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Abstract: This study examines the impact of education on the pollution–income relationship, control-
ling for income inequality in 17 European OECD countries over the period 1950–2015. We developed
a novel two-stage algorithm, whose first step consists in applying clustering techniques to group
countries according to the income inequality temporal pattern. In the second step, we estimate the
educational-mitigated EKC hypothesis (Educational EKC) by employing panel regression techniques
accounting for endogeneity issues. The clustering findings suggest the existence of high variability
in income inequality levels across countries and heterogeneous development patterns. Empirical
estimates highlight that, for high income inequality countries, the Educational EKC hypothesis holds,
and that the emissions–income elasticity appears to decline when including the schooling level. In
the low income inequality cluster, these effects are not clear-cut. For these countries, we propose a
different specification of the EKC, which substitutes the income per capita term with the years of
schooling. The new specification is statistically validated for both high income inequality and low
income inequality countries. In conclusion, we can state that education should be addressed as a
crucial cornerstone to shaping the EKC curve.

Keywords: pollution-income; Environmental Kunzets Curve; education; income-inequality; Europe;
panel data; clustering

JEL Classification: Q56; I24-25; C51-52; O15; O44

1. Introduction

The literature on the debate over growth and environmental issues is vast. Most
studies refer to the evidence that there is a relationship between environmental quality
and income, of the kind that environmental quality worsens at early periods of economic
development and improves at later periods, as the economy develops. The literature
on this relationship focuses on testing the Environmental Kuznets Curve, hereafter EKC,
hypothesis [1,2].

This paper focuses on the importance of including education in the EKC modeling.
We will use the average years of schooling as a proxy of human capital. Included in the
panel dataset are all the OECD member states and we use a parabolic specification to model
the EKC relationship. This paper discusses the role played by education and schooling
in long-term development and its impact on the environment. The rationale is that the
literature on the EKC has often debated on control variables to avoid omission bias, and has
also modeled external factors that can negatively influence the quality of the environment,
but rarely included any issue related to the role of human capital. Nevertheless, there is
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a study for Australia that has focused on how the educational level may affect the level
of emissions within the EKC framework in the period from 1950 to 2015 [3]. Its finding is
that education has played an essential role in economic development in the long run and,
therefore, cannot be ignored within the pollution–income relationship.

What is expected from the empirical results on the relationship between pollution and
schooling is the identification of a concave quadratic curve that grows in the initial phase
and then decreases once the turning point has been passed. Analytically, the expectations
lead to an inverted-U shape in addition to the main hypothesis underlying the EKC model.
We refer to this result as the Educational EKC, which will be opposed to the economically
driven specification commonly known as the Standard EKC. The concave shape can be
justified interpreting education as a process moving along with the long-run economic
development of countries. Historically, at an early stage of development, countries exhibit
low levels of education and economic production. In the short run, the productive system
invests in intensive industrial production, often supported by eco-unfriendly technolo-
gies and resources. Sustainable economic development requires a parallel and balanced
strengthening of physical capital, technology, knowledge, and human capital to generate an
extra boosting effect on the economy without wasting natural resources. In this phase, the
economy needs to override the technological improvements brought about by knowledge.
The turning point is reached when the educational system offers people the skills to develop
efficient and environmentally compatible technologies and social instruments to adopt
sustainable lifestyles. Hence, the human capital will push the economy towards more
sustainable behaviors able to increase wealth and collective well-being simultaneously.
Virtuous examples of these mechanisms are the countries of Central and Northern Europe,
which show simultaneously very high levels of human capital and wealth.

As a further contribution, we consider as a discriminant factor the income inequality
affecting the countries in the panel, as suggested by [4]. Using the Gini Index as a proxy
of the social inequality, we aim at assessing whether the level of income inequality across
countries affects the relationship between income, pollution, and level of schooling. First,
we want to check if the estimated coefficients associated with income and education change
in magnitude and statistical significance by considering countries all together and divided
into groups based on their level of income inequality. Second, we assess whether the
education variable has the same effect on environmental degradation in high income and
low income inequality countries.

The remainder of the paper is structured as follows. In Section 2, we introduce
the empirical specification of the EKC, augmented by the effect of the educational level,
pointing out our expectations regarding the parameter values and their interpretation. In
Section 3, we describe the available data and their sources. In Section 4, we describe the
statistical methodologies implemented to test the research questions. In particular, we
focus on the two-stage approach developed to estimate the effect of income inequality and
schooling on CO2 emissions. In Section 5, we comment on the empirical results based
on the OECD panel. In Section 6, we critically discuss the interpretation of the empirical
evidence relative to the existing econometric literature and provide some suggestions for
policymakers. Lastly, Section 7 sums up the contents of the paper.

2. Specification of Standard and Educational EKC

The specification of the Standard EKC model sets the per capita emission levels in a
quadratic relationship with the per capita income, augmented by a set of control variables
that capture indirect and external factors affecting the quality of the environment. Extending
the proposal of Balaguer and Cantavella [3], in this paper we propose a panel specification
of the Educational EKC which expresses the environmental quality as a quadratic function
of both the per capita income and the educational level. According to a log-log panel
specification, the model can be expressed as follows:
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log(CO2,it/Popit) = β0 + β1log(GDPit/Popit) + β2log(GDPit/Popit)
2

+ β3log(Schit) + β4log(Schit)
2 + ΘZit + εit

(1)

where CO2,it/Popit refers to the per capita CO2 emission levels, GDPit/Popit is the per
capita income, Schit is the educational level, measured as the average number of schooling
years, Zit is the set of control variables, and εit is the error term.

The Standard EKC hypothesis is supported by the data if β1 > 0, β2 < 0 and the
turning point TPinc = exp(− β1

2β2
) belongs to the observed range of per capita income

values. The coefficients can be interpreted as elasticities since all the variables are expressed
in a logarithmic scale. The empirical relationship between environmental quality and the
level of education is modeled through a quadratic specification with coefficients β3 and
β4. The expected relationship between these variables is a quadratic inverted-U shape
form, whose coefficients must respect the same sign constraints of the EKC hypothesis,
i.e., β3 > 0 and β4 < 0. The empirical turning point TPEDU = exp(− β3

2β4
) identifies the

minimum years of schooling such that pollution begins to decrease. In other words, it can
be interpreted as the educational level that must be reached in order to guarantee long-term
sustainable development.

