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Abstract: Reduction in chemical usage for crop management due to the environmental and health
issues is a key area in achieving sustainable agricultural practices. One area in which this can
be achieved is through the development of intelligent spraying systems which can identify the
target for example crop disease or weeds allowing for precise spraying reducing chemical usage.
Artificial intelligence and computer vision has the potential to be applied for the precise detection and
classification of crops. In this paper, a study is presented that uses instance segmentation for the task
of leaf and rust disease detection in apple orchards using Mask R-CNN. Three different Mask R-CNN
network backbones (ResNet-50, MobileNetV3-Large and MobileNetV3-Large-Mobile) are trained
and evaluated for the tasks of object detection, segmentation and disease detection. Segmentation
masks on a subset of the Plant Pathology Challenge 2020 database are annotated by the authors, and
these are used for the training and evaluation of the proposed Mask R-CNN based models. The study
highlights that a Mask R-CNN model with a ResNet-50 backbone provides good accuracy for the
task, particularly in the detection of very small rust disease objects on the leaves.

Keywords: computer vision; instance segmentation; sustainable agriculture

1. Introduction

The application of chemicals such as fungicides, pesticides and herbicides via spraying
in agriculture, with the aim to control plant disease, pests and weeds and ensure good
crop yields, is common. Current agricultural spraying practices have been identified as
unsustainable due to the environmental and health issues [1,2]. These environmental
issues include land contamination which can be caused by chemical run-off from the field
and drainage issues due to the volume of the chemicals applied [3]. On the other hand,
chemical drift is where sprayed chemicals are carried by the wind onto the neighbouring
crops/fields or residential areas can result in crop contamination and grass contamination
in children’s playgrounds [1]. Trace chemicals from spraying can also be found within the
crop itself with studies showing high levels presence in fruits and vegetables which can
be toxic when consumed [4]. Furthermore, there are health risks associated with exposure
to the chemicals to groups including production workers, formulators, sprayers, mixers,
loaders and agricultural farm workers [2].

Legislative bodies such as the European Commission and French government have
formally identified the unsustainable usage of chemicals in agriculture as a serious environ-
mental and health issues and have introduced incentive policies which target a reduction in
chemical use as a key option to reduce the contamination of the environment [5]. Strategies
such as Integrated Pest Management (IPM) are being championed by the European Com-
mission, which has the aim to provide a less aggressive approach to managing agricultural
land. One of the principle aims of IPM is that chemicals applied will be as specific as
possible for the target and shall have the least side effects on human health, non-target
organisms and the environment [6]. This approach has the potential to play an important
role in reductions through sustainable agricultural methods.
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One area in which efforts have been made to introduce sustainable practices is through
improving spraying technology, which can also provide an economic benefit to the farmer
through use of less chemicals. New spraying technologies have shown the potential to sig-
nificantly improve through a reduction in chemicals used [7]. Traditionally the application
of fungicides, herbicides and pesticides through spraying has been performed aggressively
and uniformly on crops with an overuse of chemical to ensure the eradication of diseases,
weeds and pests, respectively. Both hydraulic and hydro-pneumatic sprayers are used for
this process in a number of forms including manually operated backpack sprayers, self-
propelled units and tractor operated sprayers. While mechanical and electrical advances
play a part in improving spraying systems, another important area is that of smart spraying
systems, which aims to apply artificial intelligence (AI) and computer vision to provide
more intelligent and precise spraying [8].

AI and more specifically computer vision can be used to provide information to a
spraying system, this could be target location, size and disease state. Computer vision
techniques have been previously researched in the detection of crop diseases [9–11] and
weeds [7] in different areas of agriculture. Abdulridha et al. [9] detected laurel wilt disease
in avocado fruit using aerial multi-spectral imaging and using these images to classifying
healthy from stressed avocado plants. Machine learning algorithms namely the multi-
layer perceptron and K-nearest neighbour where applied to find the best multi-spectral
band combinations and perform the classification. Vine leaf disease was the topic of
Pantazi et al. [10], where a pipeline of computer vision method using segmentation was
applied to detect disease state. The pipeline consists of using the GrabCut algorithm for the
segmentation of foreground leaves, the foreground leaf pixels have features extracted using
Local Binary Patterns and their histograms were utilised for training a one class Support
Vector Machine. In Partel et al. [7], a YOLO object detection based model was applied to
identify between the portulaca weed, sedge and pepper plant types from aerial photography.
The Plant Pathology Challenge 2020 dataset was introduced in Thapa et al. [11], which also
provided some benchmarks results on image level disease classification using a ResNet-50
network pre-trained on ImageNet. Although the system performed well on image with
single disease present, it struggled with images with multiple disease symptoms.

