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Abstract: Currently, soil salinization is one of the main forms of land degradation and desertification.
Soil salinization not only seriously restricts the development of agriculture and the economy, but
also poses a threat to the ecological environment. The main purpose of this study is to map soil
salinity in Keriya Oasis, northwestern China using the PALSAR-2 fully polarized synthetic aperture
radar (PolSAR) L-band data and Landsat-8-OLI (OLI) optical data combined with deep learning (DL)
methods. A field survey is conducted, and soil samples are collected from 20 April 2015 to 1 May 2015.
To mine the hidden information in the PALSAR-2 data, multiple polarimetric decomposition meth-
ods are implemented, and a wide range of polarimetric parameters and synthetic aperture radar
discriminators are derived. The radar vegetation index (RVI) is calculated using PALSAR-2 data,
while the normalized difference vegetation index (NDVI) and salinity index (SI) are calculated using
OLI data. The random forest (RF)-integrated learning algorithm is used to select the optimal feature
subset composed of eight polarimetric elements. The RF, support vector machine, and DL methods
are used to extract different degrees of salinized soil. The results show that the OLI+PALSAR-2 image
classification result of the DL classification was relatively good, having the highest overall accuracy
of 91.86% and a kappa coefficient of 0.90. This method is helpful to understand and monitor the
spatial distribution of soil salinity more effectively to achieve sustainable agricultural development
and ecological stability.

Keywords: soil salinization; PALSAR-2; polarimetric decomposition; deep learning

1. Introduction

As a form of soil degradation, soil salinization not only destroys resources and reduces
agricultural production, but also poses a severe threat to the biosphere and ecological
environment, thus becoming an environmental problem worldwide [1,2]. Soil salinization
is a process during which soluble salt accumulates on the soil surface, and it is one of the
main forms of land desertification and degradation [3].

According to statistics, approximately 8.31 million km2 of soil in the world has been
harmed by salinization [4]. More than 3% of soil resources are affected by salt [5]. China
has been one of the countries with severe salinization problems [6]. China alone is covered
by 10% of the world’s salinized land area [7,8], and Xinjiang is one of the largest saline soil
distribution areas [9], accounting for 36.8% of the country’s saline-alkali land area, mainly
distributed in the oasis-desert ecosystem in southern Xinjiang (nearly 50%) [10]. Therefore,
realizing large-scale, high-precision soil salinization monitoring and scientific prediction of
salinization risks and hazards are fundamental to alleviating environmental pressure.

Salinity monitoring based on the traditional methods requires frequent sampling,
which can be cost-prohibitive [11]. Remote sensing technology has been increasingly
used in salinity monitoring due to its advantages of wide coverage, short cycle time,
and high accuracy [12]. Optical remote sensing has played an important role in regional
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and global soil salinization monitoring, mapping, and prevention [13]. However, it is
difficult to interpret images under unstable weather conditions, and images are typically
collected during the day, so the image collection period is limited [14]. A synthetic aperture
radar (SAR) can obtain information under all conditions and can penetrate clouds and
near-surface soil profiles, providing an effective tool for ground observation and timely
extraction of salinized soil information [13–17]. Additionally, SAR data have been proven
to be effective for the extraction of salinity information, due to dielectric properties that are
sensitive to soil salinity; soil salinity is also a key factor to electrical conductivity [18,19]. A
polarimetric synthetic aperture radar (PolSAR) is a multi-channel, multi-parameter radar
system that can collect images under different weather conditions for 24 h [20]. Compared
with the traditional single-polarization synthetic aperture radar data, PolSAR data can
provide full-polarization scattering information on the target ground object [21], and the
scattering characteristics of different ground objects can be expressed in the form of vectors
to the greatest extent, thereby revealing the scattering of ground objects’ difference [22].

The polarimetric parameters extracted by different polarimetric target decomposition
methods are intensely important because they are related to the physical characteristics of
ground objects [13], and therefore may be applied to classify and map soil salinization [23].
The subject of the polarimetric decomposition of a target has received great attention
and achieved rapid development because it can reveal the scattering mechanism of the
target and enhance the understanding of the target’s scattering characteristics [24,25]. In
addition, its polarization feature decomposition provides an effective tool for microwave
remote sensing in the processes of saline land information extraction and salinity dynamics
monitoring and can provide timely and effective guidance on agricultural production
practices in arid areas [26]. Accordingly, the application degree and field of PolSAR
images have been and are continuously expanding, and various corresponding image
interpretation technologies have been developing rapidly [27]. In the past two decades,
optical and PolSAR data with different spectral, temporal, and spatial resolutions have
been widely used to describe the severity of soil salinization [28].