The Kuznets Curve has been proposed by Simon Kuznets and is a hypothetical curve
that graphs income inequality against income per capita over the course of the society’s
urbanization and industrialization [5]. This relation has led to the development of the
EKC [1,6]. As income increases, environmental pressure also grows to a certain point,
and from that point the relationship becomes negative [7]. Moreover, as social welfare
increases, people are more willing to use certified products and services complying with
many environmental standards. The improvement in the quality of life leads society to
put pressure on national authorities and governments to take appropriate measures for
encouraging ecological best practices. Moreover, the availability of more information about
products and production processes, the innovations introduced in those same processes,
and the increased pressure on companies to favor products that meet the ecological stan-
dards further encourage the introduction of “greener” products and practices fostering
environmental awareness. These attitudes explain why and how environmental quality is
deteriorating in the early stages of economic development, and then in a second stage, it
improves over time, generating an inverted-U relationship between emissions and income.

Several studies have tested other forms of this relationship, namely, the N-form [8].
According to these studies, there could be a third stage where the economy begins to
experience increases in obsolescence, and at a certain point, a positive relationship re-
emerges between per capita environmental degradation and income. In addition, these
studies seem to indicate that growth may be compatible with environmental improvement if
appropriate anticipating policies that tackle environmental issues are followed [9]. The EKC
hypothesis have been criticized due to the sensitivity of the empirical findings presented
in the literature [10,11]. The variables used to measure the impact of economic activity on
the environmental quality have generated some doubts about the effectiveness of the EKC
approach as a way to assess the impact of economic variable on the environment. Along
with this, as a reaction, new tests and more robust methodologies have been proposed [12].

In particular, one of the main criticisms of the EKC models is the assumption that
environment and growth are not interrelated. This view posits that the EKC hypothesis
assumes no feedback between income and the pollution of the environment [13]. It has also
been argued that the empirical robustness of the EKC relation depends on the reliability
of the data used [14]. Another problem is the little attention that has been paid to the
statistical properties of the variables used to investigate the validity of the EKC. Major
econometric problems that affect the empirical EKC literature are also related to the use of
nonlinear transformations of integrated regressors and, in a panel context, to cross-sectional
dependence in the data [15]. These econometric issues could invalidate the EKC results.
Therefore, researchers should carefully apply the available statistical methods and interpret
their findings with care [16].
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Nevertheless, despite there being many issues around the modeling of the EKC,
the analysis of the relationship between income and environmental quality has been
attracting great attention from researchers, who, from the 1990s, have been devoting
themselves to theoretical and empirical studies investigating the effects of growth on the
environment, analyzing each phase of the economic development process. Consequently, it
is essential to understand the use of a quadratic function as an appropriate mathematical
model to represent the EKC. Researchers must have a clear structured methodology for
determining the preferred EKC specification and hence the shape of the estimated EKC
model. Concavity should be assessed based upon the sign and statistical significance of the
estimated coefficients of the leading terms, the location of turning point(s), and the sign
and statistical significance of the estimated elasticities [17].

3. Data and Sources

In order to perform the empirical analysis for the selected OECD panel, we gathered
annual data from 1950 to 2015 from various data sources. Data on income, population,
average years of schooling, and international trade were collected from the Penn World
Table (PWT) version 9.0 [18]. Data on pollutant emissions were provided by the Carbon
Dioxide Information Analysis Center (CDIAC) of the US Department of Energy, while
energy use data were collected from The Shift Project database (TSP). Information regarding
income inequality was collected from the Standardized World Income Inequality Database
(SWIID) [19]. SWIID gathers data about Gini Index from institutional sources, i.e., World
Bank, Eurostat, Federal Reserve, and standardizes data on income inequality. Despite its
completeness and extension, SWIID contains missing values and starts from 1960. Table 1
provides summary descriptive statistics of the selected countries between 1950 and 2015.

Table 1. Descriptive statistics for the considered variables.

Variable Name Measure Unit Mean Std.Dev. Min Max

CO2 per capita CO2 emissions 7.955 5.42 0.46 41.04(metric tons per capita)

Income per capita GDP per capita 24,912.46 14,390.29 3375.50 84,417.24(constant 2011 US$)

Education
Average years of

schooling 8.61 2.74 0.98 13.55
(population 15–64 years)

Energy use

Renewable energy
production over 26% 29% 0% 99%total energy production

(percentage)

Trade openness
Sum of imports and

65% 47% 1% 286%exports over GDP
(percentage)

3.1. Emissions

According to their research interests, EKC studies use alternative model specifications
of the dependent variable. Standard EKC literature, such as [13], uses the level of carbon
dioxide or sulfur dioxide and the concentration of particulate matters PM2.5 and PM10
as a proxy of environmental quality. Some papers introduce new indicators to proxy
environmental quality, such as the yearly amount of CO2 produced by a country and
measured in thousand metric tons divided by the total population. Other studies have
selected alternative pollutants to compare with CO2 emissions. Rasli et al. [20] used local
pollutants, such as nitrous oxide emissions (N2O), carbon monoxide (CO) or total nitrogen
oxides (NOx), on a panel of 36 countries, both developed and developing, during the
period 1995–2013. The reason we have selected CO2 as an environmental degradation
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indicator among a series of other possible pollutants is that human emissions of carbon
dioxide and other greenhouse gases are a primary driver of climate change and present
one of the world’s most pressing challenges linking emissions to global temperatures and
greenhouse gas concentrations. Overall, CO2 emissions are a gaseous compound that is
capable of absorbing and emitting infrared radiation, thereby allowing less heat to escape
back to space and ‘trapping’ it in the earth’s atmosphere. Since more than 80% of the
world’s current primary energy consumption is met by fossil fuels, CO2 is considered a
major greenhouse gas in Earth’s atmosphere, which contributes to climate change with
potentially adverse effects on the world economy as well.

Alternatively, more recent strands of research have attempted to investigate the EKC
hypothesis by employing new environmental indices of sustainability as dependent variable
instead of using carbon dioxide emissions per capita. See for example the ecological
footprint indicator used by [21] as proxy of environmental quality. This indicator measures
how fast a population consumes resources and produces waste with respect to how fast the
natural environment can absorb resource exploitation and regenerate itself. Conclusions
about this approach support the existence of EKC in developed countries, while it is not
validated for developing countries. The substantial advantage in using alternative indices
of environmental sustainability is their capacity to resume multi-dimensional aspects of
sustainable development considering the complexity of the reality.

