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Abstract: Suspended matter concentration is an important index for the assessment of a water
environment and it is also one of the core parameters for remote sensing inversion of water color.
Due to the optical complexity of a water body and the interaction between different water quality
parameters, the remote sensing inversion accuracy of suspended matter concentration is currently
limited. To solve this problem, based on the remote sensing images from Gaofen-2 (GF-2) and the
field-measured suspended matter concentration, taking a section of the Haihe River as the study
area, this study establishes a remote sensing inversion model. The model combines the partial least
squares (PLS) algorithm and the particle swarm optimization (PSO) algorithm to optimize the back-
propagation neural network (BPNN) model, i.e., the PLS-PSO-BPNN model. The partial least squares
algorithm is involved in screening the input values of the neural network model. The particle swarm
optimization algorithm optimizes the weights and thresholds of the neural network model and it thus
effectively overcomes the over-fitting of the neural network. The inversion accuracy of the optimized
neural network model is compared with that of the partial least squares model and the traditional
neural network model by determining the coefficient, the mean absolute error, the root mean square
error, the correlation coefficient and the relative root mean square error. The results indicate that the
root mean squared error of the PLS-PSO-BPNN inversion model was 3.05 mg/L, which is higher
than the accuracy of the statistical regression model. The developed PLS-PSO-BPNN model could be
widely applied in other areas to better invert the water quality parameters of surface water.

Keywords: suspended matter concentration; GF-2; neural network model; partial least squares
algorithm; particle swarm optimization algorithm

1. Introduction

The presence of suspended matter in surface water makes the water turbid, reduces
the water transparency, affects the respiration and metabolism of aquatic organisms (even
causing fish suffocation and death) and might cause channel obstruction. Suspended matter
concentration is one of the important indices for surface water quality monitoring [1].
Suspended matter in water absorbs or scatters light entering the water; thus, it affects the
optical properties of the water [2]. Water color remote sensing technology provides an
effective way to estimate the concentration of large-scale suspended matter. The remote
sensing inversion of water quality parameters provides efficient, fast and high-precision
monitoring tools for water quality monitoring, making the environmental governance
of surface water more reliable [3]. It is time-consuming to use traditional water quality
monitoring methods and they have failed to meet the needs of large-scale water quality
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monitoring. Considering that various water resource problems are emerging, there is an
urgent need for more efficient and accurate assessment tools to protect and maintain the
quantity and quality of water resources [4]. More and more researchers have focused on
using remote sensing technology to solve the problem of water quality monitoring. They
have tried to conduct inversion with different types of remote sensing data, optimized
inversion algorithms and built new inversion models in order to obtain more accurate
inversion results [5,6]. However, the inversion results are often limited in accuracy because
of the optical complexity of the water environment, the interaction among the water quality
parameters, remote sensing image processing and so on; thus, the concentration and
distribution of water quality parameters cannot be obtained timely and efficiently. For the
existing problems mentioned above, it is necessary to propose more efficient and accurate
inversion methods for water quality parameters.

Common remote sensing data used in water quality parameter inversion include
MODIS [7–9], Landsat TM [10,11], Landsat 8 OLI [12], Sentinel-2 [13–15], GF-1 WFV [16–18]
and hyperspectral images [19–21]. These remote sensing data are mostly used for remote
sensing monitoring and the evaluation of water quality and for the development of a
remote sensing inversion model of water quality parameters. Even though increasingly
abundant remote sensing image data are used in water quality parameter inversion, data
from different satellites and sensors have their own characteristics and thus are used to
invert different water quality parameters. Previous comparison studies have indicated
that various remote sensing image data have divergent performances in different areas
and different water quality parameter inversions. Gaofen-2 (GF-2) is the highest-resolution
civilian land observation satellite in China. Its spatial resolution of satellites under the point
could reach 0.8 m, which is significantly better than both Landsat 8 OLI and Environment-1
CCD data [22]. The number of data bands of GF-2 is smaller than that of Landsat 8 OLI
data. However, it contains four bands just within the main spectral range for the inversion
of suspended matter concentration. Clearly, GF-2 satellite data are fully suitable to build
the remote sensing inversion models for suspended matter and to be applied in inland
water quality monitoring.

