular data source (F2), and the existence of data source description
(F3). Users are another important source of feedback through grading data sources (F4)
based on their experience with data published by the source. Information provided by the
government (F1, F2, and F3) makes up 80% of the DS value, while user-provided feedback
is involved with 20%. Features marked as F1 and F2 are considered more influential on
building DS parameters, as they represent high-frequency user requests, while features F3
and F4 are considered to have less influence. F1, F2, and F3 are scored 1 if satisfied and 0 if
unsatisfied, while F4 presents an average grade scaled to a range (0, 1). The formula for DS
calculation is given in Equation (6).

DS = 0.3 × F1 + 0.3 × F2 + 0.2 × F3 + 0.2 × F4 (6)
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DS takes its values from the range (0, 1) where 0 signifies that none of the features are
present on open data portals, while 1 marks maximum data sources’ credibility.

Data Accuracy and Integrity is a parameter that represents a measure of trust in
the precision and credibility of published data. To provide a meaningful and reliable
evaluation method for calculating such delicate characteristics, three assessment features
need to be addressed: government grading (E1), user grading (E2), and quality certification
(E3). Government grading relates to government-provided feedback on data accuracy and
integration for each published dataset. The establishment of the evaluation procedure is left
to the government itself, while the final feature value is calculated as an average grade of all
grades in a sample data subset and scaled to range (0, 1). User grading represents numerable
user feedback on published data, usually obtained via online scoring of data. Government
and user grading are very important since they represent an opinion, an experience, and
a point of view, which is why they are equally scored and together represent 70% of the
DAI parameter. The third feature is quality certification, and it simply acknowledges the
existence of a certifying document for a dataset that represents an electronic proof of data
accuracy and integrity of contained information and is provided by the data publisher. The
final value of the DAI feature is calculated according to Equation (7).

DAI = 0.35 × E1 + 0.35 × E2 + 0.3 × E3 (7)

DAI takes its values from the range (0, 1) where 0 denotes complete data inaccuracy,
while 1 signifies maximal satisfaction of all three features.

The understandability feature reflects the existence of comprehendible descriptions
for each dataset category, as well as contained raw data. This could be accomplished by
publishing textual descriptions of data categories with detailed explanations of contained
data types, as well as descriptions of each contained dataset. Understandability is a complex
measure comprised of two parameters: Data Categories Description (DCD) and Data Sets
Description (DSD), where the first one represents descriptions of data categories, while the
second one denotes the existence of a description for each dataset. Understandability is
calculated based on DCD and DSD parameters as given in Equation (8). DCD parameter
constitutes 40% of the final Understandability value, while stronger influence is given to
the DSD feature due to its direct relation to data. The Understandability indicator ranges
from 0 to 1, where 1 implies a complete availability of both data categories and datasets
descriptions, and 0 implies the lack of descriptions.

U = 0.4 × DCD + 0.6 × DSD (8)

DCD parameter is evaluated against three features: textual description (D1) as exis-
tence of textual data description for data category, tags (D2) as the existence of searchable
tags associated with data category, and linked information (D3) in a form of links towards
additional information regarding data category. All three are considered equally important
and are thus equally scored. Each category is separately scored against all three features as
(0.33*D1+0.33*D2+0.33*D3) with a final value from range (0, 1). DCD is then calculated as
an average value of all categories’ values. Value 0 of the DCD parameter means that not
even one data category satisfies any of the three features, while value 1 signifies that all
dataset categories have adequate descriptions, tags, and linked information. DSD is calcu-
lated against the same three features as DCD, but for each dataset from a chosen sample
subset. Each dataset is valued from range (0, 1), following the same equation applied to
data categories in the DCD parameter. The final DSD value represents an average value of
all datasets. DSD values range from 0 to 1 where 0 implies a total lack of data descriptions,
tags, and linked information, while 1 signifies that all datasets are properly described.

Data Reusability (R) is a parameter that refers to providing data in open formats so
that a user can search, index, and download data via common tools without any prior
knowledge of data structures. We have defined an assessment scale, inspired by Sir Tim
Berners-Lee’s 5-star model for measuring openness of linked open data [20], by adapting it
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to a 4-level model that meets the requirements of estimating data reusability in an open
government context.

The calculation of the R parameter is performed against each dataset in the chosen
sample subset by determining its reusability level. A dataset is scored according to the
level it belongs to and then scaled to the range (0, 1). Reusability’s final value is an average
value of the dataset’s reusability. It ranges from 0 to 1, where 0 represents the lowest
data availability level and denotes that no dataset is available online, while the value of
3 represents that all datasets are not only available but also maximally reusable in the open
data context.

