
����������
�������

Citation: Li, Q.; Chen, L.; Yan, Z.; Xu,

Y. Exploration of Copula Models Use

in Risk Assessment for Freezing and

Snow Events: A Case Study in

Southern China. Sustainability 2022,

14, 2568. https://doi.org/10.3390/

su14052568

Academic Editors: Jun Yang,

Bing Xue, Jianhong (Cecilia) Xia,

Dongqi Sun, Ye Wei, Zhi Qiao and

Enxu Wang

Received: 6 January 2022

Accepted: 21 February 2022

Published: 23 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Exploration of Copula Models Use in Risk Assessment for
Freezing and Snow Events: A Case Study in Southern China
Qian Li 1,2, Liutong Chen 1,2, Zhengtao Yan 1,2 and Yingjun Xu 2,3,*

1 State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science,
Beijing Normal University, Beijing 100875, China; liqian@mail.bnu.edu.cn (Q.L.);
201921051151@mail.bnu.edu.cn (L.C.); 202021051174@mail.bnu.edu.cn (Z.Y.)

2 Academy of Disaster Reduction and Emergency Management, Ministry of Emergency Management &
Ministry of Education, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China

3 School of National Safety and Emergency Management, Beijing Normal University, Beijing 100875, China
* Correspondence: xyj@bnu.edu.cn

Abstract: Due to cold waves, low and extremely low temperatures occur every winter. Sudden cooling
can cause freezing and snow disasters, which seriously affect transportation, power, safety, and other
activities, resulting in serious economic losses. Based on precipitation and average temperature data
from 258 national meteorological stations over the past 70 years, this study established a historical
freezing and snow event data set, extracting the accumulated precipitation intensity (API) and
accumulated temperature intensity (ATI). We selected the optimal distribution function and joint
distribution function for each station and calculated the univariate and bivariate joint return periods.
The return period accuracy plays an important role in risk assessment results. By comparing the
calculations with the real return period for historical extreme events, we found that the bivariate joint
return period based on a copula model was more accurate than the univariate return period. This is
important for the prediction and risk assessment of freezing and snow disasters. Additionally,
a risk map based on the joint return period showed that Jiangsu and Anhui, as well as some
individual stations in the central provinces, were high-risk areas; however, the risk level was lower in
Chongqing and the southern provinces.

Keywords: risk assessment; bivariate return period; risk map; cold wave; snow disasters

1. Introduction

Global warming increases instability in the climate system, thereby increasing the fre-
quency and intensity of extreme weather events [1–3]. Although the probability of extreme
events is small, their impacts are serious, which is an important issue in current research.
Currently, extreme high temperature events receive more attention than cold events, but
recent weather extremes have shown an increase in cold air outbreaks and/or severe snow-
falls across the Northern Hemisphere from 1990 to the recent past [4,5]. Moreover, global
warming may exacerbate the cold events or lead to extremely cold winters in China [6].
However, cold wave disasters are frequently dismissed as having minimal probability,
resulting in insufficient disaster prevention preparation, such as social underestimation of
risks and lack of emergency equipment, ultimately increasing the risks [7]. Therefore, the
study of extremely low temperature events in such areas should not be ignored.

However, extremely low temperature events have frequently occurred worldwide in
recent years. The most recent example was the anomalously cold weather of January and
February 2021 in Asia, Europe, and North America [2,6]. China has also suffered from
extremely low temperature events, resulting in heavy losses [8]. Cold winter temperatures
in southern China have become more frequent, while the preparation is insufficient, thereby
resulting in more loss and increased risks. For example, in 2008, Southern China experi-
enced the coldest winter in nearly 30 years. This disaster seriously impacted transportation,
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energy supply, power transmission, communication facilities, agricultural production, and
daily life, causing RMB 151.65 billion of direct economic losses. Scholars estimated that
the return period for this event was 50 to 100 years [9]. However, in January 2016, a more
serious freezing and snow disaster occurred in southern China. According to the China
Meteorological Administration, an area of 7.86 million km2 experienced a temperature drop
exceeding 6 ◦C from January 20 to 25 in 2016, changing the record of the southernmost
boundary for snow [10]. From the perspective of the disaster formation mechanism in
southern China, the anomaly of atmospheric circulation caused by the La Niña event led
to a wide range of sustained low temperatures. At the same time, the cold air from the
polar region meets the warm air from the tropical ocean in the middle and lower reaches of
the Yangtze River; this is considered the main reason for freezing and snow events [11,12].
On the other side, the cold events are related to the impact of sea surface temperature
anomalies in the tropical western Pacific and Northwest Atlantic on mid-high latitude
and subtropical circulation anomalies [13]. Therefore, it is important to assess the risk of
low-temperature disasters in these areas.