Here, we consider the CO2 per capita emissions stored by the Carbon Dioxide Informa-
tion Analysis Center (CDIAC) of the US Department of Energy as proxy of environmental
degradation. The variable is measured as yearly per capita metric tons of CO2 produced by
each country.

3.2. Income

The EKC hypothesis is usually tested using per capita gross domestic product or
income as a proxy for economic development. Usually, the EKC is tested with income data
in per capita terms and valued at constant prices [22]. We decided to use the real GDP
measured in constant 2011 millions of US dollars divided by the total population to account
for possible errors in measuring national income or biases generated by inflation.

The EKC hypothesis has been tested for a large variety of countries and regions, but
the conclusions about the validity of the EKC are very different and strongly depend on
the considered cross-sectional units or periods. For example, whereas the EKC conjecture
is validated for Malaysia if the regression includes disaggregated energy sources, the
hypothesis is not validated with aggregated data [23]. Instead, for OECD countries, the
conclusions are more robust [24–27].

3.3. Education

One of the key points of this paper is that we aim to assess the mitigating effect that
education generates on the standard income–pollution-based specification of the EKC. The
level of education in the EKC has been measured in different ways, such as the ratio of
secondary school enrolment [28], the average years of schooling in the population aged
over 25 [28,29], or the total number of students at the graduate and postgraduate levels of
education [3]. In our case, we exploit the potential contained in the Penn World Tables to
quantify the degree of human capital since 1950 through the average years of schooling as a
proxy for the education in the countries under consideration. In support of our choice, it is
well known in the literature that average years of schooling have become the most popular
and commonly used specification of the human capital stock (see, on this regard, [30–38]).

3.4. Energy

The debate over the role that energy consumption and production play in the rela-
tionship between environment and economic development is extensive and multifaceted.
Many contributions include energy consumption as the primary driver of emissions in
EKC specifications. The EKC literature often distinguishes between energy production
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(consumption) generated by renewables and energy production (consumption) generated
by non-renewable sources. See, for example the contribution of [39], which evaluates the
mitigating effects of renewable energy sources by separating the shares of hydroelectric-
ity energy consumption and alternative energy sources (e.g., solar, thermal and nuclear)
from the non-renewable energy consumption. Somewhat similarly, ref. [40] explores the
effect of energy consumption from renewable and non-renewable sources on the EKC
hypothesis. Using Pakistan data from 1970 to 2012 as a case study, the authors show that
renewable energy can generate strong environmental benefits by reducing emissions, while
consumption of fossil fuels significantly increases the amount. Using the aggregate value
of consumption rather than separating the effect of energy sources, the effect that energy
generates on the environment is negative. In fact, an increase in energy consumption leads
to further airborne pollutant emissions both in the long run and in the short run [41–43].
However, a recent paper by [44] argues that the inclusion of energy consumption among
the determinants of the EKC hypothesis can lead to systematic volatility in the estimated
coefficients, leading to potential changes in their magnitudes and signs, and to misleads in
cointegration tests. The main reason is that data on CO2 emissions and energy consumption
are derived from the same source, namely, fossil energy consumption. Many studies have
looked at the relationship between energy consumption and economic growth and have
demonstrated that energy consumption has a direct impact on the level of pollution [45].
Other studies have shown that there is a relationship between income, pollution, and
energy consumption [46,47]. In addition, when differentiating between non-renewable and
renewable sources of energy, gas and petroleum consumption have positive effects on CO2
emissions, while electricity consumption from renewable sources has a negative one [48].
Moreover, the empirical results fully support the existence of an EKC when using control
variables such as oil reserves and the Gini Index [49].

For the reasons outlined above, we define the energy use variable used in our paper
as composed by both renewable energy and non-renewable energy sources, allowing
us to control for distinct effects on the environment. Renewable and non-renewable
energy production are measured in thousand tons of oil equivalent (TOE). The amount
of renewable energy is given by the sum of hydro, wind, solar, and geothermal energy
production, while non-renewable energy production includes fossil fuel sources such as oil,
gas, coal, and nuclear. The variable energy use is then computed as the ratio of renewable
energy production over the total energy production, given by the sum of both renewable
and non-renewable production of energy [44,50,51].

3.5. Trade Openness

International trade and logistics impact directly on the environment through human
activities. Trade activities and investment in physical capital can increase or decrease
significantly the quantity of pollutant emissions generated by each country and those
imported by other economies. The Pollution Haven Hypothesis states that trade can move
pollutant activities from economies with strong environmental standards to countries with
less restrictive laws, increasing pollution production of the latter and reducing that of
the former. Conversely, the Pollution Halo Hypothesis states that trade can reduce global
environmental degradation through efficient and environment-friendly investments carried
on by multinationals all over the world. Including trade openness is crucial within the EKC
framework because it avoids econometric issues such as the omitted variable bias. Studies
using the augmented version of the EKC where additional regressors have been introduced
to control for omitted variable bias show that significant unidirectional relationships from
trade indicators to pollutant emissions are identified [52]. In this paper we control for
logistic and international exchanges by computing the trade openness index as the sum of
exports and imports divided by the gross domestic product. Data on trade were collected
from the PWT database.
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3.6. Income Inequality

The concept of inequality can assume different meanings and interpretations. In-
equality can be defined as the income distribution gap between different workers, and it
affects production through structural changes [5]. Differences in income across countries
can be explained by investments in physical and human capital and technological differ-
ences [53,54]. There are many measures of income inequality across countries [55], each
based on different methodologies assessing how wealth is distributed among the popu-
lation [56]. According to the macroeconomic literature, the most important and popular
measure of income inequality is the Gini Index [57]. Recent contributions have investigated
the process of income distribution and inequality at a global level. After the financial crisis
of 2008, particular attention has been given to developed countries [58]. These studies
aimed to establish new relationships between inequality measures and socio-economic
factors, explaining the social consequences and causes affecting the level of inequalities.
All these contributions show positive evidence and increasing trends of income inequalities
within developed countries, which are even more intense due to the 2008–2011 economic
and sovereign-debt crises. The trilateral relationship between environmental degradation,
income inequality, and economic growth has been studied, for example, by augmenting
the EKC with the Gini Index for Chinese provinces [59]. Results suggest that the income
gap doubled due to the unbalanced development of regional economies, causing a general
slowdown in the central government’s commitment to improve environmental quality.