While promising results have been shown in the classification of crop disease from
leaf images [12], there are some limitation regarding the datasets in which each image
consists of single leaf with a contrasting background, this is not comparable to real-world
conditions where leaves are bunched together, with other foliage as the background. This
issue was also a motivation for the introduction of the Plant Pathology Challenge 2020
dataset [11]. Object detection methods such as YOLO [7] have been applied with good
accuracy to agriculture-based detection but the nature of bounding box based detection
is not always precise, especially when the shape of the detected objects is not rectangular.
Therefore, object detection is not accurate enough to effectively direct a smart spraying
system. Segmentation methods can theoretically provide more precise detection due to the
pixel level accuracy, but many methods do not have the capability to distinguish between
instances of the same object class in an image, a strength of object detection. This downside
can be seen in Pantazi et al. [10] where a disease can only be detected at an image level
rather than leaf level if many leaves are present in a single image. Precisely classifying each
pixel of an image for each object detected has the potential to provide precision location
information to a smart spraying system.

In this paper, an initial study is presented with the aim is to address the challenge of
providing pixel level classification on images that depict real-life scenarios (i.e., multiple
leaves per image with different disease states), which has the potential to provide accurate
instructions to a smart spraying system capable of reducing chemical usage. Specifically,
we propose an instance segmentation based system for leaf and rust disease identification
in apple orchards. In apple and pear orchards, rust disease can be a common issue that can
be effectively managed through the application of fungicides that are also used for apple
scab disease. It is especially problematic in areas with an abundance of cedar trees which



Sustainability 2022, 14, 1458 3 of 14

creates high inoculum levels, the cause of cedar rust disease. Rust disease presents as a
distinctive visual pattern on the leaves and fruit as a shown Figure 1.

Figure 1. Rust disease on the leaves of an apple tree.

The proposed system uses the state-of-the-art Mask R-CNN [13] method for instance
segmentation from standard RGB images. Both ResNet [14] and MobileNetV3 [15] convo-
lutional neural networks are trained and evaluated as the feature extraction backbone of
Mask R-CNN. The publicly available Plant Pathology Challenge 2020 dataset [11] provides
images for training and evaluating the proposed systems. As this dataset does not include
segmentation maps, we manually annotated a subset of the images to allow. To our knowl-
edge, no previous research has used instance segmentation methods in for this application.
The main contributions of this paper are as follows:

1. A Mask R-CNN based instance segmentation system for precise leaf and rust identifi-
cation on apple trees from RGB images;

2. Manually annotated segmentation maps for a subset of the Plant Pathology Challenge
2020 data set;

3. Benchmark evaluations of the proposed system for object detection, segmentation
and disease detection accuracy, on the newly annotated images.

This paper is organised as follows: Section 2 reviews the related works. Section 3
describes the proposed instance segmentation system for leaf and rust disease identification.
Section 4 describes the performance of the proposed system. Finally, the discussion and
scope for future works are in Section 5.

2. Related Works

In this section, computer vision methods applicable in the domain of disease and
pest detection are discussed. Firstly an overview of key object detection and segmentation
methods are discussed, followed by an overview of some key architectures which can be
applied for feature learning. Finally, there is a brief overview of previous research detection
within the agricultural domain that can enable smart spraying systems.

2.1. Object Detection and Segmentation

Detection and segmentation are two fundamental computer vision techniques which
have been applied to many image classification tasks. Object detection is the task of
classifying objects in an image, and the prediction is returned as bounding box with a class
label. Segmentation refers to the process of labelling each pixel within an image as an
object class, providing fine grain detail of objects classes within an image. The difference
between these approaches is that semantic segmentation models have no understanding
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of the number of objects in an image, for example, if there are many people in an image,
whereas instances also can identify the individual people.