At present, there are many remote sensing algorithms to retrieve water quality param-
eter concentration [23–25]. In the process of developing algorithms, the functional form of
the algorithm is determined, the function of the parameters is derived from a set of input
and output pairs and these data have an impact on the scope of the trained data set and
the model performance; besides, the non-linearity of water quality parameters has certain
restrictions on the algorithm. These issues make the remote sensing inversion of water
quality parameters more challenging. Statistical regression [26,27], neural networks [28–31]
and other methods have been used to build water quality parameter inversion models.
However, with the increasing accuracy requirements for water quality parameter inversion,
more and more studies have been conducted to improve the original inversion model by
optimizing and building new models to improve the inversion results of water quality
parameters [32–34]. Some researchers have developed models based on semi-analytical
algorithms to utilize multispectral and hyperspectral remote sensing to draw algal con-
centrations in inland waters. An optical model to determine parameter concentrations
has been developed based on the optical properties of some substances contained in the
algae attenuation and backscattering of other optically active components in turbid inland
waters [35]. For water quality parameter inversion, multiple linear stepwise regression is a
common linear method. However, due to the complexity of surface influences, the relation-
ship between surface water quality parameters and high-resolution data does not strictly
follow linear statistical law. In recent decades, the application of some non-linear methods,
such as neural networks [36], random forest [37,38], fuzzy recognition [39,40], principal
component regression [41,42], least squares regression [43,44] and quadratic polynomial
stepwise regression, have advanced the research on water quality parameter inversion.
Based on this, many researchers have further developed and applied these methods to
propose some new methods, including support vector machines for particle swarm opti-
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mization (PSO) [45,46] and modified gray correlations [47]. Since ordinary neural networks
tend to fall into local minimal values during the training process, a new method for opti-
mizing neural networks has been proposed. Among the improved back-propagation neural
network (BPNN) algorithms, commonly used ones include the particle swarm optimization
algorithm and the genetic algorithm. The genetic algorithm cannot solve the problem of
high-dimension optimization when the population size is from 30 to 50 and it is unable to
obtain better results at a large spatial scale. However, the genetic algorithm has a slower
computing speed and consumes more storage space. One population contains hundreds or
thousands of models, which is a big challenge for computation.

In order to improve the ability and efficiency of the algorithm for suspended matter
concentration inversion, in this study an inversion model was built by optimizing the neural
network with the partial least squares (PLS) algorithm and the particle swarm optimization
algorithm. Based on the GF-2 remote sensing image data and the measured suspended
matter concentration in the field, this study will integrate the partial least squares algorithm,
the particle swarm optimization algorithm analysis and the BPNN to build a new and more
accurate inversion model for the suspended matter concentration (Figure 1).
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2. Materials and Methodology
2.1. Study Area

The Haihe water system is the largest water system in North China. It starts from the
Zhanghe River as the source and ends at Dagukou flowing into the Bohai Bay, with a total
length of 1031 km and a watershed area of 263,300 km2. The study area is located in the
lower reaches of the Haihe River (Figure 2). It is mainly situated in the Binhai New Area
of Tianjin.
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2.2. Datasets
2.2.1. Remote Sensing Image Data

The GF-2 satellite is equipped with two high-resolution 1-m panchromatic and 4-m
multispectral cameras, with a sub-meter spatial resolution, a high positioning accuracy
and a fast attitude maneuverability. In this study, the 4-m-resolution multi-spectral CCD
image acquired from PMS 2 sensor on 23 June 2019 was used. The image scene number
was 4072610. The main image preprocessing included radiometric calibration, atmospheric
correction, cropping and cloud removal. The gray values of the GF-2 PMS 2 image were cali-
brated with absolute calibration coefficients and radiometric calibration, using Equation (1).

Le = Gain × DN + Bias (1)

where Le is the equivalent radiance at the entrance pupil of the satellite load channel, Gain
and Bias are the gain and offset of the calibration coefficient, respectively and DN is the
observation value of satellite load. The gain of the four bands of GF-2 PMS 2 was 0.1434,
0.1595, 0.1511 and 0.1685, respectively and the offsets were all 0.