Analyzing the frequency and the probability of natural disasters facilitates a better
understanding of their mechanisms. The return period has become an important tool
for analyzing the possibility of occurrence and assessment of natural disasters. It can
provide policy support for disaster prevention, which aids in building disaster reduction
facilities [14], designing project standards [15,16], and making decisions on insurance and
investment [17]. Additionally, it can aid decision-making departments and the public in
understanding disaster risks and reducing disaster losses and impacts. The return period
is widely used in meteorological, hydrological, and other natural disaster fields [18,19].
As the return period accuracy directly affects the risk assessment results, the method for
calculating the return period is important. Various calculation methods of the return period
showed different effects with disasters; therefore, it is important to select a more suitable
method for disaster assessment. Traditional disaster studies used multivariate analysis
based on linear correlation or common distribution functions [20]. However, the copula
function model has been widely used in natural disaster analyses recently. It can flexibly
describe the relationships among multivariate factors and has no marginal distribution
form restrictions. Studies have shown that copula models can improve evaluation accuracy,
and, thus, are widely used to assess the risks of drought, floods, earthquakes, sandstorms,
rainstorms, and typhoons [10,21,22].

Owing to anthropogenic warming, freezing and snow disasters are easily ignored;
therefore, many studies have focused on northern or northwestern China, where tempera-
tures are lower and more freezing and snow disasters occur frequently [23]. However, after
the disaster in Southern China in 2008, several studies focused on the mechanisms, charac-
teristics, impacts, and risk assessment of such disasters in this area [11,24,25]. Although
these studies assessed risks using various methods, none have evaluated the return periods
based on the copula model. Therefore, we chose southern China as the representative
to study freezing and snow events. We calculated the univariate and bivariate return
periods based on historical meteorological data. We evaluated their spatial characteristics
by comparing the calculated return periods with the average interval of historical events at
each station. The discussion on the return period accuracy of freezing and snow disasters
can provide a risk assessment method for countries and regions facing low temperature,
freezing and snow disasters. Moreover, our results will provide references to take effective
action for risk prevention and disaster reduction, help relevant departments accurately
respond to disaster events, and support the construction of facilities and the formulation of
emergency management standards.

2. Materials and Methods
2.1. Study Area

We chose 12 provinces (Anhui, Fujian, Guangdong, Guangxi, Guizhou, Hubei, Hunan,
Jiangsu, Jiangxi, Shanghai, Zhejiang, and Chongqing) in southern China as the study area
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(Figure 1). These areas are economically developed and densely populated. In 2020, the
population was 693 million, and the GDP was RMB 57.53 trillion, accounting for 49.08%
and 56.62%, respectively, of the national total. Although the overall winter temperatures
are mild, freezing temperatures, snow, and extremely low temperatures also occur. For
example, a rare freezing and snow disaster occurred in 2008, and heavy snow and blizzards
occurred in January 2016 and 2018 in the central and northern portions of the study area.
Some provinces have experienced record snowfall in the last 10 years.
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258 stations.

2.2. Data Sources and Factor Selection

This study selected 258 national meteorological stations in the study area (Figure 1).
The data included daily precipitation and daily average temperature during the winter
months (December, January, and February) from 1951 to 2020 and were downloaded
from the China Meteorological Data Service Centre (http://data.cma.cn, accessed on 15
June 2021). The data were screened according to the data quality control code. Digital
elevation data (“SRTMDEMUTM 90M”) was provided by the Geospatial Data Cloud site
from the Computer Network Information Center of the Chinese Academy of Sciences
(http://www.gscloud.cn, accessed on 22 June 2021).

We defined freezing and snow events according to the temperature and precipitation
thresholds in previous studies. The daily average temperature of ≤0 ◦C and the daily
precipitation of ≥0.1 mm were considered as freezing and snow days, and a freezing and
snow event was further determined by adjacent freezing and snow days [24,26,27]. Based
on this, a set of historical events was established for each station. Later, the accumulated
precipitation (AP), accumulated temperature (AT), and duration (D) were extracted through
each event, after which the accumulated precipitation intensity (API) and accumulated tem-
perature intensity (ATI) for each event were calculated according to Equations (1) and (2).