Usually, EKC studies include income inequality as an exogenous control variable and
test the causal relationship between income inequality and environmental degradation.
Several studies report that income inequality creates gaps between countries that reduce
their willingness to pay for environmental protection [29,60]. Recent contributions have
employed the distribution of income inequality [59] and the institutional framework as
factors to explain differences in pollutant emissions across countries [61]. Research has
shown that environmental innovations and inequality depend on per capita income and that
excessive income distribution inequality harms innovation in green technology, despite new
green products providing benefits to the whole society [62]. Moreover, income inequality
has been recently used in the EKC framework by [4] as a discriminant factor for identifying
the impact of foreign direct investments on environmental quality. In particular, this study
splits the full sample of Latin American countries into two groups based on the income level
and estimate the Standard EKC using panel data models. According to its findings, using
income inequality measures as grouping factors can improve the estimation of economic
effect and contribute to the literature extending the debate on sustainable development to
income distribution issues.

The SWIID database offers various inequality measures, including the Gini Index
measured on disposable income (after taxes) or income at market values. The OECD
countries analyzed in our paper present a strong variability in income levels, adopt different
fiscal policies, and have social protection mechanisms that are not always comparable. This
has led us to employ the Gini Index on disposable income as a measure of the distribution
of income inequality across countries. The indicator is used to cluster countries based on
the values of social inequality observed between 1987 and 2015. This exercise aims to assess
whether the level of income inequality across countries affects the relationship between
income, pollution, and level of schooling. Specifically, we are interested in testing whether:
(1) the regression coefficients change in magnitude and significance by considering a
single large panel or by separating countries according to their income inequalities, (2) the
education variable has the same effect on environmental degradation in high inequality
and low inequality countries.

Figure 1 shows the temporal evolution of the average Gini Index and its variability
within the sample of countries between 1987 and 2015. The plot clearly highlights a general-
ized increase in income inequality levels among the considered OECD countries. However,
as it will be shown in the following sections, the increase is associated with some particular
countries, while others have experienced noticeable reductions in income inequality.
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Figure 1. Income inequality trend in the OECD sample (1987–2015). The solid black line represents
the sample mean of Gini Index on disposable income by year and the gray area is the approximate
Gaussian confidence interval at 95% for the sample mean. Values are expressed in percentage.

4. Econometric Methods and Statistical Approaches

This section describes the research design, which consists of two steps, namely, a
statistical clustering analysis followed by the econometric estimation of our EKC models.
We employ this two-step statistical procedure to evaluate the role of education in mitigating
the income–pollution relationship according to the income inequality levels. The first stage
of the two-step statistical method investigates the evolutionary path of socio-economic in-
equality in the selected panel of countries by identifying homogeneous groups of countries
with similar temporal trajectories. In the second stage, we estimate EKC models for both
the full sample and the sub-samples. In this stage, we estimate the EKC augmented by the
direct contribution of education (years of schooling) by employing panel data regression
methods. We complement the econometric analysis by several preliminary tests, such as
unit root testing, endogeneity, and cointegration testing in a panel context.

4.1. K-Means Clustering Using Income Inequality

As stated in Section 3.6, the use of income inequality measures in the EKC framework
allows to properly identify the impact of economic variables on environmental quality
and contributes to the debate on the role of income distribution [4]. For this reason, we
use clustering analysis to gain some valuable insights into our data set by separating
countries into groups according to their level of income inequality across the last decades.
This study applies an innovative approach to country grouping based on the temporal
evolution of income inequality and uses as clustering variables the annual values of the
Gini Index on disposable income from 1987 to 2015. This approach partitions the countries
according to their cross-sectional distances, obtaining groups of countries that share a
“common evolutionary path” of income inequality. The use of socio-economic indicators to
aggregate countries or regions and evaluate comparative performances has been considered
in the literature. For example, the clustering of more than 150 countries based on Human
Well-Being indicators of the Social Society Indices has been used [59,63], while composite
indicators to generate a ranking of EU countries according to their sustainability in terms
of lifestyle, environment, and social issues have also been calculated [64].

Cluster analysis techniques, such as K-means, are multivariate statistical methods
used to obtain groups of observations based on their similarity to a set of specific features
X. The K-means algorithm has the objective to partition n observations into k clusters,
assigning each observation to the group with the nearest mean value and retaining the
maximum inter-group and the minimum intra-group heterogeneity. The literature offers
various examples of studies using clustering techniques based on inequality measures to
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classify countries [65]. Findings show structural differences between groups of countries in
terms of social indicators, particularly about income inequality measures, with a reduced
dynamicity from one group to another along time.

Our study seeks to classify the countries in the panel data set through the K-means
algorithm using the information on income inequality, setting as grouping variables the
yearly values of the Gini Index on disposable income from 1987 to 2015. Formally, the
set of cluster features available for each country i = 1, 2, . . . , 17 can be expressed as
Xi = Xi,1987, Xi,1988, . . . , Xi,t, . . . , Xi,2014, Xi,2015, where t = 1987, . . . , 2015 and Xit represents
the observed Gini Index for country i at time t.

Since we study the impact of the level of education on the environment–growth
relationship by controlling for income inequality, we have decided to use the most straight-
forward classification strategy with K = 2 potential groups. Given the small number of
cross-sectional units (17 countries), a clustering algorithm with a larger number of groups
would harm the robustness of the panel regression analysis. In addition, from an interpreta-
tive perspective, this assumption allows identifying two distinguished groups of European
OECD countries, characterized by common temporal patterns that can be traced back to
historical events that occurred during the period 1950 to 2015.

4.2. Panel Data Analysis

All EKC models are tested using panel data techniques [66] with fixed-effects (FE)
and random-effects (RE) model specifications. The FE model assumes that the individual
effects are fixed parameters to be estimated and the disturbances are I.ID. with zero mean
and constant variance. The RE specification allows the individual effects to be random
and I.ID. distributed with zero mean and constant variance. FE and RE are compared
using a Hausman’s specification test [67,68]. The software Stata 16 [69] is used to estimate
the FE and RE specifications and to compute all the diagnostic tests, including cross-
sectional dependence, unit-root, and cointegration. Data management, cluster analysis,
and graphical analysis are performed using the software R [70].

5. Empirical Results
5.1. Cluster of the Income Inequality Trajectories

The K-means procedure identified two distinct groups of 7 and 10 countries, respec-
tively. The smaller group is composed by countries that share a common high income
inequality path with a decreasing trend, therefore appointed as ‘High income inequality
cluster’. In comparison, the larger group is composed of countries with a generally lower
income inequality with increasing perspectives, named ‘Low income inequality cluster’.