To improve the quality of soil salinity mapping, several machine learning algorithms
were used in combination with radar data. Xie, et al. [29], using Sentinel-1 data com-
bined with the random forest (RF) method to extract the distribution range of differ-
ent land uses and finally verify the extraction accuracy of flue-cured tobacco planting.
Nurmemet et al. [23] reported that a wrapper-based support vector machine can be used
together with PolSAR data for soil salinity mapping in semi-arid areas. In a new study,
Taghadosi et al. [30] showed that soil salinity mapping is viable for semi-arid areas, along
with the use of Sentinel-1 SAR data (VV, VH, and their derived texture) and support
vector regression.

Recently, Deep Learning (DL) based methods have achieved promising results in a
multitude of fields, including the vision of computers [31], the theory of information [32],
and the processing of natural language [33]. In the last few years, DL has also achieved
great success in PolSAR data classification [34]. Zhou et al. applied CNN to PolSAR image
classification for the first time [35]; in their work, a three-layer architecture was introduced
to classify PolSAR images and obtained promising classification results. Jiang et al. [36]
extended the CNN application to recognize the target in SAR images. Zhang, et al. [37]
proposed a novel object-based convolutional neural network (OCNN) for urban land use
classification using VFSR images. Ndikumana et al. [38] took advantage of RNN to deal
with the agricultural classification study with multitemporal Sentinel-1 SAR data.

As a part of machine learning, DL can process composite data efficiently, and has a
strong feature extraction capability [39]. Generally DL can provide better classification
results than the traditional classifiers [40].

The ultimate goal of this research is to monitor soil salinization in the Keriya River
basin, Xinjiang, China, using DL methods with PALSAR-2 data and OLI data.
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2. Materials and Methods
2.1. Study Area

The study site is the Keriya Oasis in the Tarim Basin, Xinjiang, China (35◦14′–39◦29′ N,
81◦09′ E–82◦51′ E), as shown in Figure 1. The research area is located at the southern edge
of Taklimakan Desert and the central northern slope of Kunlun Mountain, which is a typical
oasis-desert intersection with an altitude of 1180~5460 m [23].

Sustainability 2022, 14, x FOR PEER REVIEW 3 of 23 
 

2. Materials and Methods 

2.1. Study Area 

The study site is the Keriya Oasis in the Tarim Basin, Xinjiang, China (35°14′–39°29′ 

N, 81°09′ E–82°51′ E), as shown in Figure 1. The research area is located at the southern 

edge of Taklimakan Desert and the central northern slope of Kunlun Mountain, which is 

a typical oasis-desert intersection with an altitude of 1180~5460 m [23]. 

 

Figure 1. Location map of the study area showing the overview map of China and the Xinjiang 

(A,B); (C) Topographic map of the study area; (D) Location map of the study area in Landsat8-OLI 

image; (E) the subset image covering the study area in Pauli decomposition with standard color-

coding (Red: |HH − VV|, Green: |HV|, Blue: |HH + VV|). 

Figure 1. Location map of the study area showing the overview map of China and the Xinjiang (A,B);
(C) Topographic map of the study area; (D) Location map of the study area in Landsat-8-OLI image;
(E) the subset image covering the study area in Pauli decomposition with standard color-coding
(Red: |HH − VV|, Green: |HV|, Blue: |HH + VV|).
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The study site has a temperate continental climate, with perennial drought and large
daily temperature difference. The lowest average temperature in January is−5.8 ◦C and the
highest average temperature in July is 25 ◦C. The local area is rare, and the average annual
precipitation is 44.7 mm [41]. The average evaporation rate is 2498 mm, the evaporative
rainfall ratio is approximately 55:1, and the frost-free period is approximately 200d [41]. The
vegetation coverage of the oasis on the middle and north slope of Kunlun Mountain is 10%
Mt. 40%. The plants studied are mainly desert species, such as Phragmites australis, Tamarix
chinensis, Populus euphratica, Alhagi sparsifolia, Karelina caspica and Kalidium gracile [42].