After comparing a variety of methods, the Atmospheric Correction module was used
for atmospheric correction. The longitude and latitude of the imaging center point were
automatically obtained from the image by the fast line-of-sight atmospheric analysis of
the spectral hypercubes model. The sensor height was 631 km and the pixel size was
4 m. The average height of the imaging area was set as the average altitude of Tianjin and
the imaging time was automatically obtained. The atmospheric model and the aerosol
model were finally confirmed as mid-latitude summer and Rural, based on the latitude,
longitude and the image area. Due to the lack of short-wave infrared bands, the aerosol
inversion method was set as None; the visibility was set to be 40 km; the spectral response
function was downloaded from the “China Resources Satellite Application Center”; the
block processing was set to be 100 m; the space subset outputs the panorama by default;
and the output reflection range was 0~10,000.
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2.2.2. Band Data

In this study, the BPNN model was the basis and its inversion accuracy was directly
dependent on the input layer data. Based on the optical properties of the water quality
parameters and using the partial least squares model, the influential wavelength factors on
the water quality parameters were selected as the input layer data of the neural network
model. The reflectance of pure water in the blue-green band was about 4%, the reflectance
of the red band below 600 nm was significantly reduced, almost all of the incident energy
was absorbed in the near-infrared and short-wave infrared parts and the reflectance of these
bands was basically zero. However, there was no pure water in the surface water and many
other substances contained in the water could have affected the reflectance of the water to
a different extent. The spectral distribution of water is mainly influenced by chlorophyl
a (Chl a) and suspended matter. Chl a and other pigment factors affect the reflectivity of
water by absorbing incident light at different wavelengths, while suspended matter affects
the reflectance of water through scattering incident light by solid particles suspended in
the water. The scattering effect of the suspended matter increases the reflectance of the
water within the whole wavelength. According to the correlation analysis of the band data
and the measured suspended matter concentration, reflectance at the third band was used
as the single-band data to invert the suspended matter concentration.

The combination of band data reduced the errors of the remote sensing image itself to
a certain extent. Moreover, a reasonable combination of bands was used as an important
input layer data of the neural network model. Previous studies have used the correlation
coefficient between the band data and the measured water quality parameters as an impor-
tant reference for the selection of neural network input values [48]. It was found that there
may be a nonlinear relationship between water quality parameters and remote sensing
image data. However, the correlation coefficient is designed to evaluate the degree of linear
correlation between the two variables. The neural network has a strong nonlinear fitting
ability, so using the correlation coefficient to select data for the inversion of water quality
parameters has some limitations. Considering the relatively high requirements of neural
network modeling on the modeled samples, the partial least squares algorithm was able to
combine and extract the information from the multi-dimensional independent variables
to obtain the principal components, which had the strongest interpretation ability on the
dependent variable and could summarize the information of the independent variables
well. This effectively overcame the problem of multiple correlations between the variables
and reduced the dimensionality of high-dimension data. In this study, the components were
extracted through the partial least squares regression process and the principal components
contributing to mutation information were screened out based on the covariance matrix
by the principal component analysis process. This realizes the reduction in the screening
and dimensionality in the large amount of band combination raw data. Then the screened
components were used as input variables for the neural network to perform the neural
network modeling.

2.2.3. Measured Water Quality Parameters

On 23 June 2019, a total of 41 sampling points were set and numbered from 1 to
41 along the Haihe river. Water samples were collected at each sampling point and the
world geodetic system 1984 (WGS 84) coordinates of each sampling point were recorded
using a handheld global positioning system (GPS). The water samples were processed by
laboratory physicochemical analysis to obtain the suspended matter concentration. Figure 3
shows photographs of the water samples collected in the field. The selected GF-2 remote
sensing images only covered sampling points No. 1–29 on 23 June 2019, so the data from
these 29 group images were used in the final analysis. Among them, 23 groups were used to
build the inversion model for suspended matter concentration and the remaining 6 groups
were used to validate the model.
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2.3. Methods

