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Abstract: Ultrasonic echo estimation has played an important role in industrial non-destructive
testing and analysis. The ability to estimate parameters in the ultrasonic echo model is crucial to
ensure the effectiveness of practical ultrasonic testing applications. In this paper, a scheme called
ABIDE for identifying both multiple noises in the echo signal and the distribution of the denoised
signal is proposed for ultrasonic echo signal parameter estimation. ABIDE integrates complementary
ensemble empirical mode decomposition and the synchrosqueezed wavelet transform (CEEMD-
SSWT) as well as the expectation maximization (EM) algorithm. The echo signal is split into a series
of IMF components and a residual with the help of CEEMD, and then these IMFs are classified into
the noise-dominant part and signal-dominant part by analyzing the correlation of each IMF and the
echo signal using grey relational analysis. Considering the effect of noise in the signal-dominant
part, SSWT is adopted to remove the noise in the signal-dominant part. Lastly, the signal output by
the SSWT algorithm is used for reconstructing a denoised signal combined with the residual from
CEEMD. Considering the distribution characteristic of the denoised signal, the EM algorithm is used
to estimate parameters in the ultrasonic echo model. The relative performance of the proposed scheme
was evaluated on synthetic data and real-world data and then compared with the state-of-the-art
methods. Simulation results on synthetic data show that ABIDE outperforms the state-of-the-art
methods in parameter estimation. Physical results on real-world data show that the proposed scheme
has a greater PCC value in estimating echo model parameters. This paper also shows that ABIDE
requires less convergence time than competitive methods.

Keywords: ultrasonic echo estimation; complementary ensemble empirical mode decomposition;
synchrosqueezed wavelet transform; expectation maximization

1. Introduction

Ultrasonic waves can propagate through a wide range of materials. It is convenient
to choose a suitable ultrasonic transducer according to the test task to generate ultrasonic
signals with desired frequencies [1-3]. Ultrasonic waves are often used on metals, metal-
loids, or other conforming materials for non-destructive testing. Due to the advantages of
high automation and sensitivity and harmlessness to samples and to nearby operators [4,5],
ultrasonic waves are prevalent in the domains of industry [6-8], material engineering [9],
food engineering [10], and medical biotechnology [11] for non-destructive testing. In order
to accurately detect whether there are defects or inhomogeneities in a specimen, or to
accurately provide information on the size, location, nature, and quantity of the defects,
a plethora of research has focused on ultrasonic signal analysis in recent years [12]. The
parameter estimation of ultrasonic echoes plays an important role in ultrasonic signal
analysis. As an ultrasonic echo signal is a signal expressed by a non-linear numerical model
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with many parameters [13,14], accurate and rapid estimation of ultrasonic echo parameters
is very important for ultrasonic signal analysis.

Up to now, various methods have been proposed to estimate the parameters of ultra-
sonic echo signals. These methods can generally be grouped into three categories, namely,
optimization methods based on the one-dimensional piezoelectric transducer model, the
ultrasonic echo signal spectrum analysis model, and the ultrasonic echo parameter model.
The one-dimensional piezoelectric transducer model uses one-dimensional equivalent
circuit models to present the voltage-to-voltage two-way impulse response of piezoelectric
transducers [15]. After considering the factors that affect the ultrasonic signal such as the
diffraction and scattering of waves during the test process, the transfer function of the corre-
sponding electrical system is deduced. Then, the parameters of the echo signal are obtained
from the electrical system. Although this type of method can achieve immediate results,
many factors need to be considered in the process of building a complete electrical system,
such as material attenuation and dispersion transfer functions. Additionally, since the atten-
uation of the material is related to the material itself and the frequency of ultrasonic waves
(approximate power law relationship), it is difficult to accurately estimate electrical system
models. In the ultrasonic echo signal spectrum analysis model, the ultrasonic echo signal is
transformed by a signal transformation (discrete Fourier transform or Gabor transform),
then the corresponding echo signal spectrum is obtained, and, finally, the parameters of the
echo signal are calculated by the signal spectrum [16,17]. As ultrasonic echo signals usually
contain noise, this method has high uncertainty, which leads to large errors in the results.
The ultrasonic echo parameter model based on optimization methods mainly focuses on
the selection of optimization methods, such as the least squares estimate (LSE), artificial
bee colony (ABC), ant colony optimization (ACO), and particle swarm optimization (PSO).
Thus far, numerous optimization algorithms or their variants have been used for parameter
estimation of ultrasonic echo signals [18-20]. The main difference lies in the optimization
space or the efficiency. In addition, to improve the precision of the results in complex
real-world issues, some scholars hold the view that increasing the signal-to-noise ratio
(SNR) is of great significance; consequently, numerous works have decreased the weights
of noise in raw signals [21-23]. Their main ideas are to improve the SNR first, and then the
denoised signal is imported into the model of parameter estimation as the input. Although
multiple solutions combine the denoising and optimization algorithm selection, to the best
of our knowledge, both the lack of analysis on the decomposed signal selection strategy
and the distribution of denoised signals still increase the overhead and hinder the precision
in parameter estimation of ultrasonic signals.

In the optimization algorithm used in the parameter estimation model, noise reduction
is still a necessary part. Currently, the most widely used methods in noise reduction are
mostly based on the idea of the Fourier transform, moving average, and wavelet transform
for effectively filtering out the noise present in the ultrasonic echo signal [24]. Since the
Fourier transform is a global transformation and the sine basis function defined is a whole
transformation, this means the Fourier transform is only applicable to stable frequency
signals and incapable of representing local details about the signal [25]. Analysis is con-
strained. As to the moving average method, it loses some data points in the process of
denoising, although these data points may be key data points [26]. For non-linear and
non-stationary signals such as ultrasonic echo signals, the wavelet transform addresses the
limitation that the Fourier transform cannot analyze the details of the signal and is applica-
ble to nonstable frequency signals [27]. However, the drawback of wavelet transformation
when applied to denoising is the poor generalization and the difficulty in selecting the basis
function; thus, the selection of the basis function in the wavelet transform is application
specific. Compared with the wavelet transformation, empirical mode decomposition (EMD)
takes the advantages of wavelet transformation and tackles the difficulty in selecting the
basis function [28]. The significant drawback of the EMD is mode mixing [29,30], which
means that it cannot differentiate the intermittent signals overlapped with the raw signal.
Thus, ensemble empirical mode decomposition (EEMD) has been proposed to solve this
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problem [31]. It utilizes the feature of the homogeneous distribution of white noise and
then adds the noise to the raw signal. In this way, signals with different time scales can be
automatically separated into their corresponding reference scales. Given that the method
of EEMD only takes the distribution of white noise into account, complementary ensemble
empirical mode decomposition (CEEMD) has been proposed to further reduce the effects of
noise added with zero value of the average amplitude. The denoising method based on the
CEEMD method usually judges the correlation between the inherent modal function (IMF)
component and original signal by calculating their correlation coefficient, discards the com-
ponents with low correlation coefficients (noise components), and keeps the components
with high correlation coefficients (signal components) [32]. By combining the CEEMD and
correlation coefficient methods to reduce the noise of non-stationary signals, the denoising
effect is found to be better than that of the EEMD method [33]. However, simply discarding
the noise components will lead to the loss of details in the reconstructed signal, especially
for signals with a low SNR.