API =
AP
D

(1)

ATI =
∣∣∣∣AT

D

∣∣∣∣ (2)

where AP is the accumulated precipitation, AT is the accumulated temperature, and D
is the duration of the event. Using the annual maximum sampling method, the annual
extreme values of the above two indicators were extracted.

2.3. Methods
2.3.1. Fitting Distribution Functions

The annual extreme values of API and ATI were continuous random variables. Con-
sidering the entire area and different spatial properties in each region, we selected the best

http://data.cma.cn
http://www.gscloud.cn
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fitting distribution function for each station from among several common functions instead
of adopting one distribution function for all stations. Thus, different functions were used
to improve the accuracy of probability calculation. Nine distribution functions commonly
used in the fields of hydrology and meteorology were selected, specifically gamma, expo-
nential, lognormal, Weibull, normal, generalized extreme value, extreme value (Gumbel),
Poisson, and generalized Pareto distribution functions. The optimal distributions for the
factors were determined using the Kolmogorov–Smirnov test at a significance level of 0.05.
The maximum likelihood method was used for the parameter estimations.

2.3.2. Construction of the Copula Model

The copula method, which was based on Sklar’s theorem [28], was first proposed
in 1959 to explain nonlinear correlations among multiple factors. It can obtain a joint
distribution by using multiple marginal distributions, and, thus, is closer to the actual
events. Therefore, it has been widely used in probabilistic calculations and disaster risk
assessments.

The copula function plays an important role in connecting the joint distribution func-
tions of random variables (x, y) with their corresponding marginal distribution functions
FX(x) and FY(y), namely, copula function Cθ(U, V), which can be illustrated as follows:

F(x, y) = Cθ(FX(x), FY(y)), ∀x, y (3)

where FX(x) and FY(y) are the corresponding marginal distribution functions of random
variables (x, y), and C is the copula function with the parameter θ.

The Gaussian copula, t-copula, and Archimedean copula are widely used because of
their simple calculations. Clayton, Frank, and Gumbel are the most common Archimedean
copula. Thus, we chose these five types of copula functions for this study, and their
formulas are presented in Table 1. The maximum likelihood method was used for parameter
estimation, and the goodness-of-fit was calculated using the root mean square error (RMSE)
and Akaike information criterion (AIC) [29]. The computation was completed in MATLAB.
The minimum goodness-of-fit value indicates the best fitness. Later, the optimal copula
function for each station was selected.

Table 1. Copula functions used in this study.

Copula Functions

Gaussian Copula C(u, v; ρ) =
∫ ∅−1(u)
−∞

∫ ∅−1(v)
−∞

1
2π
√

(1−ρ2)
exp

[
− x2−2ρxy+y2

2(1−ρ2)

]
dxdy

t-Copula C(u, v; ρ, δ) =
∫ t−1

δ (u)
−∞

∫ t−1
δ (v)
−∞

1
2π
√

(1−ρ2)

[
1 + x2−2ρxy+y2

δ(1−ρ2)

]−(δ+2)/2
dxdy

Clayton Copula C(u, v; θ) =
(

u−θ + v−θ − 1
)− 1

θ

Frank Copula C(u, v; θ)− 1
θ ln(1 + (e−θu−1)(e−θv−1)

e−θ−1 )

Gumbel Copula C(u, v; θ) exp

(
−
[(
− ln uθ

)θ
+ (− ln v)θ

] 1
θ

)
Where C represents the copula function with different parameters of ρ, δ and θ, x and y are the random variables,
and u and v are the corresponding marginal distribution.

2.3.3. Calculations and Comparisons of Return Periods

We defined N as the time sequence length of the freezing and snow events and n as
the number of events. Thus, E(L) is the average interval of events.

E(L) =
N
n

(4)
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The univariate return period, TAPI or TATI, is calculated as follows:

Tx =
E(L)

1− F(x)
, FX(x) = PX(X ≤ x) (5)

where T represents the return period, E(L) is the average interval of events, F(x) is the
corresponding marginal distribution, and X is the random variable (API and ATI).

The bivariate joint return period TAPI&ATI, based on the copula function, can be
expressed as

T(x, y) =
E(L)

P(X ≥ x ∪Y ≥ y)
=

E(L)
1− P(x, y)

=
E(L)

1− C(FX(x), FY(y))
=

E(L)
1− C(u, v)

(6)

where T represents the return period, E(L) is the average interval of events, FX(x) and FY(y)
are the corresponding marginal distribution, x and y represent the random variables API
and ATI, and C is the copula function.