It is understood that the change in water quality parameters is non-linear. The pow-
erful learning ability of BPNN enables it to better fit the relationship between the remote
sensing image data and the measured data; thus, it is a powerful tool to solve the nonlinear
problem of water quality parameters. The partial least squares algorithm has advantages
such as the objective interpretation of variables, support for a small number of samples
and dimension reduction and it can be used as a method for screening neural network
input values. The particle swarm optimization algorithm is a group intelligence algorithm
designed to solve the problem of the global optimal solution, which can effectively mitigate
the overfitting that exists in BPNN. Therefore, this study combined the partial least squares
algorithm, the particle swarm optimization algorithm and BPNN to build an inversion
model for suspended matter concentration. This model could effectively solve the overfit-
ting and nonlinearity problems in suspended matter concentration inversion using remote
sensing data and thus greatly improve the inversion accuracy.

2.3.1. Partial Least Squares Model

Partial least squares regression is a method for multivariate statistical regression
analysis and can model many-to-many linear relationships [49]. It is used when there are
a large number of variables in two groups with multiple correlations but the number of
observed samples is small. The modeling process is comprised of principal component
analysis, typical correlation analysis and linear regression analysis. Therefore, besides
building a more reasonable regression model, the analysis results include more rich and
in-depth information derived from the above three methods. In this study, a partial least
squares model was built using Matlab. On the one hand, the regression equation was
solved and the suspended matter concentrations were inverted; on the other hand, the
inversion results were used as the reference for screening the input layer data of neural
network. The core code of the algorithm is listed below.

[XL, YL, XS, YS, BETA, PCTVAR, MSE, stats] = plsregress (X, Y) (2)

where X and Y are the independent and dependent variables, XL and YL are the loadings
of the independent and dependent variables, XS and YS are the principal component
score matrices, BETA is the final regression expression coefficient matrix, PCTVAR is the
contribution of the corresponding principal component and MSE is the residual standard
deviation matrix. Finally, the result is stored in the structure stats.

The coefficients of the factors in the partial least squares regression model are shown
in Figure 4. According to the regression results, B2/B1, B3/B1 and B3/B2 were positively
correlated with the suspended matter concentration, while B1/B2, B2/B3 and B1/B3 were
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negatively correlated with the suspended matter concentration and played a decisive role
in the regression model. Figure 5 shows the deviation between the inverted values using
the partial least squares regression model and the measured values. For this regression
model, the absolute error was basically less than 4.0 mg/L and the root mean square error
was 3.68 mg/L. The regression modelling results were used as the data selection criteria for
the input layer of the neural network and the factors that played a major role in the partial
least squares model were selected. In order to meet the diversity of data, a total of 8 sets of
data including B3 and (B4 − B3)/(B4 + B3) were added as the input layer data to build the
neural network inversion model.
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2.3.2. BPNN Model