In this paper, we propose a novel scheme named ABIDE, which combines CEEMD and
the synchrosqueezed wavelet transform (SSWT), as well as the expectation maximization
(EM) algorithm, for ultrasonic echo signal parameter estimation. ABIDE is aware of both
multiple noises in the echo signal and the distribution of the denoised signal. In particular,
as for the noise-aware characteristic, ABIDE is based on CEEMD and SSWT (CEEMD-SSWT
for short). In this process, firstly, the CEEMD method is used to decompose the original
signal into multiple IMF components and a residual. By calculating the grey relational
grades between each IMF and the original signal using grey relational analysis, the cut-
off point indicating the separation of the signal-dominant part and the noise-dominant
part is obtained. Considering the effect of noise in the signal-dominant part, SSWT is
adopted to remove the noise in the signal-dominant part. Lastly, the signal output by the
SSWT algorithm is used for reconstructing a denoised signal combined with the residual
signal from CEEMD. Considering that the distribution of the denoised signal conforms to
the Gaussian distribution, and that the EM algorithm is good at dealing with data with
such a distribution, we input the denoised signal output via CEEMD-SSWT to the EM
optimization algorithm for estimating the parameters of the ultrasonic echo.

We evaluated the effectiveness of ABIDE on synthetic data in a simulation experiment
and real-world data in the physical experiment. The simulation results clearly show that
ABIDE outperforms the state-of-the-art methods in parameter estimation, and that the
mean absolute error of the estimated ultrasonic echo model on the input signal with an
SNR of 20 dB is as small as 0.495%. The experiment results on real-world data show that
the proposed scheme has greater precision, with the PCC value reaching up to 0.9903,
compared to competitive methods in estimating echo model parameters. We also illustrate
that ABIDE requires less convergence time than competitive methods.

The remainder of this paper is organized as follows: Section 2 presents the ultrasonic
echo model for parameter estimation. Section 3 overviews the proposed ABIDE and details
the components. Section 4 introduces the simulation and physical experimental setup.
Section 5 describes the outcomes of the ABIDE assessment and discussion. The conclusion
is presented in the final section.

2. Modeling of Ultrasonic Echo Signal

In industrial non-destructive testing applications, piezoelectric transducers are some
of the most commonly used ultrasonic transducers. The shape of the ultrasonic echo is
determined by the characteristics of the ultrasonic transducer and the size of defects in
the sample. An ultrasonic transducer sends pulses and receives reflected echoes from
discontinuities in the test sample. The time series of the ideal ultrasonic echo signal is
linearly stationary and smooth, and Gaussian stochastic. The Gaussian envelope oscillation
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is widely used to model the ultrasonic echo function, and the Gaussian echo model (GEM)
function using the time—frequency is mathematically described by the following expression:

s(6,t) = Aet(t=7", cos[27tfc(t — T) + @] ¢y

where s(-) is the GEM signal, 6 is a parameter vector, where each parameter vector contains
five different variables 6 = [A, a, T, fc, ¢], A is the amplitude of the echo with the unit V,
« is the temporal bandwidth factor with the unit (MHz)?, T is the arrival time with the unit
us, fc is the center frequency of the transducer with the unit MHz, and ¢ represents the
phase of the signal with the unit rad [34]. The details of the parameter vector 6 are shown
in Table 1.

Table 1. Notations used for modeling of ultrasonic echo.

Symbol Parameter Units Description
A Amplitude v According to the impedance of the
transducer.
% Bandwidth factor (MHz)2 Establishes the bandwidth of the echo.
Arrival time us Dependent on the location of the transducer.
f. Center frequency MHz Related to the frequency characteristics of the
transducer.
1) Phase rad Reflects the orientation of the echo received.

In practical ultrasonic testing applications, ultrasonic echoes are commonly corrupted
by additive noise, so the GEM can be rewritten as follows:

x(0,t) =s(6,t) +w(t) ()

where w(t) is the additive white Gaussian noise (WGN) with variance ¢ and mean zero,
and x(-) denotes the GEM signal corrupted by noise.

3. Methodology
3.1. Review of the CEEMD Method

The CEEMD method is an improvement and development of the EMD method [32].
The EMD method decomposes the non-stationary signal into a series of IMF components
and a residual signal as follows:

k
x(n) =Y _ci(n)+re(n) 3)
=

where x(n)(n =1,2,...,N) is the original input signal, k is the number of the IMF compo-
nents, ¢;(n)(i =1,2,...,k) is the IMF component where each IMF covers a certain frequency
band, and r¢(n) is the residual signal.

Although the EMD method is suitable for processing non-linear and non-stationary
signals, the problem of mode mixing is accompanied by signal decomposition, which
can easily affect the effectiveness of signal denoising [29]. In the CEEMD method, in
each iteration of signal decomposition, white noise is added to the original signal in both
positive and negative directions; thus, new time series signals are obtained. The EMD
method is applied to the new time series signal, and the average value of all obtained IMF
components by the EMD method will be the result of decomposing the new time series
signal by the CEEMD method. Compared to EMD, the CEEMD method has the advantages
of eliminating the problem of mode mixing and the residual noise in the original signal.
The procedure of the CEEMD method for the original input signal x(t) is summarized
as follows:
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Step 1. The positive x, (1) and negative signals x, (1) are represented by the addition
of positive and negative white Gaussian noise of the same amplitude, e, (n) and x(n).
Mathematically, this can be expressed as Equation (4).