Keriya River originates from the Kunlun Mountains, flows through the Keriya Oasis,
and after approximately 700 km ends in the hinterland of the Taklimakan Desert [43]. The
river is primarily supplied by glacial melt, snowmelt, and precipitation in the Kunlun
Mountains [44]. The movement of dissolved salts to the land surface is facilitated by a
combination of hyper-arid climate, topographic conditions, and shallow groundwater
level [45]. This leads to soil salinization and desertification, especially in the transition
belt between oasis and desert [43–45]. Therefore, intensive understanding and timely
monitoring of the spatial distribution of soil salinity have been paramount tasks for both
agricultural sustainability and ecological stability [45].

2.2. Data
2.2.1. Remote Sensing Data

The advanced Land Observing Satellite-2 (ALOS-2) is a Japanese earth observation
satellite that was launched on May 24, 2014 [46]. PALSAR-2 (Phased Array type L-band syn-
thetic aperture radar) sensor in L-band (1.2 GHz band), maximum resolution of 3 m × 1 m
(distance direction × azimuth direction), two polarization modes horizontal (H) and ver-
tical (V), and different scattering elements (HH, HV, VH, VV) for sensitivity to different
features of ground target features helps to identify different land types, under various
weather conditions [47]. Compared with other single-polarization and dual-polarization
SAR data, PALSAR-2 has a higher resolution, a larger observation range, shorter revisit
period, clearer texture features of the ground features, richer imaging modes, and a better
data transmission capability, and plays a greater role in mapping, regional observation,
disaster monitoring, and resource investigation [48,49].

In this study, fully polarized PALSAR-2 data (including HH, HV, VV, and VH polariza-
tion modes) were acquired on 23 April 2015, on a descending orbit in quad-pol strip mode
at an incident angle of 30.4◦. Specific parameters about the PALSAR-2 data are given in
Table 1. The Landsat-8-OLI (OLI) image acquired on 28 May 2015, is displayed in Figure 1D.

The PALSAR-2 data in CEOS mode at level 1.1 in the study area were preprocessed
using remote sensing processing software SNAP 7.0 provided by the European Space
Agency (ESA). The tasks performed were as follows: (1) generating a single look complex
(SLC) image; (2) multi-looking was performed using 4 × 2 looks in the range and azimuth,
respectively, generating power image; (3) speckle filtering was performed using the refined
Lee filter with the window size of 5 × 5, and noise reduction [50]; (4) geocoding and
radiometric calibration [51,52], using a shuttle radar topography mission (SRTM), digital
elevation model (DEM), and radiometric normalization, (i.e., modified cosine model) [53];
(5) geo-referencing to the Universal Transverse Mercator (UTM) coordinate system, Zone
44 North with the World Geodetic System Datum of 1984 (WGS84); (6) data resampling,
image resizing to the optimal image resolution of 20 m × 20 m. The processing flow
is shown in Figure 2. After data preprocessing, the backscatter coefficient (σ) in dB is
generated. The statistical characteristics of the backscatter coefficient for each polarization
band are shown in Table 2 [23].
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Table 1. Main parameters of fully Polarimetric PALSAR-2 data.

Parameter Value

Data Observation Date 23 April 2015

Map Projection UTM

Polarization HH, HV, VH, VV

Product Type HBQ

Operating Band L band (1.2 GHz)

Satellite altitude 628 km

Incident angle 30.4◦

Processing level L1.1

Operation mode SM2

Observation mode Strip map (High-sensitive Quad)

Observation and orbit direction Right, Ascending

File format CEOS SAR

Swath 40–50 km × 70 km (Range × Azimuth)

Nominal resolution 5.1 × 4.3 m (Range × Azimuth)

Orbit path, frame 158,730

Sustainability 2022, 14, x FOR PEER REVIEW 5 of 23 
 

Swath 40–50 km × 70 km (Range × Azimuth) 

Nominal resolution 5.1 × 4.3 m (Range × Azimuth) 

Orbit path, frame 158,730 

The PALSAR-2 data in CEOS mode at level 1.1 in the study area were preprocessed 

using remote sensing processing software SNAP 7.0 provided by the European Space 

Agency (ESA). The tasks performed were as follows: (1) generating a single look complex 

(SLC) image; (2) multi-looking was performed using 4 × 2 looks in the range and azimuth, 

respectively, generating power image; (3) speckle filtering was performed using the re-

fined Lee filter with the window size of 5 × 5, and noise reduction [50]; (4) geocoding and 

radiometric calibration [51,52], using a shuttle radar topography mission (SRTM), digital 

elevation model (DEM), and radiometric normalization, (i.e., modified cosine model) [53]; 

(5) geo-referencing to the Universal Transverse Mercator (UTM) coordinate system, Zone 

44 North with the World Geodetic System Datum of 1984 (WGS84); (6) data resampling, 

image resizing to the optimal image resolution of 20 m × 20 m. The processing flow is 

shown in Figure 2. After data preprocessing, the backscatter coefficient (σ) in dB is gener-

ated. The statistical characteristics of the backscatter coefficient for each polarization band 

are shown in Table 2 [23]. 