Keeping in mind the complexity of sub-indicators, we present the final equation for the
data transparency indicator as the average data transparency for all categories of open data:

DT = AVG(
0.4 × DS + 0.6 × DAI + 0.4 × DCD + 0.6 × DSD + R

3
) (9)

Data transparency values are in range (0, 1) or (0–100%) and spread over five trans-
parency levels, as illustrated in Figure 1. Each level represents a range of min-max values
of authenticity, understandability, and reusability with equal participation. To explain
this further, let us look at an example for level 2. When all three sub-indicators (A, U, R)
have values ranging from 0.036 to 0.759, then, looking at Equation (3), data transparency is
in the range of 36–75.9%. The lowest level in the data transparency scale, named cradle,
represents either a complete lack of transparency or the beginnings of the transparency
initiative. As a government advances in opening and enriching open data, it will rise higher
on a transparency scale through basic, average, and transparency levels up until the final
(high transparency) level.
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3.3. Government Transparency (GT) Indicator

For government transparency, we adopted two mentioned indicators, RTI and CPI. We
used both for comparison purposes. It is interesting that RTI acts as a static measure since
it only changes when a new FOI law is enacted, while CPI is more dynamic and changes
each year. Since GT and DT are included in the overall transparency indicator value with
an equal percentage, we had to scale RTI and CPI to range (0, 1) since transparency final
value should be in that range. Using RTI we calculated GT as presented in Equation (10),
while the CPI-dependent calculation is given in Equation (11).

GT =
RTI
150

(10)

GT =
CPI
100

(11)

4. Use Case: Transparency Evaluation

In the beginning, open data initiatives were heterogeneous in nature, open licenses
differed between initiatives, and there were still heterogeneous formats and a lack of
metadata [38,39]. Datasets are often published in a format defined by the system from
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which the data originate but without the syntax, semantics, and context, i.e., without
the crucial elements which make data more usable [40]. Openly publishing datasets
should include syntax (structure), semantics (understanding), and context (metadata) to
enable data reusability. Luckily, more recently open-source data portals have begun to
offer a standardized system for data publishing, viewing, and retrieval. Comprehensive
Active Knowledge Network (CKAN) developed an open-source software framework built
on open standards which ensures that published data are compatible with other such
portals. CKAN uses Data Catalog Vocabulary (DCAT), which is a standard vocabulary
for describing datasets in data catalogues. It also exposes API for developers, to allow
retrieving datasets and their metadata properties based on DCAT.

For the practical evaluation of the transparency indicator, we have chosen 22 open
government data portals that publish their open data using the CKAN platform. These
portals were selected based on the software platform they use for the back-end since the
CKAN offers the ability to query the portal’s data using a defined API. All the calculations
for the data transparency (DT) feature are done based on the API call results, i.e., open
data JSON representation. For the government transparency (GT) we took two indexes:
RTI and CPI. Table 1 presents results for the Transparency indicator (T) of the OpenGovB
benchmark. In the table, we presented results for the indicators: data transparency, govern-
ment transparency using RTI, government transparency using CPI, and final transparency
when using RTI or CPI. Since RTI and CPI indexes have different maximal values, 150
and 100 respectively, to have comparable results we used scaled values in the calculation.
As can be seen from Table 1, the first five countries have the best results when scoring by
T-RTI. Finland also has an excellent score for T-CPI and DT values just above the countries’
average. Italy and Russia are best in DT with a score of 0.39 but, as can be observed in
Figure 1, they are only at the average data transparency level. Serbia has the best score in
GT-RTI, which resulted in a better overall rank, but looking at the data transparency only it
is very low: two times lower than the DT average.

Table 1. Transparency indicator (T) results.

Country Portal DT GT-RTI GT-CPI T-RTI T-CPI

Brazil http://dados.gov.br/api 0.33 108 40 0.5 0.4
Finland http://www.hri.fi/api 0.28 105 89 0.5 0.6
Iceland http://opingogn.is/api 0.35 92 78 0.5 0.6
Russia http://hubofdata.ru/api 0.39 98 29 0.5 0.3
Serbia http://rs.ckan.net/api 0.12 135 42 0.5 0.3

Australia https://data.qld.gov.au 0.33 83 79 0.4 0.6
Czech Republic http://cz.ckan.net/api 0.4 72 55 0.4 0.5

Hungary http://opendata.hu/api 0.31 87 48 0.4 0.4
Ireland http://data.gov.ie/api 0.36 64 73 0.4 0.5