{ xpEn) = x(n) + ey (n) )

Step 2. In the process of CEEMD, the EMD method processes the positive and negative
signals to obtain the sequence of the IMF components.

Step 3. Perform step 1 and step 2 for a number of times. The IMF components of the
positive and negative signals are calculated as follows:

xp(n) = i cpi(n) + rpr(n)
1?1 (5)
xn(”) = igl Cni(”) + rnk(n)

Step 4. According Equations (3) and (5), the decomposition outcome of the CEEMD
method can be summarized as follows:

{ ci(n) = Cvi(:);:m(:)) ©
7ok () +rp(n
re(n) = = 2 :

where c;(n) is the ultimate IMF components of the original input signal x(n), and r¢(n) is
the residual signal. Note that the IMF components obtained by the CEEMD method are
sorted in descending order according to frequency, and each IMF component reflects the
contribution to the original signal.

3.2. Grey Relational Analysis

Grey relational analysis (GRA), which is an important statistical analysis method,
allows for the simultaneous evaluation of more than one different objective function [35].
The idea of grey relational analysis is to judge whether the two signal sequences are closely
related according to their similarity. The grey correlation grade represents the degree of
similarity between the comparative sequence and the reference sequence. Additionally, the
greater the grey relational grade, the greater the similarity between two signal sequences,
and vice versa. GRA was used to evaluate the correlation between IMF components and
the original signal in this paper. The flow chart of GRA is shown in Figure 1.

Determin reference and comparative sequence

A 4

Dimensionless processing by Equation (7) to obtain the
new reference and comparative sequence

A 4

Calculate grey relational coefficient & by Equation (8)

A 4

Calculate grey relational grad y: by Equation (9)

Figure 1. Flow chart of grey relational analysis.
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The amplitude of IMF components obtained by decomposing the original signal with
the CEEMD method may vary greatly. The contribution of the IMF with a smaller amplitude
to the grey correlation coefficient will be affected or even ignored. According to GRA theory,
the data are processed to become dimensionless at first. The formula for dimensionless
processing is described as follows:

x(n) — minx(n)
maxx (1) — minx(n)

y(n) = ?)
where x(n) is the original sequence, y (1) represents the normalization value of the sequence
after the original data preprocessing, y(n) € [0, 1], n(n = 1,2,...,N) is the number of data
sequences, and minx(n) and maxx(n) are the minimum and maximum values of x (),
respectively.

After data preprocessing, the difference in the order of magnitude of the data becomes
smaller. Then, the grey relational coefficient is calculated as follows:

minmin|yo(n) —y;(m)| + p - maxmax|yo(n) — yi(n)|

Yo(1) = yi(n)| + p - maxmax|yo(n) — yi(n)|

Gi(n) = ®)

In Equation (8), ¢;(n) is the grey relational coefficient. yy(n) is the reference sequence,
and y;(n) is the i"(i = 1,2,...,k) comparative sequence. Now that they are all subjected
to dimensionless processing according to Equation (7), |yo(n) — y;(n)] is the deviation
value between yy(n) and y;(n), and p is the identification coefficient that represents the
differentiation of data, p € [0, 1], and p generally takes 0.5.

The grey relational grade can be calculated from the grey relational coefficient accord-
ing to the following equation:

1 N
Ty L&) ©)
n=1
where 1; is the overall grey relational grade for the i (i = 1,2,...,k) GRA experiment.

3.3. SSWT Method

The continuous wavelet transform (CWT) is an effective time—frequency analysis
method, which convolves a series of finite energy oscillations. CWT has the advantage of
multiresolution analysis and is widely used in ultrasonic signal processing. However, CWT
also has a significant disadvantage, that is, the resolution of CWT is relatively low, which
easily leads to the accumulation of errors in the long-term signal processing.

As a time—frequency signal analysis algorithm, synchrosqueezing is a special reassign-
ment method which allows the extraction of instantaneous amplitudes and frequencies,
thus providing a clear, continuous wavelet representation. For some non-stationary signals,
SSWT improves time and frequency resolution of CWT, which is adaptable to a wide variety
of signals. The specific steps of the SSWT method are as follows.

According to CWT theory, for a signal (with noise) x(t), its CWT coefficient is ex-

pressed as
[ee]

Wy(a,b) = ail/z/

—00

x(B)y* <t;b)dt (10)

where Wy (a, b) is the corresponding wavelet coefficient of the signal x(¢) ata scalea (a2 € Ry)
and translational (time shift) value b (b € R), {(t) is an appropriate mother wavelet, and
y*(t) stands for the complex conjugate of (t).

The estimation of the instantaneous frequency of wy (4, b) for the signal x(¢) is calcu-
lated as

wy(a,b) = —i(Wx(a,b))_1%Wx(a, b) 1)
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The information from the time scale plane is transferred to the time—frequency plane,
that is, the frequency variable w and the scale variable a are binned [36]. Typically, in a
synchrosqueezing operation, Wy (a, b) is calculated at the k' discrete scale value a;. The
synchrosqueezed transform Ty (wy, b) is denoted at the central discrete angular frequency
w of the successive bins [w; —1/2-w, w;+ 1/2-w,], which can be derived as follows:

Ty(wy, b) = (Aw) ™" Y Wy (ar, b)a,>?(Aa), (12)

Ak

where (Aa), = ay — ay_1, Aw = w; — wj_1, and a : |wy(ag, b) — w;| < Aw/2.
Finally, by inverting the CWT, the original signal x(t) can be obtained as follows:

x(t) = Re Cl;l Y Ty (wy, t)Aw
!

(13)
Cy = %fooo zﬁ*(é)%

where $(£) is the Fourier transform of the mother wavelet (), and Cy is the normalization

constant [37].