 

Figure 2. Preprocessing flowchart of PALSAR-2 data. 

Table 2. Backscattering statistical characteristics of PALSAR-2 data. 

Number Polarization 

Statistical Value of Backscattering Coefficient (dB) 

Minimum Maximum Average 
Standard  

Deviation 

1 HH −50.415756 9.823721 −17.312596 4.936925 

2 HV −50.720654 2.014654 −21.489555 5.107262 

3 VH −51.055477 2.264093 −26.473120 5.106566 

4 VV −52.791847 9.967834 −16.671018 4.556887 

Landsat 8 is a satellite jointly developed and manufactured by NASA and USGS for 

medium resolution observations of the globe. The Landsat 8-OLI (OLI) has nine bands for 

effective monitoring of soil salinization [54,55]. In this paper, OLI images were prepro-

cessed by ENVI 5.3® software, including radiometric calibration, atmospheric correction, 

resampling, and clipping; finally, the image registration of PALSAR-2 data was per-

formed based on the Landsat8-OLI image. The OLI image acquired on 28 May 2015 is 

displayed in Figure 1D. 

Figure 2. Preprocessing flowchart of PALSAR-2 data.

Table 2. Backscattering statistical characteristics of PALSAR-2 data.

Number Polarization

Statistical Value of Backscattering Coefficient (dB)

Minimum Maximum Average Standard
Deviation

1 HH −50.415756 9.823721 −17.312596 4.936925
2 HV −50.720654 2.014654 −21.489555 5.107262
3 VH −51.055477 2.264093 −26.473120 5.106566
4 VV −52.791847 9.967834 −16.671018 4.556887

Landsat-8 is a satellite jointly developed and manufactured by NASA and USGS for
medium resolution observations of the globe. The Landsat-8-OLI (OLI) has nine bands
for effective monitoring of soil salinization [54,55]. In this paper, OLI images were prepro-
cessed by ENVI 5.3® software, including radiometric calibration, atmospheric correction,



Sustainability 2022, 14, 2666 6 of 23

resampling, and clipping; finally, the image registration of PALSAR-2 data was performed
based on the Landsat-8-OLI image. The OLI image acquired on 28 May 2015 is displayed
in Figure 1D.

2.2.2. Field Data

In this study, field sampling was conducted in the period from 20 April 2015 to 1 May
2015. According to the field survey results and the specific field conditions of the study
area, the land cover types of the study area can be divided into six categories: vegetation,
water, strongly salinized soil, moderately salinized soil, slightly salinized soil, and bare
land, as demonstrated in Figure 3.
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Figure 3. Different degrees of salinized soil and land cover types of Keriya Oasis of the study
area. (a) Strongly salinized soil; (b) Strongly salinized soil; (c) Desert; (d) Moderately salinized soil;
(e) Moderately salinized soil; (f) Water body; (g) Slightly salinized soil; (h) Slightly salinized soil;
(i) Vegetation.

When arranging soil sampling points in the field, the unity of pixels and the factors of
vegetation type were considered, and a flat plot with a single soil type and a single feature
of approximately 20 m2 were used for sampling. After the soil sampling from the soil
surface (0–10 cm), the soil physical and chemical characteristics such as soil salinity were
measured in the laboratory. The sample preparation process included the following steps.
First, soil samples were air-dried and sieved through 1-mm sieves. Next, the soil sample
was mixed in a flask with distilled water at a ratio of 1:5; the flask was shaken manually
for three minutes to allow the soil to infiltrate fully. Then, the fully mixed solution was
left to stand for 30 min. Finally, when the solution became clear, the solution was filtered,
and the total soluble salts were measured. In this process, the electrical conductivity of
the soil water extract was measured (in ms/cm), and the total soluble salt content (g/kg)
was calculated by the regression equation of EC. Different degrees of salinization (i.e.,
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strongly, moderately, and slightly saline soils) were determined based on the surface soil
salt concentration, groundwater table, and vegetation coverage, as shown in Figure 3 and
Table 3.