BPNN is a multilayer feedforward neural network trained using the error backpropa-
gation algorithm and it is the most widely used in water quality parameter inversion. Its
inversion accuracy is mainly affected by factors including the input data, the number of
implicit layers, the implicit layer nodes and the choice of learning function. Therefore, to
deal with different problems, corresponding improvement methods are adopted to obtain
inversion results with higher accuracy. When building the neural network inversion model
of water quality parameters, the input data were generally divided into the training set, the
validation set and the test set. Considering the small amount of data, the neural network
model was built by cross-validation using the leave-one-out method. Specifically, one of all
the training samples was left at a time to complete the validation, then the average value
of result was finally obtained after a repeated iteration, which was used as the judging
standard for the model. To some extent, the use of this method mitigated the effect of
the small sample size on the accuracy of BPNN inversion. BPNN consists of an input
layer, a hidden layer and an output layer and the hidden layer can be further divided
into a single hidden layer and multiple hidden layers according to the number of layers.
Compared with single-hidden layer neural networks, multi-hidden layer neural networks
have a longer training time, but their generalization ability is strong and their prediction
accuracy is high. For complex mapping relationships, selecting multiple hidden layers
can improve prediction accuracy. Generally, with the increase in the number of nodes,
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for simple function fitting, the neural network prediction error decreases; but for more
complex problems, the network prediction error decreases and then increases. Therefore,
the determination of the number of nodes is very important for the development of the
neural network model. In practice, the selection of the number of nodes in the hidden
layer affects the inversion effect of neural network training involving different data. This
directly affects the accuracy of the water quality parameter inversion model and there is
no exact criterion for the selection. If the number of hidden layer nodes is too small, the
BPNN cannot establish a complex mapping relationship and the network prediction error
is big; however, if the number of nodes is too large, the network learning time increases
and overfitting may occur.
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In order to obtain a higher inversion accuracy, this study built a neural network
inversion model with two hidden layers. To determine a better node number of the hidden
layer, the two hidden layer nodes were paired one by one from 1 to 23. Specifically, the
number of neurons in the second hidden layer was fixed and the number of neurons in
the first hidden layer was cycled in each test. According to the absolute error of the test,
when the number of nodes in the second hidden layer is smaller than 3, the training neural
network model is very unstable, the root mean square error of the training set fluctuates
greatly and the absolute error of the test is very large; when the number of nodes in the
second hidden layer is larger than 4, the root mean square error of the training set tends
to be stable and the absolute error of the test gradually becomes smaller. Based on the
above tests, the number of nodes in the second hidden layer was determined as 9. Similarly,
the best training effect was obtained when the number of the first hidden layer node was
9. Thus, in this study, a two-hidden-layer neural network model, respectively, with the
number of nodes as 9, was built. As shown in Figure 6, the inverted value of the BPNN
was basically consistent with the measured value with the error concentrated below 0.6
mg/L and the root mean square error of 0.57 mg/L. This is a big improvement in fitting
over the partial least squares model (Figure 6).
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2.3.3. The Model Combines the PLS Algorithm and the PSO Algorithm to Optimize the
BPNN Model

The neural network model greatly improved the accuracy of water quality parameter
inversion due to its strong nonlinear fitting ability. However, it is prone to overfit, which
limits the inversion accuracy of the BPNN model. The BPNN algorithm requires that the
squared error of the expected value and the output value of all samples is less than a small
given error allowed. The smaller the error, the higher the fitting accuracy and the higher
the prediction accuracy of the network. As the fitting error decreases, the prediction error
also decreases at the beginning; but when the fitting error decreases to a certain value, the
prediction error increases instead, indicating that the generalization ability of the network
is reduced. This is the overfitting phenomenon in the modeling of BPNN. Determination
of the weights and thresholds of the neural network model is an important step in the
BPNN modeling process, which is the determining factor of the learning process of the
neural network. The optimization by particles using the particle swarm optimization
algorithm could greatly improve the training accuracy and prediction ability of the neural
network. The core of the particle swarm optimization algorithm is the collaboration
between individuals in the group and the sharing of information. This determines an
effective rule for the movement of particles in space and makes the movement of the
whole group in space orderly. Finally, all the individuals in the group gather around the
optimal solution and find the best solution, so as to solve the problems in the inversion
of water quality parameters by neural networks and optimize the parameters of neural
networks. The particle swarm optimization algorithm optimizes the neural network as
follows: determining the feasible domain of the optimization problem, randomly scattering
some particles into the feasible domain at the initial moment and assigning an initial
random position and an initial random velocity to each particle. Then each particle’s
position is advanced in turn according to its velocity, the known optimal global position
in the problem space and the known optimal position of the particle. The d-dimension
velocity update formula for each iteration of particle is shown in Equation (2). As the
computation progresses, by using the known vantage point in the search space and the
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exploration of the next position, the particles gather or aggregate around one or more best
points. The advantage of this algorithm is that it preserves the optimal global position and
the known optimal position of the particles. These two pieces of information are effective
for a faster convergence and for avoiding prematurely falling into local optimal solutions
and they also lay the foundation for subsequent improvement of the BPNN inversion
model using particle swarm optimization algorithms. The evaluation of the particle swarm
optimization algorithm is shown in Equation (3).