In order to denoise, the CWT coefficient Wy (a,b) in Equation (10) is proposed via the
wavelet threshold function. The wavelet threshold shrinkage denoising method including
the soft threshold and hard threshold was proposed by Donoho and Johnstone [38]. For
noise-containing signals, the hard threshold function method removes wavelet coefficients
smaller than the threshold and retains the coefficients larger than the threshold. Instead, the
wavelet coefficients larger than the threshold will be shrunk, and the coefficients smaller
than the threshold will be eliminated in the soft threshold function method. Therefore,
the hard threshold function method is more suitable for solving signal denoising with
burst noise. However, the disadvantage of the hard threshold function method is that the
result may have discontinuities at the threshold, which will generate oscillation signals and
thus distortion of the noise reduction signal. The soft threshold function method is more
commonly used to address the problem of diagnosing signals containing smooth noise.

Using the soft threshold function method for the original CWT coefficient, the new
wavelet coefficients can be derived as

/ | sgn[Wx(a,b)](|Wx(a,b)| — Thr), |Wx(a,b)| > Thr
Wala,b) = { 0, We(a,b)| < Thr 14
where Wy (a, b) is the original CWT coefficient, Wy (a, b) is the new CWT coefficient by the
soft threshold function method, sg#n(-) refers to the sign function, and Thr is an optimal
threshold, given as

Thr = o/2InN = medl“’g(g;\g”’b . amN (15)

where 0 is the standard deviation of the noise, N is the length of the original signal, and
median(-) is the median absolute operator.

According to Equation (12), the synchrosqueezed transform Ty (w, b) of the denoised
signal £(t) in the time—frequency plane can be expressed as

Tye(wy, b) = (Aw) ™! ZWJ’C(a,b)ak_B’/z(Aa)k (16)
a
Under these conditions, Equation (13) can be rewritten as

2(t) = Re

c,' ;Tx(wl,b)Aw] (17)
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3.4. EM Algorithm

The EM algorithm, solving optimization problems for the observed data and the model
data, is still one of the most popular algorithms for statistical recognition for models [39].
EM alternates between performing an expectation (E) step and a maximization (M) step
until the parameter estimation stops updating. In the E step, the Q-function is obtained
based on the likelihood function as follows:

k n
Q(glg(f)) =) (ZlnP(yi,Z]-|6)P(Zj|yi,G(t))> (18)

j=1 \i=1

where 6 is the model parameter vector, §(!) is the parameter vector for the " iteration, y; is
the observed data, and zj is the latent random variable.

The E step changes depend on the data model, but the M step is independent of the
model. In the M step, the maximum estimated value of the parameter vector 8(*1) is
calculated for a new iteration which is defined as follows:

(t+1) (#)
0 arg meaxQ (9,9 ) (19)

To summarize, according to the previous description of the ultrasonic echo model (see
Section 2), the EM algorithm for parameter estimation of multi-Gaussian echoes in WGN
can be implemented in the following steps:

Step 1. Initialize the parameter vector 0 Z«(O) (i=1,2,..., M) and set the iteration number
k=0.

Step 2. The expected echoes are computed using the observed data and the current
estimate of the parameter vector, that is, the parameter vector in the last iteration. Then,

the k" iteration is performed to compute the expected echoes as follows:

9 = o(0,1) + L ( 3 (o, t)> 20)

=i

Step 3. Calculates the parameter vector 0(+1) as the maximum likelihood estimate for
(). According to the theory of the maximum likelihood estimate, §**1) can be expressed as

2
()i(kH) =arg meinHJ?l(k) - S(Gl(k), ol (21)

Step 4. Check the convergence. As the stop criterion, the likelihood convergence
tolerance &rcr (& cr > 1/f2) [40] is defined as follows:

k+1 k
16/ — 07 < grer 22)
Step 5. Set the iteration number as k — k + 1 and go to step 2.

3.5. ABIDE’s Ultrasonic Echo Parameter Estimation

According to the above principles, the parameter estimation of ultrasonic echo signals
in ABIDE can be derived, as shown in Figure 2, and the specific steps are as follows:

1. Assuming that the original signal is x(n), the CEEMD algorithm (Section 3.1) is
adopted to process the original signal. kK IMF components IMF;(n)(i =1,2,...,k) and
a residual r¢(n) are obtained. Note that the obtained IMF components are arranged
in descending order of frequency. The low-order IMF includes the high-frequency
part of the signal, for example, the high-frequency part of the original signal and the
noise, while the high-order IMF includes the low-frequency part of the original signal,
which is less affected by noise. According to grey relational theory (Section 3.2), the
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grey relational grade 7; between each IMF component in each order and the original
signal is calculated. This process is written as

x(n) = iil IMF;(n) + r¢(n)

= (23)
i = GRA(IMF;(n), x(n))

Then, the cut-off point y is determined based on the grey relational grade corre-

sponding to the IMF component. This cut-off point is used to split the IMF decom-

position into the noise-dominant part (low-order IMF components) xnp and the

signal-dominant part (high-order IMF components) xsp. The cut-off point criterion

and signal reconstruction process are written as follows:

u = first [arg min 'y,«)} (1<u<k)
1

1<i<k
-
— 'Y IMF,
*np() %1 () 24)
xsp(n) = Y. IMF;(n)
J=H

x(n) = xnp(n) + xsp(n) +re(n)

The SSWT method (Section 3.3) is performed on the signal-dominant part xsp (1)
to obtain the noise reduction signal x,(n). Then, the x5, (1) and the residual sig-
nal r;(n) are reconstructed into a new input signal y(n) for subsequent processing,

as follows:
{ xXgp(n) = SSWT[xsp(n)]
y(n) = x5p(n) +re(n)
The signal y(n) obtained by the CEEMD-SSWT method is approximated by the EM

algorithm (Section 3.4) which finds the global optimal solution to obtain the parameter
vector 0 of the signal y(n). 6 is defined as the model parameter vector of the original

signal x(n).