Three popular architectures have emerged to provide object detection through the
use of internal region proposal (RPN), these being Faster R-CNN [16], YOLO [17] and
Single Shot Detection (SSD) [18]. Both SSD and YOLO are defined as single shot detection
methods and differ from Faster R-CNN which can be thought of as a two shot method,
as it uses an RPN and object classifier. Faster R-CNN incorporates an RPN into the Fast
R-CNN architecture, and the RPN consists of three convolutional filters and take the
features generated from an initial shared set of convolutional layers. The RPN learns
to determine if a proposed region is a background or a foreground object. The idea of
anchors for generating proposal boxes is applied where each pixel of the scaled image has
an associated proposal window at different scales and ratios with the anchor at the centre.
Following foreground/background classification, foreground objects of interest are then
classified as a specific object type with an associated bounding box for the object. Their
inception numerous modifications have been introduced to improve the speed and accuracy
of the methods, including feature pyramid networks [19] and YOLOv4 [20]. The main
drawback with bounding box based detection is that it is unable to provide the precision
of segmentation which can be an issue in some applications requiring precise location
information. This is specifically true for objects such as trees where the bounding box can
contain many background pixels as object pixels.

Semantic segmentation has seen a number of techniques that have increased per-
formance over recent years. The encoder–decoder architecture is one such contribution
which consists of two parts. Initially, the encoder is applied on the input reducing the
spatial dimension of feature maps, with the purpose of capturing longer range information.
The decoder recovers the object detail and spatial dimension commonly by up-sampling the
learning deconvolution or nearest neighbour interpolation which is computationally less
intensive as it does not require learning. Major methods that use encoder–decoder include
SegNet [21], which reuses the pooling indices from the encoder with in the decoder, while
U-Net [22] adds skip connections from the encoder features to the corresponding decoder
levels’ activations. Atrous convolution layers were introduced in DeepLab [23], which
provided a wider field of view at the same computational cost as regular convolutional
layers and have provided increased accuracy in segmentation tasks.

Instance segmentation has applied techniques from both object detection and semantic
segmentation. Specifically, the idea of region proposals has proven popular. Initial ap-
proaches were segmentation-first based and included DeepMask [24], which initially learns
segment candidates and these proposals are then classified by Fast R-CNN [16]. The main
issue with the segmentation-first based methods was that they were slow. Other instance
segmentation methods such as InstanceCut [25] and Pixelwise Instance Segmentation [26]
build upon the success of semantic segmentation. These methods aim to cut out the differ-
ent objects based upon the class values and grouping of the semantic segmentation output.
Mask R-CNN [13] was based upon an instance-first strategy, which applies a parallel pre-
diction of segmentation masks and class labels. These parallel channels simultaneously
address object classes, boxes and masks, making the system fast. Mask R-CNN introduces
region-of-interest alignment to overcome systematic errors on overlapping instances and
spurious edges exhibited in previous instance-first methods [27].

2.2. Convolutional Architectures

There has been two differing directions when developing convolutional architectures
used for learning feature maps in deep learning. One direction has been the development of
complex, deep and high parameters networks which aim to have high task accuracy at the
expense of computational efficiency. The second direction is the creation of computationally
efficient models that can be ran on mobile and embedded systems with an adequate level
of accuracy for a given task. This section will mostly consider the second as they are more
relevant to running embedded systems that can be deployed within agricultural settings.
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ResNet [14] architectures have been highly successful for image classification and
segmentation tasks. The capacity to develop very deep ResNet architectures is due to the
use of shortcut connections. Shortcut connections allow the data signal to bypass one layer
and move to the next layer in the sequence, permitting the gradients to flow from later
layers to the early layers during back propagation in the training phase. However, ResNet
architectures can be very large and have more compact variations using 18 and 50 layers,
while sacrificing some accuracy provides higher levels at a smaller computational cost due
the reduced number of parameters in the model.

Mobile-specific models that aim to be computationally efficient have been built on
increasingly more efficient building blocks. Depthwise separable convolutions were ini-
tially introduced as an efficient replacement for traditional convolution layers in Mo-
bileNetV1 [28]. Depthwise separable convolutions separate the spatial filtering from the
feature generation mechanism. Spatial filtering applies a light weight convolution while
heavier 1 × 1 pointwise convolutions are used for feature generation. MobileNetV2 [29]
introduced using linear bottleneck and inverted residual structure in order to make even
more efficient layer structures by leveraging the low rank nature of the problem. Specifically
using a 1 × 1 expansion convolution followed by depthwise convolutions and a 1 × 1
projection layer. The input and output are connected with a residual connection if and only
if they have the same number of channels. This structure maintains a compact representa-
tion at the input and the output while expanding to a higher-dimensional feature space
internally to increase the expressiveness of nonlinear per-channel transformations. Most
recently, MobileNetV3 [15] mobiles have shown excellent performance increase over the
previous versions in both object detection and segmentation tasks through the introduction
of the NetAdapt algorithm [30] into the architecture. NetAdapt automatically adapts a
pre-trained deep neural network to a mobile platform when given a resource budget. Mo-
bileNetV3 defines two specific architectures, MobileNetV3-Large and MobileNetv3-Small,
with small reduced layers to provide a lower computational cost.