Italy http://www.opendatahub.it/api 0.39 57 47 0.4 0.4
Slovakia http://data.gov.sk/api 0.38 70 51 0.4 0.4
Sweden http://oppnadata.se/en/api 0.17 92 88 0.4 0.5

Switzerland http://opendata.admin.ch/api 0.38 77 86 0.4 0.6
United States https://catalog.data.gov/api 0.19 89 74 0.4 0.5

Austria http://www.data.gv.at/api 0.36 37 75 0.3 0.6
Belgium http://portal.openbelgium.be/api 0.27 59 77 0.3 0.5
Canada http://data.gc.ca/data/api 0.1 79 82 0.3 0.5

Germany https://www.govdata.de/ckan/api 0.22 52 81 0.3 0.5
Greece http://ckan.okfn.gr/api 0.2 65 44 0.3 0.3

Romania http://data.gov.ro/api 0.1 83 48 0.3 0.3
United Kingdom http://data.gov.uk/api 0 99 81 0.3 0.4

Africa http://africaopendata.org/api 0.37 0 0 0.19 0.19

To demonstrate the process of the data transparency calculation (Figure 2), we will use
the Australian open data portal as an example. It has a high value for data transparency,
and it also has high rankings in the CPI and RTI indexes.

http://dados.gov.br/api
http://www.hri.fi/api
http://opingogn.is/api
http://hubofdata.ru/api
http://rs.ckan.net/api
https://data.qld.gov.au
http://cz.ckan.net/api
http://opendata.hu/api
http://data.gov.ie/api
http://www.opendatahub.it/api
http://data.gov.sk/api
http://oppnadata.se/en/api
http://opendata.admin.ch/api
https://catalog.data.gov/api
http://www.data.gv.at/api
http://portal.openbelgium.be/api
http://data.gc.ca/data/api
https://www.govdata.de/ckan/api
http://ckan.okfn.gr/api
http://data.gov.ro/api
http://data.gov.uk/api
http://africaopendata.org/api
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Step 1: Identify categories from the Basic Data Set.

On the Australian open data portal all BDS categories were present and therefore we
applied data transparency calculation for each category separately.

Step 2: Calculate the sample size of datasets to be evaluated for each category.

For the identified categories, we calculated the total number of datasets in category
(N) and a sample size (n) for each category (Table 2).

Step 3: Query random datasets from each category to the number of the sample size and
calculate data transparency sub-indicators.
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Table 2. Sample size calculation.

BDS Category Tag N n

Finance and Economy economy 9 8
finance 46 28

Environment climate 6 6
environment 82 37

Health health 44 27
Energy energy 21 16

Education education 76 36
Transport transportation 3 3

transport 75 36
Infrastructure infrastructure 21 16
Employment employment 17 14
Population population 15 12

Authenticity sub-indicator is not dependent on individual datasets and therefore it
can be calculated based on API calls that return data on organizations that publish data on
open data portals. For calculating Authenticity, we used the API call: http://data.gov.au/
api/3/action/organization_list which returns a list of all organizations that publish data on
the Australian open data portal. There were exactly 288 organizations in total and for each
one we examined required subcomponents of Authenticity. The first four sub-indicators are
related to data sources (F1–F4) and the other three (E1–E3) on the data themselves. F2 and
F4 describe the possibility for users to rate data sources portal and can provide feedback on
the assumed data, but this information could not be obtained through the CKAN API calls,
and thus the sub-indicators received score 0. F1 sub-indicator relates to the data sources
list and it received score 1 since there was a list of organizations available on the open
data portal. F3 sub-indicator, relating to the existence of the meta-data description of the
data source, receives a value 1 if there is a value for the [description] and [is_organization]
meta-tags; otherwise, the obtained value is 0. This is evaluated for each data-publishing
organization separately and then a final F3 value is taken as the average.

To get the score for E1 and E2 (Table 3), it was not possible to use existing data on
the portal, since the information about user grading and government grading could not
be obtained; therefore, they received value 0. On the other hand, the E3 sub-indicator can
be viewed at the organizational level so that if an organization has certification on data

http://data.gov.au/api/3/action/organization_list
http://data.gov.au/api/3/action/organization_list
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quality it will mean that published data are also certified. To score E3 on the organizational
level we examined values for meta-data tag [state] on value “active”, [approval_status] on
value “approved” and if [is_organization] is set to “true”. If all three conditions are met, E3
received score 1 for that organization. In the future, upon the availability of the possibility
to query and obtain information on data certification, this calculation will be changed so
that it is applied to the data inside each data category within the organization.

Table 3. Authenticity calculation (A).