(25)

I Original signal

Input the original

—.| Apply CEEMD Method to x(1)

1
Denoised signal | Parameter estimation by EM
__________ o

Denoising by CEEMD-SSWT method

Initialize the

parameter vector

{

signal x(11)

Decomposing x(n) into k IMF components
IMFs={IMFi(n), IMF2(n) ,..., IMFi(n)}

echoes by Equation (20)

Calculate grey relational grade between Residual signal
each IMF and x(n), yi={y1, y2,..., i} ()

v

|

Calculate the MLE

|
|
|
|
I
|
I
|
|
|
|
: Compute the expected
|
|
|
I
|
1
|
|
|
|

by Equation (21)

Obtain the cut-off point pi of the IMFs
based on yi

Tnput data
storage y(n)

.
g\

v

¥

Output the noise-dominant Part

X (1) = ims(m

Output the signal-dominant Part

() = ;IMF/ (n)

]

Denoising the noise-dominated part of
the original signal using the SSWT

Xip, (n) = SSWT [ x5 (n) ]

:

Yes

Find the globla optimal
solution to obtain the

parameter vector

|
|
|
|
|
|
: Stop criterion?
|
|
|
1
|
l
|
|
|
|
|
|

Figure 2. Block diagram of the proposed ABIDE scheme.
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4. Experimental Setup and Datasets

This section is divided by subheadings. It should provide a concise and precise de-
scription of the experimental results, their interpretation, and the experimental conclusions
that can be drawn.

4.1. Experimental Setup
4.1.1. Simulation Experiment

The aim of the simulation experimentation was to evaluate the effect of ultrasonic
model parameters estimated by ABIDE on the synthesized ultrasonic signal, and to study
the denoising performance of the CEEMD-SSWT method. Since the synthesized ultrasonic
signals are generated with known parameters according to the known ultrasonic signal
model, the noise reduction errors and the parameter estimation errors can be determined.
In order to generate datasets that approximate the ultrasonic model, the details of the
experimental setup are provided. The experiment was executed on an Intel Core i5-6300U
processor, internal storage 8.0 GB, Windows 10 64-bit OS. To compare the performance
of the proposed scheme with the existing technology, ABIDE was also implemented in
MATLAB.

The ultrasonic echo signal, utilized as the reference signal (signal generated according
to the preset parameter vector) in the simulation experiment was simulated according to a
modified version of Equation (1), as follows:

x0(0o, t(nT)) = Ag-e~(tT)=n)", cos27fo(t(nT) — T0) + o] (26)

where t(nT) is the discrete samples, T is the sampling interval, and n = {0,1,..., N — 1} is
the index of the sampling signal of length N.

The preset parameter vector 6; = [1.0, 6.5, 2.5, 5.0, 1.0], among them, the amplitude
Ay = 1.0V, bandwidth factor ay = 6.5 (MHZ)Z, arrival time 7; = 2.5 ps, center frequency
ft = 5.0 MHz, phase ¢; = 1.0 rad. This echo was sampled at a sampling frequency of
200 MHz, thatis, T = 0.005 ps, the length of sampling data was N = 1000, and the duration
of a single simulation waveform was 5 ps. The dataset of the reference signal was stored in
vector xg.

Next, noise was added according to Equation (2) considering the interferences induced
by the devices or sensors in practice. A realization of a zero mean white Gaussian noise
sequence with variance 0 was added to the reference signal xg to form a substitute for the
original signal x (the combination of the reference signal and noise). A series of simulations
was performed to investigate the performance of the proposed scheme. A sequence of the
original signals with an SNR ranging from 0 to 30 dB was generated.

4.1.2. Physical Experiment

In this section, the performance of ABIDE is verified by an ultrasonic pulse echo
system in purified water, since this experimental device is commonly used for sound
velocity measurement, defect detection, and defect evaluation.

The ultrasonic echo signal was obtained by using the pulse-echo platform, and the
schematic diagram is shown in Figure 3. In this schematic drawing, the platform consists
of two low-cost universal ultrasonic immersion transducers, an electrically controlled dis-
placement device for accurately determining the distance between the two transducers, a
pulser, a digital oscilloscope, a water tank, and a personal computer for data acquisition.
The resonant frequency of the ultrasonic transducer was 1 MHz. The transmitting trans-
ducer and the receiving transducer were placed on the precision rail. They were immersed
in purified water with a distance of 135 mm face to face.
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Figure 3. Schematic diagram of the physical experiment setup.

Experimental datasets were collected by adjusting the temperature of the purified
water in the water tank to 293.15 K. The pulser was driven to send a voltage pulse signal
(equal to the resonant frequency of the ultrasonic transducer) to the transmitting transducer.
According to the properties of piezoelectric transducers, the pulse signal is converted into
mechanical vibrations in the transmitting transducer, which, in turn, causes the generated
ultrasonic waves to propagate in the aqueous medium. The propagating ultrasound waves
are captured by the receiving transducer, and then the receiving transducer converts these
waves into mechanical vibrations to produce an ultrasound echo signal and sends the
waveform signal to the oscilloscope for further processing. The signals were recorded at a
sampling frequency of 500 MHz, and the sampling interval was 0.002 ps.

4.2. Performance Criteria

In this section, the evaluation metrics of ABIDE are described. Specifically, the metrics
for evaluating CEEMD-SSWT (denoising) and the EM algorithm (parameter estimation) in
ABIDE are elaborated.

For assessing the performance of the CEEMD-SSWT denoising method, the time—
frequency diagram obtained by CWT was used as the waveform of the compared signals.
Moreover, the SNR, root mean square error (RMSE), and percent root mean square differ-
ence (PRD) [41] are three different common error metrics, which were used to compare the
denoised signal with the original signal. The higher the SNR and the lower the RMSE and
PRD, the easier the denoising effect can be attained.

Let N be the length of the signal, and x(n) and y(n) the original and denoised signals,
respectively. The SNR of the denoised signal can be expressed as

N .2
SNR = 10l — 1 (1) . 27)
Yn—[x(n) —y(n)]
The RMSE is defined as follows:
1 N 9
RMSE = | 1= [x(n) ~ y(n)] 28)
n=1

The PRD is calculated as follows:

e () —y(m)]? 0
PRD—\/ ST x 100% (29)
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For evaluating the performance of the EM parameter estimation method, the coefficient
of determination (R?) was used. R? reflects the difference between the reconstructed signal
and the new input signal (denoised signal of the original signal). Moreover, the RMSE
described in Equation (28) was also used to characterize the deviation of the reconstructed
signal from the new input signal. Pearson’s correlation coefficient (PCC), as a complement
metric, was used to evaluate the consistency between the reconstructed signal and the
new input signal [42]. The optimal values of R?> and PCC were close to 1. The absolute
error (AE) and relative error (RE) were also employed as metrics for evaluating the error
of each parameter in the ultrasonic echo model. In particular, the mean absolute error
(MAE) was used to evaluate the performance of the estimation model by the proposed
scheme [43]. In addition, LSE, ABC, and ACO were selected for comparison in terms of
parameter estimation.