2.3. Alternative Architectures

Action recognition, object detection and tracking that resides in the spatio-temporal
domain with features extracted from videos rather than single images have also been
prominent areas for research as it address temporal changes from frame to frame. Recurrent
Neural Networks (RNN) and Long Short-Term Memory (LSTM) networks have been
shown to perform well in these areas. In Shu et al. [31], a novel Skeleton-joint Co-attention
RNN was proposed to capture the spatial coherence among joints in the human skeleton
with the aim of predicting human motion, this outperform-related method in this area.
A Coherence Constrained Graph LSTM was proposed by Tang et al. [32] to address the
group activity recognition problem by exploring human motion. This method applies a
temporal confidence gate and a spatial confidence gate to control the memory state while an
attention mechanism was employed to quantify the contribution of a certain motion. These
spatio-temporal based methods could potentially be applied to other groups recognition
such as tree and leaves in the agricultural domain. In object tracking, swarm intelligence
and evolutionary algorithms have been shown to perform well. In Perez-Cham et al. [33],
a hybrid algorithm combining swarm intelligence and evolutionary algorithm principles
named Honeybee Search Algorithm was proposed which was inspired by the search for
food of honeybees. A key element of this work was the capability to run the algorithm in
parallel on the GPU accelerating the processing time.

A further issue in deep learning is the need for large amounts of training data; to ad-
dress these issues, in [34], a weakly shared Deep Transfer Networks (DTNs) was presented.
Its capability included transferring labelling information across heterogeneous domains,
especially from text domain to image domain. This method can adequately mitigate the
problem of insufficient image training data by bringing in rich labels from the text domain.
Another challenge in computer vision is that of adversarial attacks where an input image
is minimally manipulated causing the system to miss-classify objects. A Deep Genetic
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Programming method called Brain Programming was introduced by Olague et al. [35] that
is robust to adversarial attacks in comparison to the convolutional AlexNet model when
compared on two artworks databases.

2.4. Agricultural Applications

Disease and weed detection has been an important research topic for sustainable
agriculture, with numerous methods being applied to the problem. A hybrid method
for lesion detection and classification on the citrus fruits and leaves was proposed by
Sharif et al. [36]. This method constructed a codebook using texture, colour and geomet-
ric features and implemented feature selection based on PCA, skewness and entropy. A
method for automated crop disease identification in leaves using Local Binary Patterns
for feature extraction and One Class Classification for classification of the disease state
was proposed [10]. A system for weed detection for smart spraying was proposed by
Partel et al. [7]: This method used a YOLOv3 model to perform object detection to identify
weeds from plants. The Plant Pathology Challenge 2020 [11] provided a dataset of apple
disease images and a benchmark method for classification using a ResNet-50 network pre-
trained on ImageNet dataset. Argüeso et al. [37] applied a Convolutional Neural Network
using a few shot learning algorithm for plant leaf classification using deep learning with
small datasets. A segmentation method for disease detection at the leaf scale using a colour
features and region-growing was proposed in Jothiaruna et al. [38]. Disease of avocado
plants was researched in Abdulridha et al. [9], using a multi-step approach including image
acquisition from two cameras, image segmentation using region of interest and polygon
region of interest, a multilayer perceptron for feature extraction and KNN classification.
A multidimensional feature compensation residual neural network (MDFC–ResNet) model
for fine-grained disease identification was proposed by Hu et al. [12]. The MDFC–ResNet
identifies three dimensions, namely, species, coarse-grained disease and fine-grained dis-
ease and fuses multidimensional data to provide recognition results on the AI Challenger
Crop Disease Identification dataset. For a more comprehensive overview of this area,
readers are referred to the following survey papers [39,40].