Vk
id = WVk−1

id + C1R1

(
pbestid − Xk−1

id

)
+ C2R2

(
gbestd − Xk−1

id

)
(3)

where C1 and C2 are social learning factors and individual learning factors, R1 and R2 are
random functions with the value range of [0, 1] to increase randomness of the search and
W is the inertia weight to adjust the search range of the space.

In the previous section, the specific structural parameters of the input layer, hidden
layer and output layer were determined. Then the data were added to be trained, the
expected output values were given and the particle swarm optimization algorithm was
added. The neural network model was optimized by the particle swarm optimization
algorithm mainly through adjusting the weights and learning factors to solve the problem.
The weights of the algorithm were adjusted by comparing the weights of linear decreasing
weights, adaptive adjusting weights and stochastic weights. The learning factors of the
particle swarm optimization algorithm were adjusted by comparing the contraction factors,
synchronous learning factors and asynchronous learning factors. The parameters of the par-
ticle swarm optimization algorithm were initialized, including the velocity–displacement
vector of the particles, the number of iterations, the learning factor and the inertia weights.
From the tests, the parameters were finally set as follows: the number of particles was
generally determined by the sample, which was set as 100; the learning factor corresponded
to the group learning ability and self-learning ability of the particles, which were both set
as 2.5. The weight affected the particle’s ability to update velocity, which was set to linearly
decrease to adjust the weight. The adaptive function was set as the error function of the
neural network.

The optimization processes were as follows. (1) The errors of the neural network were
used as the fitness function of the particles, the fitness values of the particles were calculated
and the individual extremes and the global optimal extremes were determined. (2) The
velocity displacement of the particle was updated and calculated to obtain the particle
fitness update value. (3) The individual and global extremes of the particles were repeatedly
updated according to the new fitness values. (4) After repeated iterations, when the error
reached the expected value or the iteration times reached the set maximum number, the
particle swarm optimization algorithm was terminated and new neural network weights
and thresholds were set based on the optimal result obtained.

The inversion results of the BPNN model after optimization by the partial least squares
algorithm and particle swarm optimization algorithm (PLS-PSO-BPNN) are shown in
Figure 7. The absolute error of PLS-PSO-BPNN model was increased to a certain extent
compared with the BPNN model, with the root mean square error of 6.64 mg/L. It indicates
that the PLS-PSO-BPNN model does not fit as well as the BPNN model and alleviates a
certain degree of overfitting.
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3. Results

In this study, the accuracy of the partial least squares model, the BPNN model and the
optimized PLS-PSO-BPNN model were verified against the measured suspended matter
concentration at six sampling sites, based on the absolute error, root mean square error,
correlation coefficient and relative root mean square error. The absolute errors of the three
inversion models at the sampling points are compared in Figure 8. Table 1 compares the
errors of the training data and the test data of the three models. The root mean square
error of the training data of the PLS-PSO-BPNN model was large, but the root mean square
error of the test data was the smallest, which also reflects the overfitting phenomenon of
the BPNN model. It shows that the inversion model based on the partial least squares
algorithm had a larger absolute error, while the accuracy of the BPNN inversion model
was greatly improved. It indicates that the inversion model built by BPNN can be well
applied to the remote sensing inversion of suspended matter concentration. Moreover,
the PLS-PSO-BPNN model, to which both the partial least squares and the particle swarm
optimization algorithm were added on the basis of the traditional neural network model,
improved the accuracy of suspended matter concentration inversion to some extent.

By comparing the errors between the inversion values and the measured values of
the training set and the verification set based on the three models, it was found that the
inversion results of the two neural network models were far superior to the partial least
squares model, which proves the advantages of the neural network applied to water quality
parameters. Among the three inversion models, the BPNN had the best fitting of the
training set, but the fitting degree of the validation set was not the best, mainly because the
BPNN had serious fitting when the suspended matter concentration inversion model was
constructed, which led to a deviation in the predicted value of the verification point and a
decrease in accuracy. This was also the problem to be solved by introducing the particle
swarm optimization algorithm. From the experimental results, the PLS-PSO-BPNN model
improved the inversion accuracy of water quality parameters.