Assume that y(n) is the dataset used for the model parameter estimation, that is, the
denoised signal of the original signal, (1) is the estimated signal according to the y(n), 6
is the parameter vector of (1) and @ is the parameter vector of (1), and G is the number
of the parameter vector. Thus, the R? is determined as follows:

N LoN12
R2—q1_  Lamaly(n) —§(n)] .
Yally(n) — mean(y))* (30)

The PCC is calculated as follows:

e T [y(n) — mean(y(n)][9(n) — mean((n))] o
VIN [y () — mean(y(n))P- /TN, [9(n) — mean(9(n))]?

The AE is given as follows:

AE = |0; — 0] (32)
The RE is fixed as follows:

N

Re = 0 9_ % 100% (33)
i

The MAE is produced using AE, as follows:

1 & 18,
MAE:EZ:AEZEEM—@\ (34)
i=1 i=1
5. Results and Discussion
5.1. Assessment on Synthetic Data

The simulated ultrasound echo signal and the noise-contaminated signal are shown in
Figure 4. Concretely, the noiseless echo signal with the preset parameter vector is defined
as the reference signal, as shown in Figure 4a. The time—frequency diagram of the signal
was obtained with the CWT method. The magnitude plot of the reference signal is shown
in Figure 4b. The noisy signal with an SNR of 5 dB and its magnitude plot are shown in
Figure 4c,d, respectively.

The noisy signal was decomposed into multiple IMF components and a residual signal
by the CEEMD method according to Section 3.1, and the processed results are presented
in Figure 5. Obviously, IMF1 and IMF2 are both high-frequency noise signals, and all the
following IMFs are a low-frequency signal. This is consistent with the characteristics of the
CEEMD method. Note that not all signal decomposition results will be easily distinguished
between the noise-dominant part and the signal-dominant part. For finding the cut-off
point between the signal-dominant and noise-dominant parts, the grey relational grade
of each IMF was calculated using the formulas in Section 3.2. These results are shown in
Figure 6. According to the distribution characteristics of all obtained grey relational grades,
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the third value (0.76094) is the first minimum value. Therefore, the third IMF component
was determined to be the cut-off point between the signal-dominant and noise-dominant
parts of the noisy signal. The two IMF components (IMF1 and IMF2) in the previous part
are noise signals, which are most affected by noise and are eliminated, while the last seven
IMF components (IMF3-IMF9) and a residual are retained.

6
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Figure 4. Time domain curves and time—frequency diagrams of echoes. (a) Noise-free echo signal;
(b) magnitude plot in (a); (c) noisy echo signal with an SNR of 5 dB; (d) magnitude plot in (c).
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Figure 5. Decomposed result of the noisy signal with 5 dB by CEEMD.
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Figure 6. The grey relational grade curves of IMF components obtained by grey relational analysis.

The reconstructed signal of the original noisy signal is obtained according to the cut-off
on the IMF components. Here, IMF 3 to IMF 9 and a residual signal are accumulated to
obtain the reconstructed signal. Then, noise reduction processing is performed on the
IME 3 to IMF 9 components based on SSWT to obtain the denoised IMF components. The
denoised signal is reconstructed relying on the denoised IMF components and a residual.
Figure 7 shows the noise reduction effect of the signals. The time-amplitude diagrams
of the reconstructed and denoised signals are plotted in Figure 7a. The corresponding
normalized spectrum diagrams are derived by using the Fourier transform, as shown in

Figure 7b.
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Figure 7. The denoising effect on the signal. (a) The reconstructed signal and the corresponding
denoised signal; (b) normalized spectrum in (a).

In order to evaluate the performance of the proposed denoising method quantitatively,
SNR, RMSE, and PRD were selected as criteria in terms of noise reduction. The denoising
results were calculated for different SNR noisy signals. The SNR, RMSE, and PRD for
different input SNR levels were obtained, and the results are recorded in Table 2. It is
seen that the SNR out has different improvements when the reference signal is under the
influence of different degrees of noise. When the SNR of the noisy signal is 0 dB, the SNR
is improved to 11.286 dB after denoising, and the RMSE is 0.061, even if the input signal
is slightly poor. When the SNR of the noisy signal is 30 dB, the SNR and RMSE of the
denoised signal are 38.597 dB and 0.003, respectively. Moreover, the performance of PRD is
consistent with the SNR. Table 2 clearly indicates that for noisy signals with different SNR
levels, a lower PRD can be obtained as the SNR changes from high to low. This means that
there is a strong similarity between the denoised signal and the reference signal. The result
in Table 2 presents powerful evidence that the CEEMD-SSWT denoising method performs
well in boosting the SNR and tracking the consistency of the noisy signal.
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Table 2. The consistency and SNR of the denoised signal compared with the reference signal.

Noisy Signal BayesShrink Denoised Signal o
SNR (dB) Threshold SNR (dB) KMSE PRD (%)

0 1.554 11.286 0.061 27.271
2.5 0.967 13.262 0.048 21.722
5 0.573 16.635 0.033 14.782

7.5 0.458 18.976 0.025 11.165

10 0.282 20.934 0.020 8.992
12.5 0.193 22.047 0.018 7.878

15 0.134 25.365 0.012 5.384
17.5 0.092 26.574 0.010 4.723

20 0.052 29.077 0.008 3.531
22.5 0.026 31.123 0.006 2.796

25 0.020 35.416 0.004 1.696
27.5 0.011 35.353 0.004 1.711

30 0.007 38.597 0.003 1.175

The original signal was calculated using the CEEMD-SSWT method to obtain the
denoised signal, which is defined as the new input signal. Then, the new input signal was
used for parameter estimation of the ultrasonic echo model using the EM algorithm in
Section 3.4. Typically, the parameter-seeking capability of the EM algorithm depends on
the accuracy of the initial input values of the parameter. The initial value of the parameter
vector 6y = [Ag, ao, To, fo, o] is defined as follows: The echo envelope of the new input
signal is calculated using the Hilbert transform. A is defined as the highest amplitude
value of the envelope, and 19 is the time corresponding to Ag. 19 = 2In(4)/ (FWHM)?
is calculated based on the full width at half maximum (FWHM) of the envelope. The
initial value for frequency f is determined by counting the time difference -ty between two
adjacent zero-crossing points of 7y in the new input signal, fo = 1/(2-tg). According to the
obtained parameters [Ao, w, To, fo], the initial value of the phase ¢( can be obtained by
solving the echo model in Equation (26). By using this rule, the initial parameter vector is
calculated, and 6y = [0.994, 6.462, 2.470, 4.862, 0.826].