3. Proposed System

The proposed system uses the Mask R-CNN method [13] to perform leaf and disease
object detection and segmentation. Both ResNet-50 [14] and MobileNetV3 [15] networks are
tested as the the feature extraction CNN backbone within Mask R-CNN to understand their
specific suitability in for the task. In this section, an overview of the system architecture is
provided, and a discussion regarding the annotation of segmentation masks for the dataset
and system training parameters used is presented.

3.1. Mask R-CNN

Mask R-CNN [13] is a state-of-the-art instance segmentation method which extends
the Faster R-CNN object detection method [16] by adding an object mask branch to the
model. Mask R-CNN, therefore, has three distinctive outputs for a given object with these
being the class label, object bounding box and object mask. An overview of Mask R-CNN
is shown within Figure 2.
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CNN Backbone

Input Image
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Region Proposal
Network
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Output Image

Figure 2. Proposed system architecture.

The functionality inherited from the Faster R-CNN network architecture is as follows:
Firstly, a convolutional backbone is used to learn the features associated with the object
detection task. Secondly, the region proposal network (RPN) layer learns n regions of
interests of probable object locations within images. Finally, a region of interest pooling
layer (RoIPool) and a set of fully connected layers are used to extracts features using from
each candidate region of interest and performs classification and bounding-box regression
while collapsing RoIPool features into short output vectors of class label and bounding
box offset coordinates. RoIPool was introduced in Faster R-CNN to create uniform size
feature maps from RoI of different dimensions, which is introduced as objects that are
not all a uniform size. RoIPool introduces some misalignments between the RoI and the
extracted features, which is problematic for accuracy when predicting object masks due
to hard quantisations. The RoIAlign layer is, therefore, introduced in Mask R-CNN to
address this issue, which instead uses bilinear interpolation to compute the exact values
of the input features at four regularly sampled locations in each RoI bin and aggregates
the result by using max or average values. This method provided a large improvement for
mask prediction without any negative effects relative to object detection.

Mask R-CNN also added a new branch for segmentation mask predictions, rather
than fully connected layers as used for the other tasks. In order to extract pixel-to-pixel
correspondence for RoI segmentation, a fully convolution network (FCN) [41] is applied.
This requires fewer parameters and is more accurate than fully connected layers for this
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task. Binary masks for each RoI are predicted. For a single RoI, the mask predicts the pixels
that constitute the object and those that do not. This approach to mask prediction and
class prediction means that the generation of masks can be learnt for every class without
competition among classes. Traditionally, semantic segmentation uses FCN’s in which the
mask and class are intrinsically linked. Multi-task loss is used to train the Mask R-CNN for
each of the three tasks, and the total loss of the network is described as follows:

losstotal = losscls + lossbox + lossmask (1)

where losstotal is the total network loss, comprising the sum of the classification task loss as
losscls, the bounding box regression task loss as lossbox and the mask prediction task loss as
lossmask. Classification loss losscls is a softmax loss function given by the following.

losscls =
1

Ncls
∑
i=n

−(1 − p∗i ) · log(1 − pi)− p∗i · log(pi) (2)

It is used for learning an object (leaf, rust, etc.) (pi = 1) and a non-object (pi = 0), where
p∗i is the ground truth class label and pi the predicted class for the ith anchor, respectively.
This loss function is normalised by Ncls, which is the training mini-batch size. Bounding
box regression loss lossbox is defined as follows:

lossbox =
1

Nbox
∑
i=n

p∗i smoothL1(ti − t∗i ) (3)

where for the ith anchor, the L1 loss between the ground-truth box t∗i and the predicted
bounding box ti is calculated. Both t∗i and ti are vectors representing the four parame-
terised coordinates of the predicted bounding box. Only positive anchors affect the loss as
described by the term p∗i smoothL1. Nbox is the total number of anchors that normalises the
loss function. Mask prediction loss lossmask is defined as the average binary cross-entropy
loss as follows:

lossmask = − 1
m × n ∑

i=n
yij log ŷk

ij + (1 − yij) log(1 − ŷk
ij) (4)

where yij is the label of pixel (i, j) in the ground truth mask for an m × n region. ŷk
ij is the

prediction for the same pixel location for the ground-truth class k. Region size is applied to
normalise this.