Using our historical freezing and snow event data set, we defined the 75% quantile
of the API and ATI index values for each station as the threshold for extreme events and,
thereby, extracted the extreme event database [30].

The average interval of the past extreme events was calculated as the return period
(Treal) to check the relevant results [10,21]. The univariate return period for API (TAPI) and
ATI (TATI) and the joint return period for the two indicators (TAPI&ATI) were calculated
based on Equations (4)–(6). The error ratio between the theoretical return periods and the
historical return period was calculated as follows to determine the accuracy of each method.

Error Rate =
T − Treal

Treal
× 100% (7)

where T represents the univariate/joint return period, and Treal is the average interval for
the historical events.

3. Results
3.1. Spatial Distribution of Frequency and Duration

The historical spatial distribution of freezing and snow events was analyzed by cal-
culating the historical average duration (Figure 2a), historical maximum duration (Fig-
ure 2b), and frequency (Figure 2c). Considering the average duration, regional differences
among stations were small, and the average duration varied from 0 to 3.7 d. The dura-
tion was longer at higher elevations in the west and was shorter in Northeast Jiangsu,
northwest Chongqing, southern Guangxi, and Guangdong. The average duration was
approximately 1.5 to 2.0 d in the northern and central eastern regions of the study area.
The duration was over 2.5 d for sixteen stations, including 12 in Guizhou, two in Jiangxi,
and one each in Hunan and Hubei. Due to the relatively high elevation in Guizhou, this
area was prone to lower temperatures for longer periods. The other four stations (Wufeng,
Nanyue, Jinggangshan, and Lushan) were also high-elevation areas, with an average ele-
vation of approximately 973.3 m. A comparison of the maximum duration revealed large
differences in the values ranging from 0 to 33 d. The duration was over 20 d for 17 stations,
including 8 in Guizhou, 4 in Hunan, and other stations in the central parts. Most stations
that experienced an extremely long duration were in Guizhou and Hunan; this spatial
distribution is also similar to the average duration.
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average duration, (b) maximum duration and (c) average frequency at each station.

There were significant regional differences in average annual frequency, ranging from
0 to 14.3. The spatial distribution was regular, except for a few high-value points, and it
gradually decreased from north to south. The high-value stations were in the north and
scattered throughout the center of the study area. There were 11 stations with an average
of more than seven freezing and snow events per year. However, 69 stations had one or
fewer yearly events; these were concentrated in Chongqing and the southern areas, mainly
in Guangxi, Guangdong, and Fujian.

3.2. Construction of Distributions
3.2.1. Univariate Distributions

Among the selected distributions for the API data, the optimal distribution was the
generalized extreme value distribution for 96 stations, gamma distribution for 37 stations,
generalized Pareto distribution for 34 stations, and lognormal, Weibull, and other distri-
butions for the remaining stations. For the ATI data, the optimal distribution was the
generalized extreme value distribution for 93 stations, Weibull distribution for 51 stations,
gamma distribution for 23 stations, and lognormal and normal distributions for the remain-
ing stations. We randomly selected two stations as examples (Weining station and Puan
station). The optimal distributions and parameter estimations for these two stations are
listed in Table 2 and the fitness results are shown using a quantile-quantile plot in Figure 3.

Table 2. Distributions functions of API and ATI for Weining and Puan stations.

Variable Station Type Distribution Function Parameters

API Weining Generalized Extreme Value f =
(

1
σ

)
exp

(
−
(

1 + k (x−u)
σ

)− 1
k
)(

1 + k (x−u)
σ

)−1− 1
k

k = 0.64
µ = 0.91
σ = 1.24

ATI
k = −0.20
µ = 1.29
σ = 4.91

API
Puan

Lognormal f = 1
xσ
√

2π
exp

{
−(log x−µ)2

2σ2

} µ = 1.08
σ = 0.79

ATI Generalized Extreme Value f =
(

1
σ

)
exp

(
−
(

1 + k (x−u)
σ

)− 1
k
)(

1 + k (x−u)
σ

)−1− 1
k

k = −0.12
µ = 0.84
σ = 2.06
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Figure 3. Comparisons of the theoretical distribution function with the empirical distribution function
for (a) API and (b) ATI. The data were from Anshun station in Guizhou Province.