The results of the parameter estimation for the noisy signal with 5 dB are shown in
Figure 8. Concretely, the denoised signal obtained using the CEEMD-SSWT method and the
estimated signal obtained using the EM algorithm are plotted in Figure 8a. The noisy signal
and the estimated signal are plotted in Figure 8b. In order to evaluate the performance of
the parameter estimation method, some indicators are used for a detailed discussion. The
quantitative parameter estimation results of simulated signals with different SNR levels are
shown in Table 3, in terms of estimated parameters, AE, RE, R?, RMSE, PCC, and MAE.
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=
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Amplitude (V)
o

|
—_

Time (us) Time (us)
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Figure 8. Parameter estimation results. (a) The denoised signal and the corresponding estimated
signal; (b) the noisy signal with an SNR of 5 dB and the estimated signal.
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Table 3. Results of parameter estimation for various noisy signals using the ABIDE scheme.

Simulated Echo Parameter Evaluation Estimated Model Evaluation
Signal 0; * Estimated Value AE IRE| (%) R? RMSE PCC MAE (%) ACP
A 0.958 0.042 4.233
it 6.568 0.068 1.045
SNR = 0dB T 2.507 0.007 0.276 0.961 0.065 0.959 4.496 0.922
f 5.017 0.017 0.345
@ 1.166 0.166 16.580
A 0.999 0.001 0.146
o 6.983 0.483 7.429
SNR =5 dB T 2.504 0.004 0.146 0.982 0.051 0.981 4.640 0.930
f 4.965 0.035 0.694
@ 1.148 0.148 14.786
A 1.006 0.006 0.618
it 6.732 0.232 3.566
SNR =10 dB T 2.502 0.002 0.060 0.992 0.047 0.981 1.906 0.948
f 4.998 0.002 0.038
] 1.053 0.053 5.246
A 0.994 0.006 0.604
% 6.422 0.079 1.207
SNR =15 dB T 2.503 0.002 0.098 0.997 0.046 0.982 1.985 0.954
f 4.994 0.006 0.121
% 1.079 0.079 7.895
A 0.988 0.012 1.175
o 6.478 0.022 0.339
SNR =20 dB T 2.499 0.001 0.023 0.999 0.047 0.983 0.495 0.960
f 5.000 0.001 0.006
% 0.991 0.009 0.932

* True value of the parameter vector is 6; = [1.0, 6.5, 2.5, 5.0, 1.0].

From Table 3, we notice that the method has the largest estimation error for the phase,
especially when the signal is contaminated with a large noise level. When the SNR is 0 dB,
the relative error of the phase is 16.580%. However, with the improvement in the SNR, the
accuracy of the phase estimation is increased correspondingly. When the SNR is 20 dB, the
relative error of the phase is reduced to 0.932%. In addition, it is found that the EM method
has advantages in estimating the arrival time and frequency, with a relative error less than
1%. In the aspect of model evaluation, using the proposed scheme, the estimated model
results can be obtained under different SNR levels. The R? values are all above 0.961, and
the RMSE values are below 0.065. Obviously, at 20 dB, the PCC between the estimated
signal and the reference signal is up to 0.983, and the estimation error of the model is the
smallest, which is 0.495%. This can be clearly seen by comparing the PCC and MAE.

The confidence interval represents the estimation range of a parameter in statistics, and
the confidence level of the parameter estimation results is another reflection of the validity
and robustness of a scheme. To assess the confidence level, we obtained 100 simulation
signals with each SNR. These SNRs cover 0 dB, 5 dB, 10 dB, 15 dB, and 20 dB. For the
100 signals with an SNR of 0 dB, we estimated the parameter vector § = [A, &, T, f, ¢]
using ABIDE, and the confidence interval of each parameter in the vector was obtained by
calculating the average value and variance of the total estimated value. We first calculated
the interval coverage probability of each parameter at the 95% confidence interval. Then,
the average interval coverage probability of the confidence interval (ACP) of the parameter
vector was obtained by calculating its average values. Obtaining the ACP for signals with
other SNRs followed the same steps. From Table 3, we can observe that the ACP of the
parameter estimation results becomes increasingly accurate with the improvement in the
SNR. More specifically, when processing the signal with an SNR of 20 dB, the ACP is 0.960.
Actually, when processing the signal with an SNR exceeding 10 dB, the accuracy of the
parameter estimation of our scheme reached a better level.

We analyzed the residual data obtained by parameter estimation with ABIDE. Figure 9
shows the residual results of the parameter estimation for a signal with 5 dB noise. The
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upper left is their histogram distribution and the trend curve of a normal distribution,
and the upper right is the corresponding normal probability plot of the residuals. We can
see from the result that the relationship between the theoretical percentiles of the normal
distribution and residual term is approximately linear. Therefore, the estimated residual
term obtained by our scheme is indeed normally distributed.
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Figure 9. Normal probability analysis of the estimated residuals for a signal with an SNR of 5 dB.
(Upper left) The histogram and distribution curve of normal probability plot data are presented;
(upper right) the subgraph shows the normal probability plot of the estimated residuals.

In order to verify the superiority of this algorithm in ultrasonic echo parameter estima-
tion, the proposed scheme was compared with the LSE, ABC, and ACO algorithms under
the same initial conditions. The model parameter estimation results of the noisy signal with
an SNR of 20 dB are shown in Table 4. It can be clearly seen from the data in Table 4 that the
proposed scheme in this paper has the best performance for echo model estimation, that
is, the MAE (0.495%) of the model estimation is the smallest, and the fastest convergence
speed (2811 ms) can be obtained. In addition, the convergence time of the LSE algorithm is
closest to that of the method proposed in this paper, but the MAE of the model estimation
is the most unreliable. These results show that the proposed ABIDE has small errors and
outperforms the current methods.

Table 4. Comparison of the estimated parameters under a noisy signal with 20 dB.