Table 3. LCLU classes with varying severity of soil salinization, characteristics, and their training
and validation groups in the Keriya Oasis.

Symbol Class Characteristics
Training Validation

Plots Pixels Plots Pixels

WB Water Body River, pond, swamp, lake 32 4928 28 4312

VG Vegetation Red willow, poplar, camel thorn, pike,
grass, crops 50 7700 42 6468

BL Barren land Gobi, desert, rocky ground 41 6314 38 5855

HS Strongly salinized
soil

EC value 4–8 (dsm−1), salt crust is 2–10 cm,
water table depth is 0.5–1.5 m, barren land with

vegetation coverage less than 5%
44 7040 42 6720

MS Moderately
Salinized soil

EC value 4–6 (dsm−1), salt crust of 1–4 cm, water
table depth is 1–2 m, vegetation coverage of

around 5%–15%
41 6519 40 6360

SS Slightly Salinized
Soil

EC value 2–4 (dsm−1), with thin salt crust
(around 0–2 cm), water table depth is 1.4–3 m,

vegetation coverage of around 30%
39 6162 41 6519

Combined with a number of photo libraries collected from field trips and OvitalMap®

(https://www.ovital.com, accessed on 1 May 2015) high-resolution images, a total of
478 sample plots were collected for image classification and accuracy evaluation; 247 were
used as training data, and the remaining 231 were used as verification data. To ensure
that samples were evenly distributed throughout the study area, each land cover category
contained at least 28 samples, and each sample contained approximately 150 pixels, as
shown in Table 3.

2.3. Methods

Figure 4 illustrates the process workflow of this research, which is detailed in the
following sections.

2.3.1. Polarimetric Decomposition

The theorem of target polarimetric decomposition was first proposed by Huynen [56]
in 1970, and after nearly 50 years of development, various polarimetric decomposition
methods have been proposed [57]. Target decomposition is an important method in the
analysis of polarized SAR data. This method decomposes the complex scattering process
into several single scattering components with the corresponding scattering matrices [58].

Coherent decomposition methods of scattering matrices denote an important class
of decomposition algorithms in the field of target decomposition. The main element of
this class of methods is the representation of a scattering matrix as a product or a sum
of elementary scattering matrices that can be interconnected with a particular scattering
mechanism [59]. Pauli matrices are obtained by the polarization scattering matrix S de-
composition, where different polarization basis matrices are defined, and the extraction of
polarization features is performed, each representing a different type of feature [60]. The
basic scattering matrix S expressed in Pauli from given by:

https://www.ovital.com
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S =

[
SHH SHV
SVH SVV

]
=

a√
2

[
1 0
0 1

]
+

b√
2

[
1 0
0 −1

]
+

c√
2

[
1 0
0 1

]
+

d√
2

[
1 −j
j 1

]
(1)

where, SHH and SVV denote the co-polarization components; SHV and SVH are the cross-
polarization components; and a, b, c, and d are complex numbers and represent the weights
of the scattering matrix on the four bases, and they are respectively calculated by:

a =
SHH + SVV√

2
, b =

SHH − SVV√
2

, c =
SHV + SVH√

2
, d = j

SHV − SVH√
2

(2)

Scattering matrix S in the Pauli decomposition is vectorized on the basis of the target’s
specific eigenvector K, which is given by:

K =
[

a b c d
] 1√

2

[
SHH + SVV SHH − SVV SHV + SVH i(SVH − SHV)

]T (3)
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when the reciprocity condition SHV = SVH is satisfied, Equation (4) can be re-written
as follows:

K =
[

a b c
]
=

1√
2

(
SHH + SVV SHH − SVV SHV + SVH

)
(4)

where, K denotes the polarization eigenvector obtained by the Pauli decomposition. The
physical meaning of the first term in the Pauli decomposition vector denotes single scat-
tering, the second term denotes dihedral angular scattering where the radar and target
center line of sight coincide with the normal dihedral plane, and the third term is related to
multiple scattering.