3.2.2. Bivariate Joint Distribution

To construct the bivariate joint distribution, the parameters of the copula function were
calculated, and a goodness-of-fit test was carried out using the RMSE and AIC. The relevant
parameter estimation and goodness-of-fit results are listed in Table 3. Subsequently, the
joint distribution was established, and the results are shown in Figure 4a. The optimal
copula model, according to the goodness-of-fit test, was the Clayton copula for 108 stations,
Frank copula for 66 stations, Gumbel copula for 30 stations, T-copula for 19 stations, and
Gaussian copula for the remaining stations.

Table 3. Parameters and goodness-of-fit tests for the copula function.

Station Copula Parameter
Estimation RMSE AIC Selected

Copula

Puan

Gaussian
Copula 0.2442 0.0211 −458.822

t-Copulat-Copula 0.2516 0.0210 −459.668
Clayton
Copula 0.2716 0.0221 −455.337

Frank Copula 1.4752 0.0214 −459.145
Gumbel
Copula 1.1657 0.0233 −449.345
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3.3. Calculation of the Return Period

The univariate return period was calculated using Equation (5), while the joint return
period for API and ATI was calculated according to Equation (6); the result is shown in
Figure 4b. Four different return periods were used: 5, 10, 30, and 50 a. Table 4 shows that
the joint return period is always less than the univariate return period. As the univariate
return periods increased, the bivariate joint return period also increased.

Table 4. Return periods defined separately by API and ATI, and the corresponding joint return peri-
ods.

Univariate
RP

Weining Station Puan Station Panxian Station Joint RP

API/mm ATI/◦C API/mm ATI/◦C API/mm ATI/◦C TARI&ATI TAPI TATI

5 3.52 6.58 5.70 3.22 4.89 2.85 2.84 3.01 2.81
10 5.81 7.24 8.07 3.73 8.45 3.61 5.39 5.75 5.30
30 12.20 8.08 12.50 4.42 16.91 4.86 15.66 16.78 15.29
50 17.08 8.40 14.87 4.70 22.50 5.48 25.93 27.82 25.29

3.4. Comparison of Return Period Accuracies

The accuracy of the return period directly affects risk evaluations; therefore, improving
the accuracy is crucial. Three types of return periods (real, bivariate, and univariate) were
estimated to select the most suitable for assessment. Taking the Badong station as an
example (Table 5), the 75% quantile of API and ATI were 4.13 mm and 1.58 ◦C, respectively,
and extreme events occurred in 1955, 1956, 1957, 1964, 1984, and 1991. The time intervals
between each adjacent event were 1, 1, 7, 20, and 7 years. Thus, the historical average
return period was 7.20 a, which was considered the real return period. Additionally, the
bivariate joint return period (TAPI&ATI) and univariate return periods (TAPI and TATI) were
estimated as 6.75, 35.35, and 12.86, respectively. The error rates of univariate and bivariate
return periods were 6%, 391%, and 79%, respectively.

Table 5. Error rate and comparisons among different return period accuracies.

Station
Extreme Event Threshold Return Period Error Rate/%

API/mm ATI/◦C Real TARI&ATI TAPI TATI TARI&ATI TAPI TATI

Badong 4.13 1.58 7.20 6.75 35.35 12.86 6% 391% 79%
Jingzhou 9.05 3.53 4.50 4.06 6.49 20.31 10% 44% 351%
Wuhan 11.20 4.45 4.50 3.90 6.79 10.79 13% 51% 140%
Laifeng 5.24 2.86 4.75 3.39 8.28 5.43 29% 74% 14%
Renhuai 3.60 1.52 5.57 5.357 12.89 10.00 4% 131% 80%

Approximately three-quarters of the calculated joint return periods were less than the
real return period, and the error rate was less than that of the univariate return periods.
In terms of return period accuracy, 108 stations had a joint return period error rate of less
than 50%, compared with 61 stations for API and 74 stations for ATI (Figure 5). There were
204 joint return periods with error rates of less than 100%, compared with 105 and 132 for
API and ATI, respectively. Thus, the joint return period had a much lower error rate than
that for the univariate types and can improve the return period accuracy of more stations.
Comparing the univariate types, the return period error rate for ATI was less than that for
API; thus, its accuracy was slightly higher. Therefore, the joint return period calculation
including both API and ATI can greatly improve the accuracy of risk assessments for
freezing and snow events.
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3.5. Risk Analysis of Severe Freezing and Snow Events