The high income inequality group (dark gray) includes Mediterranean countries, the
United Kingdom, Ireland, and Turkey, while the low income inequality block (light gray)
includes Central and Northern Europe economies. Table 2 reports the list of countries
belonging to each group. Figure 2 shows the geographical partition of the selected countries
among the two groups.

Table 2. K-means cluster results: countries by group.

Cluster Member Countries

Low income-inequality Austria, Belgium, Denmark, Finland, France, Germany
(10 countries) Netherlands, Norway, Sweden, and Switzerland

High income-inequality Greece, Ireland, Italy, Portugal
(7 countries) Spain, Turkey, and UK

The two temporal patterns, represented in Figure 3, confirm previous expectations,
namely, that OECD countries are strongly heterogeneous in terms of income distribution
and run parallel paths that converge very slowly. Also, Figure 3 highlights two other crucial
facts. The first is the remarkable increasing trend of income inequality for countries that



Sustainability 2022, 14, 1622 10 of 24

initially had very low levels of the Gini Index. The second aspect is the convergence in
terms of disparities among the two blocks. These results reflect both recent and historical
events related to the development and growth of the area. Due to financial crises and
general slowdowns of growth, in the last decades the distance among OECD countries in
terms of income distribution and economic perspectives increased strongly and generated
structural economic divergences as well as the rising of new social issues and demands
about the growing inequalities. The strong growth of the low income inequality group and
the consolidation of the high income inequity countries is symptomatic of an asymmetry in
the long-term effects of these phenomena.

K−means clustering using Income inequality
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Figure 2. Map of the clusters for the sample OECD countries. Dark gray countries belong to the ‘High
income-inequality’ cluster and the light gray countries belong to the ‘Low income-inequality’ cluster.
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Figure 3. Income inequality trend in the two clusters (1987–2015). The dotted black line represents
the average annual Gini Index observed in the first sub-sample (‘High income-inequality’) and the
dot-dashed black line represents the average annual Gini index for the second sub-sample (‘Low
income-inequality’). Gray areas are the approximate Gaussian confidence interval at 95% for the
sample mean. Values are expressed in percentage.
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5.2. Panel Regression Analysis
5.2.1. Endogeneity Tests

The EKC literature has investigated endogeneity problems linking the environmental
variables to many covariates. In this paper, we tested the hypothesis of endogeneity
among the dependent variable and every regressor included in the models. In particular,
endogeneity issues are related to the trade openness of countries and the amount of
renewable energy consumption over the total. Intuitively, international trade exchanges
are direct pollution sources due to logistics and transportation. However, there could be
a reverse causality issue, since more polluting countries or regions may be less attractive
for trading agreements and investments. In addition, energy production and consumption
influence directly the amount of air pollution, according to their dual composition of
sustainable and non-sustainable energy sources. Due to climate change and pollution
excess, the growing legislation in defense of the environment has generated an innovative
inverse causality-flow, which has increased the global demand for more sustainable and
green energy sources and the exploitation of environment-friendly technologies.

To empirically test the endogeneity of the variables reported in Table 3, we performed
the Davidson–Mackinnon test [71] by using as instrument for each variable its one-period
lag. The Davidson–Mackinnon approach allows testing the null hypothesis of consistency
of the OLS estimates for panel data against the alternative hypothesis that the OLS estimator
is inconsistent and an instrumental variable technique is more appropriate. The rejection of
the null hypothesis would suggest the presence of endogeneity of the considered regressors.

According to the results of the tests summarized in Table 3, the data do not provide
enough statistical significance to reject the null hypothesis of exogeneity between the vari-
ables, except for energy use. Thus, to avoid inconsistency, instrumental variables estimation
methods will be considered.

Table 3. Exogeneity test (Davidson–Mackinnon) for each variable.

Variable Name F-Statistic p-Value

Income per capita 2.474 0.116
Income per capita squared 2.411 0.121
Education 3.664 0.056
Education squared 0.016 0.898
Energy use 7.320 0.007
Trade openness 0.309 0.579

Hypothesis 0. Exogenous regressor, alternative.

Hypothesis 1. Endogenous regressor.

5.2.2. Unit Root and Cointegration Tests

Given the relevance of the time dimension in our panel, we analyze the stationarity
and cointegration conditions of the system. Panel stationarity of each variable and its
first difference transformation are investigated using the popular first-generation tests
by Levin–Lin–Chu [72] and Im–Pesaran–Shin [73], with a time trend variable included.
Empirical results of the panel stationary tests are available in Tables 4 and 5.
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Table 4. Im–Pesaran–Shin (2003) panel unit root test results.

Variable Name Statistic p-Value Decision

CO2 per capita 2.136 0.984 Non-stationary
∆ CO2 per capita −22.113 0.000 Stationary

Income per capita 3.910 0.999 Non-stationary
∆ Income per capita −17.338 0.000 Stationary

Income per capita squared 3.848 0.999 Non-stationary
∆ Income per capita squared −17.627 0.000 Stationary

Education 3.949 0.999 Non-stationary
∆ Education −3.3663 0.000 Stationary

Education squared −1.6354 0.0510 Non-stationary
∆ Education squared −3.0835 0.001 Stationary

Energy use −0.487 0.313 Non-stationary
∆ Energy use −22.076 0.000 Stationary

Trade openness 1.1534 0.8756 Stationary
∆ Trade openness −23.328 0.000 Stationary

Note. All variables are log-transformed. Trend is included. Lag lengths are selected by Akaike Information
Criterion (AIC).

Hypothesis 2. All the panels contain unit roots.

Hypothesis 3. Some panels are stationary.

Table 5. Levin–Lin–Chu (2002) panel unit root test results.

Variable Name Statistic p-Value Decision

CO2 per capita −0.4400 0.3300 Non-stationary
∆ CO2 per capita −17.3616 0.000 Stationary

Income per capita 0.0419 0.5167 Non-stationary
∆ Income per capita −16.0918 0.000 Stationary

Income per capita squared 0.8433 0.8005 Non-stationary
∆ Income per capita squared −16.0173 0.000 Stationary

Education 0.2032 0.581 Non-stationary
∆ Education −3.5700 0.000 Stationary

Education squared −1.5479 0.0608 Non-stationary
∆ Education squared −3.1864 0.000 Stationary

Energy use 0.2129 0.5843 Non-stationary
∆ Energy use −18.934 0.000 Stationary

Trade openness 0.2720 0.607 Stationary
∆ Trade openness −21.669 0.000 Stationary

Note. All variables are log-transformed. Trend is included. Lag lengths are selected by Akaike Information
Criterion (AIC).