DS

F1 Existence of data sources’ list 1

F2 Grading data sources by users 0

F3 [description] && [is_organization] AVG(F3_Organization1–288)

F4 Grading data by users 0

DS_Total 0.48

DAI

E1 Government grading 0

E2 User grading 0

E3 [state]==active && [is_organization]==true &&
[approval_status]==approved AVG(E3_Organization1–288)

DAI_Total 0.3

A (DS_Total + AVG(DAI_Total _Organization1–N))/2

In Table 4 we presented a calculation for the Understandability indicator in the light of
the two sub-indicators, DCD—related to categories and DSD—related to datasets. Under-
standability of data sets is analyzed by looking for defined properties of random datasets
within the sample, while data categories’ understandability analyzes properties of cate-
gories. If [description] property has value, D1 is scored 1, otherwise 0. For D2 we were
looking for the value of [tags] property, and D2 has scored 1 or 0 accordingly. Finally, for
D3 both [extras] and [links] properties were examined and, if both had values, D3 received
score 1, otherwise score 0. Calculating values for DCD and DSD uses scoring of D1-D3
as described. For the Australian portal, the understandability of data categories received
a value of 0 since there were no values for D1–D3 sub-indicators. Understandability of
datasets is an average value of understandability for all analyzed data, and it has the value
of 0.2.

Table 4. Understandability calculation (U).

DCD

D1 [description]

D2 [tags]

D3 [extras] && [extras]=>links]

DCD_Total AVG(DCD_Category1–9)

DSD

D1 [description]

D2 [tags]

D3 [extras] && [extras]=>[links]

DSD_Total AVG(DSD_Category1–9)

U U = 0.4 × DCD_Total + 0.6 × DSD_Total = 0 + 0.6 × 0.33 = 0.2

For example, the Climate BDS category has the results for DSD as given in Table 5. To
obtain these results, we executed API call https://data.qld.gov.au/api/action/tag/climate
to find out that there are six datasets tagged with the word climate, and then we requested
each dataset and checked their properties [description], [tags], [extras], and [extras[links]].
We obtained a score of 0.33 for this category.

https://data.qld.gov.au/api/action/tag/climate
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Table 5. DCD results for climate category.

Tag Data Set D1 D2 D3 DSD

Climate

acorn-sat 0 1 0 0.33
air-conditioner-location-running-hours-data 0 1 0 0.33

australian-solar-energy-information-system-aseis-v3-0 0 1 0 0.33
economics-of-australian-soil-conditions-199697-factor-

most-limiting-yield-aciditysodicitysalinity 0 1 0 0.33

waite-arboretum-spatial-data 0 1 0 0.33
waite-arboretum-catalogue 0 1 0 0.33

DSD Climate 0.33

Reusability is calculated on the dataset level. For the sample size of each dataset
category, we chose random datasets. As datasets can have many resources, we randomly
picked their sample and checked the formats. Each format was scored as given in Table 6,
and the average level was determined for the dataset.

Table 6. Reusability calculation (R).

R level 0 No Format

level 1 machine-readable || structure || semantic
level 2 structure && non-proprietary
level 3 semantic && non-proprietary

R_Category AVG(R_Category_resources)
R AVG(R_Category1–9) = 0.4

Data resources in the Australian portal are made available in a variety of formats
(Figure 3). Approximately 63% of the analyzed resources are in XLS and XLSX formats,
and a large number of resources are available in other machine-readable formats, most
commonly CSV, XML, KML, and JSON. Only a small part (up to 4%) of resources are
published in non-reusable formats such as PDF, plain text, or images, which is a direct
barrier for further use.
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Figure 3. Formats of resources in sampled datasets.

Step 4: Calculate average data transparency for each category and for the portal.

For the Australian open data portal, we obtained the results for data understandability
and reusability for each data category and the authenticity indicator of the portal. Then we
could calculate data transparency for each data category, as presented in Table 7, and DT
for the portal by applying Equation (9).
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Table 7. Data transparency (DT) calculation.

Category U R A DT

RTI CPI

economy 0.20 1.11 0.37

0.56
0.79
0.8
0.77
0.67
0.84
0.58
0.64
0.77

environment 0.20 1.39 0.37 0.79
health 0.20 1.41 0.37 0.8
energy 0.20 1.34 0.37 0.77

education 0.20 1.14 0.37 0.67

transportation 0.20 1.48
1.35 0.37 0.84

infrastructure 0.20 0.97 0.37 0.58
employment 0.20 1.08 0.37 0.64
population 0.20 1.33 0.37 0.77

AVG 0.2 0.42 0.37 0.33 83/150 = 0.56 79/100 = 0.79

Transparency-RTI 0.4

Transparency-CPI 0.6

Step 5: Use the existing transparency index (RTI or CPI) and calculate the Transparency
indicator.