3.2. Feature Extraction Backbone and Feature Pyramid Network

The Mask R-CNN architecture provides a flexible approach to the CNN based back-
bone used for feature extraction. In this paper, three backbones are evaluated for the tasks,
these being ResNet-50 [14] and MobileNetV3-Large and MobileNetV3-Large-Mobile [15].
These backbones have been selected due to their different properties, with ResNet-50 being
the largest in terms of parameters and the slowest for inference, and MobileNetV3-Large-
Mobile is correspondingly the smallest and fastest. None of these backbones are very
large; thus, they can also potentially be deployed on many types of devices including
embedded systems.

Each backbone network in Mask R-CNN also applies a feature pyramid network
(FPN) [19]. Detecting objects in different scales is challenging, specifically when objects
are small. FPN is a set of layers that replaces the original feature extractor RPN of Faster
R-CNN in Mask R-CNN. The FPN generates multiple feature map layers, which have
been shown to improve feature quality compared with a regular feature pyramids for
object detection.
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3.3. Plant Data Set and Model Training

The publicly available Plant Pathology Challenge 2020 data set [11] provides im-
ages and disease labelling used in the training and evaluation of the proposed method.
The dataset consists of 3462 images of apple tree leaves and fruit, split evenly into 1821 testing
and training images with an associated class of diseased or not plants. As the dataset cur-
rently had no ground truth segmentation masks, manual annotation was undertaken by
the authors to evaluate the use of instance segmentation for this application. A subset of
challenging images from the dataset was manually annotated for the task of segmentation:
In total, 142 images where annotated, 101 for usage in training and 41 images for evaluation.
Figure 3 shows examples of labelling added to the images by the authors. Due to the depth
of field in the images, only leaves and apples with significant details were considered
for labelling, and blurry objects were not labelled. In total, four classes were used in the
segmentation annotation; these were leaf, apple, rust and background.

Figure 3. Segmentation map annotation examples created for this paper.

Training of the of the proposed system was conducted on a desktop PC with an Nvidia
RTX Titan GPU and AMD Ryzen 7-3700X CPU with 32GB of RAM. The PyTorch framework
was used, specifically using the Mask R-CNN model and ResNet-50 and MobileNetV3
models pre-trained on the Coco data set [42] available via the TorchVision 0.10 library.
Training for each model was ran for 20 epochs using the SGD optimiser with a learning rate
of 0.005, momentum of 0.9 and weight decay 0.0005. The only data augmentation method
applied was the subset of images from the Plant Pathology Challenge 2020, which was
random horizontal flipping.

4. Results

To evaluate the capability of the proposed system for the tasks of leaf and rust disease
identification, experiments were conducted for object detection and segmentation precision
and disease detection. This also establishes some benchmark results on the new set of
segmentation annotations for the Plant Pathology Challenge 2020 dataset. Three different
feature extraction backbones to Mask R-CNN were trained as described in Section and
evaluated, and these were ResNet-50, Large MobileNetV3-Large and MobileNetV3-Large-
320 (a mobile optimised MobileNetV3-Large model provided in PyTorch), respectively.
The results of these evaluations are discussed in this section.

4.1. Object Detection and Instance Segmentation Evaluation

A key aspect of the proposed system is that it is both capable of detecting objects
to a good level and can generate an accurate segmentation mask for the found object.
The metrics for object detection and segmentation were generated using widely used
Coco tools evaluation tool [42]. Average Precision (AP) is a commonly applied for object
detection task and is adapted here at two different Intersection over Union (IoU), where
an IoU of 0.5 is a standard indicator of model accuracy, while 0.75 highlights more precise
detection and segmentation capabilities of a model.
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Tables 1 and 2 show the AP results for object detection and segmentation respectively.
The Mask R-CNN model with the ResNet-50 backbone performs best in all tasks, specifically
in segmentation evaluation. To visually inspect the strengths and weaknesses of each
backbone, Figure 4 provides examples of the output. It is clear that the ResNet backbone
is the only model that handles small object detection well, which is one of the more
difficult challenges. ResNet-50 shows great potential for detecting the rust on leaves,
as the largest network in terms of depth it handles spatial features at lower resolutions,
whereas MobileNetV3-Large struggles with very small areas of rust and MobileNetV3-
Large-Mobile loses the fine grain detail needed to effectively learn and detect these small
size features through a reduction in image resolution to improve its speed. All models
show the capability to detect leaves. While segmentation results are good, the difficulty in
determining leaf edges could be improved in all models, although background leaves and
blurred edges in the images make this very challenging. Table 3 shows the inference speed
of the Mask R-CNN system with each backbone, ResNet-50 is the slowest of the models
only 0.04 seconds slower than MobileNetV3-Large. MobileNetV3-Large-Mobile is three
times faster but has significant issues with detection accuracy of very small objects as a
result of speed optimisation.