Parameters and Criteria LSE ABC ACO ABIDE
Amplitude (V) 1.015 1.010 1.010 0.988
Bandwidth (MHz)? 6.631 6.601 6.587 6.478
Arrival time (us) 2.514 2.503 2.503 2.499
Center frequency (MHz) 4.983 5.012 4.991 5.000
Phase (rad) 1.011 1.021 0.990 0.991
Convergence time (ms) 3776 4602 6253 2811

MAE 1.104% 0.983% 0.742% 0.495%

5.2. Assessment on Real-World Data

Using the detection system illustrated in Figure 3, ultrasonic echo signals were ob-
tained by a pair of ultrasonic immersion transducers. In this system, a transmitting trans-
ducer is driven by the pulser to emit an excitation signal, while the other ultrasonic trans-
ducer receives the sound waves and converts them into electrical signals to be recorded.
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The system ensures that there is no echo overlap in the received ultrasonic echo signals.
When the purified water temperature is 293.15 K, the received original echo signal is as
shown in Figure 10a. Intuitively, the received echo signal has a slight high-frequency noise
before 15 us and after 30 ps. The time—-frequency diagram of the echo is shown in Figure 10b.
From the diagram, in the whole time domain of the echo signal, the noise of the frequency
bandwidths above 3 MHz is much greater than that of other frequency bandwidths.

Amplitude (V)
o

|
—_

5 x10°
l— Received echo signall
0.3
~ 4
N
=
>3 0.2
1°)
g
=3 2
o 0.1
=1
10 20 30 20 0 10 20 30 40
Time (us) Time (ps)
(a) (b)

Figure 10. Time domain curve and time—frequency diagram of the real signal. (a) The original echo
signal obtained under a purified water temperature of 293.15 K; (b) magnitude plot in (a).

The received echo signal was processed using the CEEMD-SSWT method to obtain the
denoised echo signal. The amplitude curve and time—frequency diagram of the denoised
echo signal are shown in Figure 11a,b. The denoising method effectively suppresses the
high-frequency noise of the original echo signal. Different from simulated signals, the pure
components of the original echo signal cannot be obtained, but the estimated SNR, RMSE,
and PRD are still important for evaluating the denoising effect on the original echo signal.
Assuming that a band-pass filter (0.5-1.5 MHz) is used to calculate the reference signal, and
the SNR of the denoised echo signal is 25.769 dB, the RMSE is 0.005 and the PRD is 5.033%.
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Figure 11. The denoising effect on a real signal. (a) Denoised echo signal; (b) magnitude plot in (a).

The original echo signal was acquired through an analog-to-digital converter. In order
to ensure that the received signal is affected by less noise, the SNR is usually improved
by increasing the signal gain. The transmitting transducer used for the experiment is
driven by a sinusoidal signal to work. Therefore, for the estimation of ultrasonic echo
model parameters, the impulse response of the denoised echo signal was restored by
applying a deconvolution method [44]. The EM algorithm was applied to the restored
impulse response for parameter estimation processing, and the results obtained are shown
in Figure 12. The impulse response and the estimated signal are shown in Figure 12a. A
high correlation between the impulse response and the estimated signal was obtained,
which can also be verified by the normalized spectrum in Figure 12b.
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Figure 12. Parameter estimation results. (a) The impulse response of the denoised echo signal and
the corresponding estimated signal; (b) normalized spectrum in (a).

The results of the proposed ultrasonic echo signal parameter estimation method and
the comparison results with other parameter estimation algorithms are shown in Table 5.
From the values of R? and RMSE, the proposed ABIDE and the other three algorithms
can successfully estimate the model parameters. Moreover, the accuracy was evaluated
using the PCC between the impulse response and the estimated signal. As a result, the
PCC obtained by ABIDE was 0.990, which is at the highest level. Although the accuracy of
ACOis close to that of this method, the convergence time of the algorithm is longer.

Table 5. Comparison of the estimated parameters under a purified water temperature of 293.15 K.

Parameters and Criteria LSE ABC ACO ABIDE
Amplitude (V) 0.763 0.761 0.761 0.759
Bandwidth (MHz)2 0.305 0.299 0.276 0.280
Arrival time (us) 16.621 16.609 16.604 16.609
Center frequency (MHz) 1.067 1.098 1.053 1.094
Phase (rad) 2.030 2.009 1.979 1.965
R? 0.981 0.982 0.982 0.985
RMSE 0.018 0.016 0.015 0.017
PCC 0.979 0.988 0.990 0.990
Convergence time (ms) 5981 6224 7320 5526

Note that the signal denoising method (CEEMD-SSWT) we propose is not limited
to the domain of ultrasonic signal analysis. It can be used as a signal processing tool in
other fields such as lidar signals and underwater acoustic signals. As far as we know, due
to the similar propagation law of ultrasonic and underwater acoustic signals in a liquid
medium, it is usually necessary to rely on ultrasonic transducers to simulate underwater
acoustic signals in preliminary simulation research. Therefore, the ultrasonic parameter
estimation scheme we propose or its variants can also be applied to the target detection
domain of underwater acoustic signals. In order to ensure the accuracy of parameter
estimation results in specific applications, it is very important to research the calibration of
the attribute parameters of ultrasonic transducers. In addition, we did not take multiple
overlapping echoes into consideration. Further study on these aspects is necessary.

6. Conclusions

In this paper, we propose ABIDE, a multiple noise- and denoised signal distribution-
aware scheme based on CEEMD, the SSWT, and the EM algorithm for estimating parame-
ters of the ultrasonic echo model. This scheme is designed to preserve the low-frequency
characteristics of the echo signal and make the accuracy of the parameter estimation less
affected by the noise induced in the echo. First, a noisy echo is decomposed into a series
of IMF components and a residual by the CEEMD method, and the grey relational grade
is used as the similarity criterion to divide the IMF components into the signal-dominant
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part and the noise-dominant part. SSWT is utilized to reduce noise in the signal-dominant
part. Based on the denoised signal-dominant part and a residual, the denoised signal is
reconstructed and finally applied to the EM algorithm to estimate the parameters of the
ultrasonic echo model. We evaluated the scheme of ABIDE in a simulation experiment
and a physical experiment. We demonstrate the accuracy of ABIDE in the simulation
experiment and its practicability in the physical experiment.
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