Australia has scored 83 for RTI and 79 for CPI, using the values for DT sub-indicators and
applying Equation (1), we receive 0.4 and 0.6 as transparency indicator values respectively.

The steps-based explanation serves as a guide for anyone who wants to try to calculate
transparency. We automated the calculation process by developing a web-based application
for calculating OpenGovB indicators, including transparency. The calculation is initiated
upon entering the URL of the open data portal and represents the current indicator value
that depends on the randomly chosen datasets within the sample.

What have we learned from assessing data transparency of 22 open government
portals? Who can benefit from this study, and how do they benefit?

Currently, all portals have their weaknesses, which mainly originate in poor data
quality. Reasons for producing poor data quality are varied, starting from insufficient
budget, lack of internal manual resources, lack of relevant technology, inadequate data
strategy, human error, lack of internal communication between departments, or inadequate
management support. By improving data quality, bars would raise for all transparency sub-
indicators. By adding missing dataset descriptions, category descriptions, and responsible
organizations that maintain data, and by linking relevant datasets, tagging categories, and
datasets, governments would significantly improve the score for the Understandability
indicator. Exposing the list of trusted data sources and enabling open-source modules
that would allow user grading of data sources and datasets could improve Authenticity
indicator scores. To gain better results for the Reusability indicator, readability of resources
should be improved, meaning that open data formats need to prevail over proprietary
data formats. That would be the prerequisite for reusing the data, building new datasets,
services, and solutions.

The transparency evaluation results should be considered by governments to improve
their own open data policies, and in so doing improve government transparency and
users’ trust. The results are also a good starting point for the researchers who want to
build new transparency models or suggest future improvements for the current ones. It is
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necessary to monitor improvement on certain model features and scale weights accordingly
as governments progress to a more mature transparency model.

5. Conclusions

Transparency in open government is a relatively new concept that has arisen from
the previous e-government models and initiatives. It has proven to be one of the most
significant features of open government and a concept every government strives towards.
The idea of building a transparent government in the context of openness towards citizens
has quickly spread from Obama’s office to governments around the globe. Today, a
great number of countries emphasize transparency as a major milestone in their smart-
city strategies and action plans. Transparency in open government makes steps forward
towards the usage of data in a meaningful way. When there are no obstacles for data
transparency, there are no obstacles for data consumption. A smart city vision can gain
value from monitoring transparency and our transparency evaluation model can be the
right tool for this.

The model for evaluating transparency that was proposed here offers an assessment
method for determining the level of progression based on the most critical open data
concerns: data accuracy and integrity, data quality, data sources’ credibility, data clarity,
and reusability, which we consider a significant advantage of such an approach. Numerous
sources in the literature that already dealt with benchmarking of open government data
support this claim [2,27,41,42]. They all directly relate to open data, making the model
completely applicable for open government. The other part of the model is government
transparency, for which we decided to include some of the existing indicators. At the
same time, this could present a drawback, since the model addresses only some of the
transparency features, while flexibility and comparison of transparency are overshadowed
by different features. This we see as the challenge that we need to overcome in the following
period to strengthen the model even more and make it more trustworthy. We applied the
model on 22 open data portals that are built on the CKAN platform to demonstrate the
assessment possibilities, and in the future we plan to enable support for other data platforms
as well. This is especially important in order to obtain comprehensive overview of open
data portals powered by other platforms (DKAN, Udata, Socrata, etc.). Increasing the
number of surveyed portals will also contribute to the validity of this study.

Future research aspects should be focused on the development of transparency indica-
tors related to back-office experience and efforts. Governmental representatives need to be
actively involved in evaluating transparency, as they could provide valuable information
regarding legislative background, initiatives, and strategies, which are all important parts
of a transparent government. Although the Authenticity indicator does involve govern-
ment feedback in the evaluation process, the model needs to be further enriched with
back domain information that would increase the administration’s participation in the
final assessment. This could be achieved through thoroughly designed questionnaires
that would be filled in by government representatives. Consequently, this will provide an
adequate environment for the comparison of those indicators with our benchmark model
and its indicators from which unambiguous conclusions can be drawn about how the
problem of transparency in open government should be observed. Comparative analysis of
qualitative and quantitative indicators of transparency in the government domain also can
contribute to the future establishment of a standard evaluation model for transparency in
open government.
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