Hypothesis 4. Panels contain unit roots.

Hypothesis 5. Panels are stationary.

Considering the log-levels, CO2 emissions, per capita income, education level, and
energy use are non-stationary, but become stationary when considering their first differ-
ences. When a time trend is included in the analysis, both tests confirm that trade openness
becomes stationary. While adding just a constant term, the tests do not reject the null
hypothesis of unit-root in the panels. The overall picture becomes even more clouded if
we use the CIPS test by Pesaran [74], which allows for cross-sectional dependence among
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different panel units (second-generation test). In this case, trade openness, energy use, and
the square of per capita income are non-stationary, while for CO2 emissions, per capita income,
education, and its square, the test does not indicate the presence of unit roots (Table 6).

Table 6. Pesaran’s CIPS panel unit root test (2007) in the presence of cross-section dependence.

Variable Name Statistic p-Value Decision

CO2 per capita −2.865 <0.01 Stationary
∆ CO2 per capita −6.420 <0.01 Stationary

Income per capita −2.595 <0.05 Stationary
∆ Income per capita −5.872 <0.01 Stationary

Income per capita squared −2.508 >0.10 Non-stationary
∆ Income per capita squared −5.768 <0.01 Stationary

Education −3.534 <0.01 Stationary
∆ Education −2.410 >0.10 Non-stationary

Education squared −3.417 <0.01 Stationary
∆ Education squared −2.546 >0.10 Non-stationary

Energy use −2.199 >0.10 Non-stationary
∆ Energy use −5.584 <0.01 Stationary

Trade openness −2.545 <0.10 Non-stationary
∆ Trade openness −5.941 <0.01 Stationary

Note. All variables are log-transformed. Constant and trend are included. Lag lengths are selected by Akaike
Information Criterion (AIC).

Hypothesis 6. Homogeneous non-stationary panels.

Hypothesis 7. Stationary panels.

The variability in the performance of the most commonly used panel unit root tests
is well-known in the literature [75]. Moreover, their limited adequacy when requested to
deal with non-linear transformations of integrated variables, such as squares of per capita
income, is acknowledged [16,75,76]. In the light of the mixed evidence provided by those
tests and the major aim of this paper, which is to provide further empirical evidence on the
economic aspects and implications of the EKC hypothesis, we proceed to the analysis of
cointegration, implicitly assuming that the series are integrated of order one, i.e., I(1). We
employed the panel cointegration tests proposed by Pedroni [77,78] and Westerlund [79,80].
The results of Pedroni and Westerlund panel cointegration tests are reported in Tables 7–9.

Table 7. Pedroni (1999) panel cointegration test results.

Statistic Value p-Value Decision

Panel non par. v (VR) −0.9327 0.1755 No cointegration
Panel non par. ρ (PP) −2.9529 0.0016 Cointegration
Panel non par. t (PP) −6.8828 0.0000 Cointegration

Panel par. t (ADF) −4.3549 0.0000 Cointegration
Group non par. ρ (PP) −2.0061 0.0224 Cointegration
Group non par. t (PP) −6.7938 0.0000 Cointegration

Group par. t (ADF) −4.5235 0.0000 Cointegration
Note. Constant and trend are included. The test is performed using all the variables, including the quadratic terms
of per capita GDP and years of schooling (in total 7 variables). Lag lengths are selected by Akaike Information
Criterion (AIC). Cross-sectional means removed.
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Hypothesis 8. No cointegration.

Hypothesis 9. Cointegrated panel.

Table 8. Westerlund (2005) variance-ratio cointegration test results, including quadratic terms.

Statistic Value p-Value Decision

VR (some panels) −2.4811 0.0065 Cointegration
VR (all panels) −1.7994 0.0360 Cointegration

Note. The test is performed using all the variables, including the quadratic terms of per capita GDP and years of
schooling (in total 7 variables). Trend is included.

Hypothesis 10. No cointegration.

Hypothesis 11. Cointegration between some of the cross-sectional units (some panels) or Cointe-
gration between all cross-sectional units (all panels).

Table 9. Westerlund (2007) error correction based panel cointegration test results, including quadratic terms.

Statistic Value p-Value Decision

Gt −3.654 0.010 Cointegration
Ga −13.632 0.680 No Cointegration
Pt −12.814 0.030 Cointegration
Pa −12.451 0.450 No Cointegration

Note. The test is performed using all the variables, including the quadratic terms of per capita GDP and years of
schooling (in total 7 variables). Constant and trend are included. Robust p-value. Critical values are bootstrapped
with 100 simulations.

Hypothesis 12. No cointegration.

Hypothesis 13. Cointegration between at least one of the cross-sectional units (Gt and Ga) or
Cointegration for panel as a whole (Pt and Pa).

The data do not provide strong statistical evidence of cointegration relationships
between the variables. Specifically, all seven Pedroni statistics contradict each other, both at
the group and panel level, showing observed values close to the critical ones, while the
Westerlund tests suggest the absence of cointegration. While cointegration tests suffer from
the same problems of the unit root statistics, especially when non-linear transformations of
variables are present [76], nevertheless the Augmented Dickey–Fuller versions of Pedroni’s
panel and group tests (tests four and seven in Table 7) exhibit a good performance in terms
of size and power and are less severely affected by I(2) components and short-run cross-
sectional correlation [81]. We have also included a dummy for capturing the structural
breaks in the time series due to the 2008–2012 crisis. In this case, the previously cited tests
provide minimal changes of p-values, without affecting our conclusions.

5.2.3. Estimates for the Full Sample

Both FE and RE models are estimated using the full sample from 1950 to 2015 and
including energy use as an endogenous covariate. The estimation results are reported
in Table 10.

Regarding the EKC model specification, both models provide statistically significant
coefficients of per capita income and per capita income squared, and coherence of signs
with respect to the expectations. Hence, the data lead to conclusions in favor of the EKC
for the selected panel of OECD countries. Estimated turning points (TP) of per capita
income for FE model and RE model are respectively TPFE = USD 64,320 per capita and
TPRE = USD 55,157. Both values are included within the empirical range of the sample,
strengthening the existence of the curve. Even the quadratic relationship between pollution



Sustainability 2022, 14, 1622 15 of 24

and education is validated. All the related coefficients are statistically significant and
respect the expected signs, leading to an inverted-U curve for increasing values of years
of schooling. At the aggregate level, the educational turning points using FE and RE are
calculated at 4.60 and 5.37 years of schooling, respectively. According to these results, it is
possible to infer that data for the selected OECD countries support the empirical evidence
of a Standard EKC and Educational EKC.