The average API and ATI values for freezing and snow events in the study area were
obtained, and the joint return periods for each station were calculated to evaluate the
regional risk. The larger the return period was, the smaller the probability of extreme
events. In contrast, the smaller the joint return period was, the higher the probability of the
event. Based on this, the joint return period for each station was used to create a risk map
(Figure 6). The map shows that the risk level in Jiangsu and Anhui, in the northern portion
of the study area, is high. In addition, the risk levels of individual stations in central Hunan,
Hubei, Guizhou, Jiangxi, and Fujian are high. Chongqing and the southern provinces in
the study area have large return periods and thus, low probabilities. Except for Chongqing
and a few central stations, the overall risk gradually decreases from north to south, which
is consistent with existing research [31–33].

Sustainability 2022, 13, x FOR PEER REVIEW 10 of 13 
 

 

Figure 6. Risk map for freezing and snow events. The historical average API and ATI data were 
used to calculate the joint return period to characterize the risk distribution. 

4. Discussion 
Based on the temperature and precipitation data of 258 meteorological stations, this 

study defined a data set of freezing and snow events over the past 70 years. By deter-
mining the optimal univariate distribution and bivariate joint distribution model for each 
station, the return period was evaluated to assess risks. From the spatial distribution of 
historical freezing and snow events, the average elevation of the stations in Guizhou is 
approximately 958 m, which is significantly higher than that of other provinces; thus, the 
events lasted longer. Low frequencies and long durations characterized the freezing and 
snow events in Hunan; those in Jiangsu, northern Hubei, and Anhui had high frequen-
cies and short durations. In the south, Guangxi, Guangdong, and Fujian provinces in the 
south had higher winter temperatures; thus, there were fewer freezing and snow events. 

For the risk assessment results, Anhui, Jiangsu, and Hubei in northern areas and 
Guizhou, Hunan, and Jiangxi in central and western areas are at higher risk. This is sim-
ilar to the results of previous studies [31,34]. Owing to latitude and climate, the temper-
atures in northern areas are much lower than those in southern areas, as shown through 
analysis of the winter temperatures. The average winter temperature from 1951 to 2020 in 
Jiangsu and Anhui were −0.6 °C and −0.18 °C, respectively, which are the only two 
provinces in the study area that have temperatures lower than 0 °C; therefore, the fre-
quency of low temperatures below 0 °C in winter in these two areas is relatively high. 
Furthermore, the historical precipitation is relatively high [26] resulting in a high risk 
level. However, the average winter temperature (1951–2020) was 5.59, 6.48, 9.56, and 
10.86 °C in Chongqing, Fujian, Guangxi, and Guangdong, respectively, where the risk is 
low. Another direct factor affecting the freezing and snow disaster is elevation, as Gui-
zhou, Hunan, and Anhui have high elevations with more extreme events happening. The 
distribution of mountains and hills will also strengthen the impact of freezing and snow 
events [34]. La Niña is also one of the important reasons that may expand the freezing 
area. The anomaly of atmospheric circulation caused by La Niña led to a sustained low 
temperature, while the meeting of cold air from the polar region and the warm air from 
the tropical ocean in the study area provided plenty of moist air; the cold events or ex-
treme disasters occurred in this manner [11,12]. 

When evaluating the goodness-of-fit for the univariate and joint distributions, this 
study selected the optimal distribution for each station, instead of selecting one distribu-
tion for all stations. This method is better for expressing the differences between regional 
stations and increases the accuracy of the probability calculation. The generalized ex-

Figure 6. Risk map for freezing and snow events. The historical average API and ATI data were used
to calculate the joint return period to characterize the risk distribution.

4. Discussion

Based on the temperature and precipitation data of 258 meteorological stations, this
study defined a data set of freezing and snow events over the past 70 years. By determining
the optimal univariate distribution and bivariate joint distribution model for each station,
the return period was evaluated to assess risks. From the spatial distribution of historical
freezing and snow events, the average elevation of the stations in Guizhou is approximately



Sustainability 2022, 14, 2568 10 of 12

958 m, which is significantly higher than that of other provinces; thus, the events lasted
longer. Low frequencies and long durations characterized the freezing and snow events
in Hunan; those in Jiangsu, northern Hubei, and Anhui had high frequencies and short
durations. In the south, Guangxi, Guangdong, and Fujian provinces in the south had higher
winter temperatures; thus, there were fewer freezing and snow events.