Table 1. Object detection results—average precision (AP); intersection over Union (IoU).

Backbone AP @ IoU = 0.50 AP @ IoU = 0.75

ResNet-50 0.486 0.282
MobileNetV3-Large 0.369 0.273

MobileNetV3-Large-Mobile 0.277 0.158

Table 2. Segmentation results—average precision (AP); intersection over Union (IoU).

Backbone AP @ IoU = 0.50 AP @ IoU = 0.75

ResNet-50 0.489 0.368
MobileNetV3-Large 0.351 0.173

MobileNetV3-Large-Mobile 0.264 0.127

ResNet-50 MobileNetV3-Large MobileNetV3-Large-MobileInput

Figure 4. Examples of segmentation results from the proposed system.
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Table 3. Inference time.

Backbone Time (s.)

ResNet-50 0.26
MobileNetV3-Large 0.22

MobileNetV3-Large-Mobile 0.07

4.2. Disease Detection

This evaluation of the model looks at how well the proposed system can determine
leaves with rust against healthy leaves. The Plant Pathology Challenge 2020 dataset [11]
provides a set of disease (rust) and healthy labels for each image in the training sets. These
ground truth labels are used for them in the subset of data used to train and evaluate this
system. Any object detection of the class rust denotes a diseased leaf, while the presence of
a detected leaf but no rust is determined to be healthy.

Table 4 shows the results of this evaluation in terms of detection accuracy. Only Mask
R-CNN with a ResNet-50 backbone has a significantly high accuracy of 80.5%. This is due to
the model’s capability to focus on small areas which other backbone models do not handle
well, as discussed in the previous section. Figure 5 shows the confusion matrix, showing
that the main area in which errors lie is the misclassification of healthy leaves as having
rust. Analysis of the output shows a number of reasons for these errors. Firstly, as shown
in Figure 6, some leaves look to potentially have some rust; although ground truth labelling
does not detail rust, this could be down to labelling errors, or these marks may not be rust
at all but it is hard even for a human to tell exactly what this small mark is in the images.
One other limitation is that some leaves have markings similar to rust, and these are not
labelled and are not common in the training set on healthy leaves. These errors have more
to do with current limitations in the dataset and the segmentation annotation specifically,
which could be rectified in future research with a larger and more varied training set of
data and labels.

Table 4. Disease detection accuracy.

Backbone Accuracy

ResNet-50 80.5%
MobileNetV3-Large 68.3%

MobileNetV3-Large-Mobile 53.7%

Figure 5. Disease detection confusion matrix—ResNet-50.
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Figure 6. Disease detection—questionable errors.

5. Discussion

In this paper, a study presenting a method for the precise detection of leaves and rust
disease was proposed and evaluated. The proposed system used a Mask R-CNN model
while testing three different backbones for their performance: These were ResNet-50 and
MobileNetV3-Large and MobileNetV3-Large-Mobile. The study results presented show
promise especially when using the ResNet-50 backbone, which has the capability to find and
segment very small objects such as rust on leaves accurately. On the other hand, the other
backbones work well for leaf detection and segmentation with MobileNetV3-Large-Mobile
well suited to low-powered CPU-based devices such as smart-phones, making it a cost-
effective method to potentially deploy. The labelling with segmentation information also
provide a foundation to further explore these models in future work, with the opportunity
to continue labelling to create a larger dataset.

The study highlights the potential for instance segmentation in precision agricultural
practice and smart spraying systems. One key improvement over object detection methods
alone is that rather than a binary distinction of healthy leaf vs. rust-infected leaf, the capacity
for precision is present. For example, this includes the ability to identify different leaves
and also the rust that is present on that specific leaf. This can be obtained with some simple
post-processing of the segmentation masks and the overlapping location of rust and leaf.
These data could identify the leaf size and then the area covered by the rust, influencing
the amount of fungicide applied for more sustainable agricultural practices.

This research provides a foundation for further studies. In particular, it provides
information on the annotated segmentation maps for a subset of the Plant Pathology
Challenge 2020 dataset [11], which can be made available to the research community along
with the benchmark results produced.
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