Table 10. Fixed and random effects estimation for the full sample.

Variable Fixed Effects Random Effects

Income per capita 7.108 *** 7.184 ***
(0.420) (0.423)

Income per capita −0.321 *** −0.329 ***
squared (0.022) (0.022)
Education 1.331 *** 1.285 ***

(0.120) (0.120)
Education −0.436 *** −0.382 ***
squared (0.048) (0.047)
Energy use −0.120 *** −0.121 ***

(0.008) (0.007)
Trade openness 0.012 . 0.027 .

(0.031) (0.029)
Constant −45.008 *** −45.125 ***

(1.998) (2.016)

R2 0.719
Observations 1088 1088
Hausman FE vs. RE stat. 64.250 ***

Note. Values in parenthesis are standard errors. Stars represent p-values: *** p < 0.01, p > 0.10.

We recall that we calculated energy use as the ratio of renewable energy production
over total energy production, given by the sum of both renewable and non-renewable
productions of energy. Then, we expect that the estimated coefficient is negative, meaning
that an increase in renewable energy production corresponds to a reduction in atmospheric
emissions. In both FE and RE estimators, the impact of energy production on CO2 emissions
is estimated with a negative sign and significant coefficients, consistent with expectations.
In particular, both models suggest that a percentage increase in energy produced through
renewable sources might reduce the CO2 emissions by 0.12 percentage points. On the
contrary, data do not support statistically significant coefficients for trade openness, whose
impact is estimated to be positive but close to zero. To identify the more appropriate model
specification, we use the Hausman’s specification test, which compares the FE and RE
estimators under the null hypothesis of uncorrelation between the regressors and error
terms. The test statistic is equal to 64.25, providing enough statistical information to reject
the null hypothesis and to conclude in favor of the FE estimator.

5.2.4. Estimates for the Grouped Samples

To reinforce the hypothesis of a significant effect of schooling on environmental degra-
dation and to engage the social theme of wealth distribution, we developed a sensitivity
analysis by re-estimating the panel regressions with fixed effects for each group identified
using the clustering algorithm. As discussed above, the countries were divided into two
clusters based on the temporal evolution of income inequality and characterized by widely
different values of the Gini Index. Table 11 contains the FE estimates of the parameters for
both groups of countries.
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Table 11. Fixed effects estimation by income inequality level.

Variable Low Income High Income
Inequality Inequality

Income per capita 2.122 *** 9.481 ***
(0.799) (0.599)

Income per capita −0.041 . −0.454 ***
squared (0.040) (0.031)
Education 5.530 *** 0.596 ***

(1.454) (0.129)
Education −1.750 *** −0.146 ***
squared (0.338) (0.053)
Energy use −0.090 *** −0.130 ***

(0.009) (0.013)
Trade openness −0.125 *** 0.145 ***

(0.043) (0.038)
Constant −25.941 *** −55.299 ***

(3.037) (2.816)

R2 0.217 0.892
Observations 640 448

Note. Values in parenthesis are standard errors. Stars represent p-values: *** p < 0.01, p > 0.10.

Compared to the overall sample, the two groups differ considerably and present
interesting features. The EKC hypothesis holds only for high income inequality countries,
while the coefficient associated with the quadratic income term is no more statistically
significant in the complementary group. The Educational EKC hypothesis is validated for
both clusters, but the educational turning point of the high income inequality group, i.e.,
TPEdu,High = 1.002, does not provide a meaningful economic interpretation. The estimates
for both groups of countries show that energy production from renewable sources still
plays a crucial role in mitigating airborne pollutant emissions. In both groups, its coefficient
is negative and statistically significant. In fact, the estimate of the coefficient of energy use
for countries with low income inequality is smaller than in the full sample, moving from
−0.12 to −0.09 (a 1% increase in renewable production is associated with a reduction in
CO2 emissions of 0.09%), while for countries with greater levels of inequality the coefficient
increases in absolute value to 0.13 (a 1% increase in renewable production is associated
with a reduction in CO2 emissions of 0.13%).

Moreover, trade openness becomes significant, and for each percentage of trade
openness, low income inequality countries enjoy a reduction in emissions of 0.125%, hence
validating the pollution haven hypothesis. On the contrary, high income inequality countries
suffer from the opposite effect, namely, a 1% increase in international trade is associates
with a 0.145% increase in CO2 emissions, supporting the pollution halo hypothesis. According
to these results, the clustering highlighted the presence of different effects of economic
development and human capital on environmental quality differentiated by levels of
income inequality within the countries.

6. Discussion

The lack of empirical verification of the EKC hypothesis for the set of countries with
low levels of inequality and the simultaneous validation of the Educational EKC hypothesis
deserve to be further investigated and open a debate on new adoptable functional forms.
Moreover, some of those countries represent in empirical studies positive examples for the
EKC theory [22,82,83]. The role of education in long-run development is crucial. Invest-
ments in strengthening educational systems and facilities, supported by other structural
reforms of the labor market, companies, and taxation, can push growth and at the same
time reduce the level of social inequality [84]. Countries with low income inequality show
a very strong positive linear correlation between GDP and average years of schooling,
greater than that observed in countries with higher inequality. Tables 12 and 13 provide
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the Pearson’s correlation coefficients between per capita income, education, and pollution
levels grouped by cluster.

Table 12. Linear correlation in low income inequality cluster.

CO2 per Capita Income per Capita Education

CO2 per capita 1.000
Income per capita 0.2683 1.000

Education 0.2463 0.9008 1.000

Table 13. Linear correlation in high income inequality cluster.

CO2 per Capita Income per Capita Education

CO2 per capita 1.000
Income per capita 0.8606 1.000

Education 0.8950 0.8306 1.000

In those countries where the level of income inequality is lower, the link between
educational level and personal income, measured by their positive linear correlation, seems
to be very strong and steady. This empirical evidence is consistent with many studies in
the field of development economics that identify schooling and education as determinants
of personal income and capital endowment of a country and, therefore, promoters of
higher economic growth [32,85]. Furthermore, the linear correlation between per capita
income and level of pollutants is very close to the linear correlation between education
and pollutants. Both are very low and are symptoms of a non-linear relationship between
the variables.