The PLS-PSO-BPNN model was applied to invert the suspended matter concentration
in the formed waters and the results are shown in Figure 9. The brighter the color of the



Sustainability 2022, 14, 2221 12 of 16

grid, the higher the concentration of suspended matter. A high concentrations of suspended
solids was observed in the waters adjacent to the southern shore.
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4. Discussion

Remote sensing technology used in water quality parameter inversion is affected by
many factors. First, remote sensing images are limited by the spatial resolution, spectral
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resolution and temporal resolution. Second, topography, climate, seasons and other factors
also affect the accuracy of the remote sensing inversion of water quality parameters to
some extent. Third, the water body itself is a complex system. Waters in different areas
and different seasons show different states. The number of water quality parameters in
water is much more than expected and different water quality parameters interact with
each other, which makes the water environment very complex. A large number of previous
studies have successfully applied remote sensing technology in the water quality parameter
inversion. However, due to the complexity of the water environment, the relationship
between spectral reflectance and water quality parameters is nonlinear. The development
of traditional linear regression models is insufficient to perform an accurate inversion of
water quality parameters. Therefore, to mitigate the effect of the above factors, the main
focus of the remote sensing inversion of water quality parameter is improving the inversion
accuracy.

Compared with previous studies, the main improvements of this study are reflected in
the following aspects. First, this study found that the BPNN greatly improved the accuracy
of the remote sensing inversion of suspended matter concentration, compared with the
statistical regression model. The inversion accuracy increased from 9.50 mg/L to 4.04 mg/L.
Second, to tackle the over-fitting problem of BPNN, this study used the particle swarm
optimization algorithm to optimize the weight and threshold of BPNN, which effectively
avoids the problem that BPNN can easily to fall into, creating the local optimal solution
and thereby improving the inversion accuracy of suspended matter concentration by the
neural network. The relative errors of the results were reduced overall and the variance of
the corresponding results of the model was also relatively reduced. This indicates that the
inversion using the neural network model optimized by the particle swarm optimization
algorithm was more accurate and more stable. Third, the screening rule of the BPNN input
layer data is always lacking a theoretical basis. This study introduced the partial least
squares algorithm into the screening of the neural network input layer data, which provided
a more scientific insight on this process. Fourth, it was proven that the improved PLS-PSO-
BPNN model optimized by partial least squares algorithm and particle swarm optimization
algorithm had a good performance in the inversion of suspended matter concentration. This
improved model can provide a methodological reference for the inversion of suspended
matter concentration in other regions.

5. Conclusions

This study demonstrated the feasibility of using high-resolution remote sensing images
to perform a rapid assessment of suspended matter concentration inversion. It developed
an optimized neural network model based on the partial least squares algorithm and the
particle swarm optimization algorithm, the PLS-PSO-BPNN model and used the mea-
sured suspended matter concentration data and GF-2 remote sensing image data to invert
suspended matter concentration of suspended matter.

The inversion results indicated that the accuracy was very high. In this model, the
partial least squares algorithm can extract neural network input values more scientifically
and optimize the selection rules of neural network input values. The particle swarm
optimization algorithm could handle the over-fitting problem of neural network and
optimize the neural network model.

In this study, the particle swarm optimization neural network model was used and
the partial least squares method was introduced to the original neural network input value
selection method, which further improved the suspended matter concentration inversion ac-
curacy and the theoretical basis of the inversion method. It can be seen that compared with
the traditional BPNN and the partial least squares inversion model, the PLS-PSO-BPNN
model combined the partial least squares algorithm and the particle swarm optimization
algorithm and its inversion accuracy of the remote sensing image was significantly higher.
First, this proved the outstanding advantages of BPNN algorithm in the research of water
quality parameter remote sensing inversion. Secondly, the proposed BPNN algorithm
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provides a new idea for improving the accuracy of water quality parameter remote sensing
inversion by not only dealing with the problems of the neural network algorithm in the
actual water quality parameter inversion, but also being optimized to overcome limita-
tions of its own algorithm. Finally, even under the influence of various complex factors
such as water, seasons and images, the algorithm was able to perform a fast and accurate
inversion of the water quality parameters in large areas of water through corresponding
parameter adjustment.
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