For the risk assessment results, Anhui, Jiangsu, and Hubei in northern areas and
Guizhou, Hunan, and Jiangxi in central and western areas are at higher risk. This is similar
to the results of previous studies [31,34]. Owing to latitude and climate, the temperatures
in northern areas are much lower than those in southern areas, as shown through analysis
of the winter temperatures. The average winter temperature from 1951 to 2020 in Jiangsu
and Anhui were −0.6 ◦C and −0.18 ◦C, respectively, which are the only two provinces
in the study area that have temperatures lower than 0 ◦C; therefore, the frequency of low
temperatures below 0 ◦C in winter in these two areas is relatively high. Furthermore, the
historical precipitation is relatively high [26] resulting in a high risk level. However, the
average winter temperature (1951–2020) was 5.59, 6.48, 9.56, and 10.86 ◦C in Chongqing,
Fujian, Guangxi, and Guangdong, respectively, where the risk is low. Another direct factor
affecting the freezing and snow disaster is elevation, as Guizhou, Hunan, and Anhui have
high elevations with more extreme events happening. The distribution of mountains and
hills will also strengthen the impact of freezing and snow events [34]. La Niña is also one
of the important reasons that may expand the freezing area. The anomaly of atmospheric
circulation caused by La Niña led to a sustained low temperature, while the meeting
of cold air from the polar region and the warm air from the tropical ocean in the study
area provided plenty of moist air; the cold events or extreme disasters occurred in this
manner [11,12].

When evaluating the goodness-of-fit for the univariate and joint distributions, this
study selected the optimal distribution for each station, instead of selecting one distribution
for all stations. This method is better for expressing the differences between regional stations
and increases the accuracy of the probability calculation. The generalized extreme value
distribution matched most stations, followed by the Weibull and gamma distributions. In
the bivariate joint distribution, five types of copula models were considered, of which the
Clayton copula best fit most stations, followed by the Frank copula and Gumbel copula.
This provides a reference for the distribution selection of cold events, especially the freezing
and snow events.

The existing risk assessment in China, especially in southern China, mainly relies on
meteorological indicators such as temperature and precipitation. Some studies established
comprehensive freezing and snow indexes through the analytic hierarchy process, fuzzy
comprehensive evaluation, and compound weight method to analyze the risk distribu-
tion [26,34–36]. Referring to other disaster assessment methods, we assessed the freezing
and snow events with the help of the copula method. By screening historical extreme
freezing and snow disasters events and then comparing the univariate and joint return
periods with the historical return period, it was found that the joint return period greatly
improved the accuracy of the return period estimation for each station. The API and ATI are
good indicators for freezing and snow risk assessments. Therefore, multivariate evaluation
by way of the copula function should be considered when evaluating freezing and snow
disaster events in the future.

Risk assessment for the study area was performed based on the joint return periods.
Jiangsu and Anhui, in the northern study area, had small joint return periods and thus,
a high probability of event occurrence and high risk level. At the same time, high-risk
individual stations were distributed throughout Hunan, Hubei, Guizhou, Jiangxi, and
Fujian. Chongqing, in the northwestern study area, and the southern provinces had large
return periods and low probabilities of occurrence. Furthermore, the risk map based on
joint return periods is useful for developing appropriate strategies for transportation, power
supply, construction of facilities, and risk evaluation.
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5. Conclusions

Owing to global warming, the frequency of extremely high temperature meteorological
events is increasing, which has gained considerable attention. However, large-scale and
high-intensity cold waves have frequently occurred worldwide recently; nevertheless,
the prevention of such low-temperature disasters is generally neglected. Thus, when
such disasters occur, they can cause serious losses, affect social production and economic
activities, and even cause casualties. Using a joint return period with the copula model
could aid regions or countries in accurately assessing the risks, providing a reference for
disaster prevention and the corresponding construction of facilities, such as reinforcing
traffic facilities and protecting power transmission lines in high-risk areas. It is also
important to raise awareness of disaster prevention because enough public awareness
and general knowledge of risk can help reduce the damage from the disaster. Further, it
can provide scientific support to management authorities to improve disaster prevention
and reduction and formulate risk response strategies. However, the distribution function
selection, parameter estimation, return period calculation, and test methods need to be
further improved. In future studies, we will continue to explore risk assessment methods.
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