Given these facts, we propose a different specification of the EKC that employs the
educational variable, i.e., years of schooling, as the primary driver of environmental degra-
dation instead of personal income. From an econometric perspective, the simultaneous
presence of average years of schooling and per capita income among the set of regressors
could imply severe multicollinearity issues and generate inconsistent estimates. The new
specification is applied to countries with high income inequality and countries with low
income inequality. The specification which uses the years of schooling as a regressor is
called Educational EKC, while the one with the level of income per capita remains the
Standard EKC. For each group, the estimate of the Educational EKC is compared with the
Standard EKC specification. Estimates for the alternative EKC specification are available in
Table 14, which reports the estimated coefficients for the four models.

Considering low income inequality countries, renewable energy use and trade open-
ness have negative signs and similar values in the models, i.e., an increase in renewable
energy share of one percent can generate a reduction around 0.086% in pollution (CO2)
levels. In addition, international trade plays a role in emissions reduction: a percentage
point increase in trade openness corresponds to a reduction of pollution levels between
0.1% and 0.3%. The estimated turning points for the two models are TPLow,GDP = 85.523$
and TPLow,Edu = 10.83 years, respectively. None of the low income inequality countries
reached the monetary turning point. The country with greater personal income is Norway,
which registered a value of 84,417$ in 2007. On the contrary, the educational turning point is
achieved by low income inequality countries: Switzerland (1967), Germany (1978), Norway
(1985), Sweden (1989), Denmark (1990), Netherlands (1998), Finland (1999), Austria (2000),
Belgium (2012), and France (2013). This fact confirms the robustness of the Educational EKC
specification with respect the Standard EKC with quadratic terms. In Figure 4, we represent
the observed relationship between years of schooling and CO2 per capita (Educational EKC,
left panel) and between income per capita and CO2 per capita (Standard EKC, right panel)
for low income inequality countries.
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Table 14. Fixed effects estimates of Educational EKC and Environmental EKC by income inequal-
ity clusters.

Low Income-Inequality High Income-Inequality
Variable

Educational Environmental Educational Environmental

Income per capita 5.383 *** 11.587 ***
(0.579) (0.012)

Income per capita −0.237 *** −0.560 ***
squared (0.031) (0.022)
Education 9.412 *** 1.809 ***

(1.211) (0.134)
Education −1.976 *** −0.228 ***
squared (0.276) (0.055)
Energy use −0.086 *** −0.087 *** −0.202 *** −0.107 ***

(0.011) (0.010) (0.019) (0.012)
Trade openness −0.108 *** −0.277 *** 0.357 *** 0.149 ***

(0.049) (0.044) (0.055) (0.034)
Constant −16.167 *** −35.406 *** −8.074 *** −65.008 ***

(0.416) (0.269) (0.192631) (2.055)

R2 0.416 0.269 0.815 0.881
Observations 640 640 448 448
Number of groups 10 10 7 7

Note. Values in parenthesis are standard errors. Stars represent p-values: *** p < 0.01.

Figure 4. Environmental Kuznets Curve and Educational Kuznets Curve for low income inequality
countries (panel fixed-effects estimator). Educational Kuznets Curve for low income inequality
countries fitted using FE panel estimator (left panel) and Environmental Kuznets Curve for low
income inequality countries fitted using FE panel estimator (right panel).
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Independently from the cluster, all the estimated coefficients are statistically significant
and have the expected signs. The Standard EKC and the Educational EKC are validated in
the two samples.

In addition, as shown by the country-by-country plots provided in Appendix A,
some countries properly match the inverted-U shape form of the EKC because they follow
the same behavior of the aggregate EKC model closely, and other countries exhibit less
similarities with the theoretical EKC pattern. In particular, both Educational EKC and
Standard EKC specifications are better performing for the cluster of low income inequality
countries. We infer from the graphs that low income inequality countries are more advanced
economies and dispose of a large amount of resources to invest into environment-friendly
technologies, accelerating the decarbonization process towards a cleaner production, which
is less harmful to the environment.

7. Conclusions

The present paper has assessed the relationship between the role of education and
income inequality on environmental quality using a panel data approach for 17 selected
OECD and European countries, by taking into account the historical evolution of their in-
come inequality pathways. The clustering analysis based on the Gini Index has highlighted
structural differences in the paths of the sampled countries. The statistical approach has
generated heterogeneous income inequality patterns and has led to different growth im-
pacts on the natural environment. In addition, the variable modeling the role of education
has been embedded in the models by augmenting the Standard EKC specification with a
quadratic term for the average years of schooling. The research findings indicate clear
results for the cluster of low income inequality countries and plausible turning points.

We have employed panel data models which provided statistically significant and
acceptable estimates of the parameters, suggesting the existence of an inverted-U EKC curve
both for the Standard and Educational specifications. The Educational EKC has underlined the
non-linearity in the relationship between education and emissions, reflecting the dynamic
change in economic and social development. Moreover, this study is not only grounded
on statistical methods. Our findings have mainly highlighted the economic aspects and
implications of the EKC research design. For this reason, we argue that the type of research
methodology makes use of verifiable evidence in order to arrive at research outcomes. In
fact, we have provided further evidence on the relationship between education and the
environment which has been supported within the EKC framework.

We encourage researchers to replace the Standard EKC with an educational-based
specification, namely, the Educational EKC. Further research should consider the level of
schooling and inequality of countries as the main drivers of socio-economic development,
along with other relevant variables and pollutant emissions, in the EKC framework.
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Abbreviations
The following abbreviations are used in this manuscript:

EKC Environmental Kuznets Curve
Edu_EKC Educational Environmental Kuznets Curve
TP Turning point
PWT Penn World Tables
FE Fixed-effects model
RE Random-effects model

Appendix A. Environmental and Educational EKC by Countries and Income
Inequality Level

Appendix A.1. Low Income Inequality Countries

Figure A1. Educational Kuznets Curve for low income inequality countries. Blue points are the
observed values, red curves are the quadratic fit for each country. Own elaboration based on our
estimation results.
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Figure A2. Environmental Kuznets Curve for low income inequality countries. Blue points are the
observed values, red curves are the quadratic fit for each country. Own elaboration based on our
estimation results.

Appendix A.2. High Income Inequality Countries

Figure A3. Educational Kuznets Curve for high income inequality countries. Blue points are the
observed values, red curves are the quadratic fit for each country. Own elaboration based on our
estimation results.
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Figure A4. Environmental Kuznets Curve for high income inequality countries. Blue points are the
observed values, red curves are the quadratic fit for each country. Own elaboration based on our
estimation results.
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