A 3 × 3 apparent coherence matrix T3 and a covariance matrix C3 are respectively
defined by:

T3 =

 T11 T12 T13
T∗12 T22 T23
T∗13 T∗23 T33



= 1
2

 < |Shh + Svv|2 >< (Shh + Svv)(Shh − Svv)
∗ > 2 < (Shh + Svv)S∗hv >

< (Shh − Svv)(Shh + Svv)
∗ >< |Shh − Svv|2 > 2 < (Shh − Svv)S∗hv >

2 < Shh(Shh + Svv)
∗ > 2 < Shh(Shh − Svv)

∗ > 4 < |Shv|2 >


(5)

C3 =

 C11 C12 C13
C∗12 C22 C23
C∗13 C∗23 C33



=

 < |Shh|2 >
√

2 < ShhS∗hv > < ShhS∗vv >√
2 < ShvS∗hh > 2 < |Shv|2 >

√
2 < ShvS∗vv >

< SvvS∗hh >
√

2 < SvvS∗hv > < |Svv|2 >


(6)

where, * denotes conjugate, |−| denotes mode, <·> denotes time or space set average [61].
The polarimetric decomposition is based on the scattering matrix, coherent matrix, or

covariance matrix of a radar target or a covariance matrix of the radar target.
In this paper, the scattering matrix S, coherence matrix T3, and covariance matrix

C3 of the PALSAR-2 data are calculated. To make the full use of the polarization feature
information of PALSAR-2 data, polarization decomposition methods such as those of
Cloude [62], Freeman [63], H/A/Alpha [64], Freeman Durden [65], Sinclair [66], Van
Zyl [67], and Yamaguchi [68] are used in addition to the Pauli decomposition, as shown
in Table 4. The energy information received by the SAR system reflected the scattering
characteristics of the ground feature [69]. The Cloude, Pauli, Freeman, H/A/Alpha,
Freeman Durden, Sinclair, Van Zyl, and Yamaguchi methods were used to calculate surface,
volume, and double scattering values [70]. In the urban area, the polarization characteristic
component is also dominated by double scattering. In our study area, the double scattering
mainly reflects the road information [71], and the surface scattering is mainly the surface
backscattering information, excluding the influence of vegetation [8]; the vegetation area is
dominated by volume scattering [71]. The change information of surface vegetation in arid
areas can better reflect the regional salinization [72].

2.3.2. Calculate the NDVI, SI and RVI

To extract the salinization information on the study area effectively, the normalized
difference vegetation index (NDVI) and salinity index (SI) of the OLI data were calculated.

The normalized difference vegetation index (NDVI) [73] was calculated by:

NDVI =
NIR− R
NIR + R

(7)
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where, NIR denotes near-infrared band reflectance, and R denotes red band reflectance.

Table 4. Polarimetric features extracted from PALSAR-2 data.

Feature Parameter
Description Symbols Number of

Parameters
Polarimetric
Parameter

Original features

Scattering matrix
elements S 3 S11, S12, S21

Coherency
matrix elements T3 6 T11, T22, T33, T44,

T55, T66

Covariance
matrix elements C3 3 C11, C22, C33

Backscatter
coefficient HH,HV,VH,VV 4 hh,hv,vh,vv

Polarization
decomposition

parameters

Pauli pauli 3 Pauli_r, Pauli_g,
Pauli_b

Cloude Cloude 3
Cloude_dbl_r,
Cloude_vol_g,
Cloude_surf_b

Freemen Freemen 3
Freeman_dbl_r,
Freeman_vol_g,
Freeman_surf_b

H/A/Alpha H/A/α 3
Entropy,

Anisotropy,
alpha

Freeman Durden Freeman 3

Freeman
Durden_dbl_r,

Freeman
Durden_vol_g,

Freeman
Durden_surf b

Sinclair Sinclair 3
Sinclair_r,
Sinclair_g,
Sinclair_b

Vanzyl VZ 3
VanZyl_dbl_r,
VanZyl_vol_g,
VanZyl_surf_b

Yamaguchi Yam 4

Yamaguchi_dbl_r,
Yam-

aguchi_vol_g,
Yam-

aguchi_surf_b,
Yamaguchi_hlx

SAR discriminators Radar vegetation
index RVI 1 rvi

The salinity index (SI) [74] was obtained using the reflectance OLI data band 1 (B1)
and band 3 (B3) as follows:

Salinity Index(SI) =
√

B1× B3 (8)
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The radar vegetation index (RVI) can characterize the scattering stochasticity [75], and
in this study, it was used to describe the canopy characteristics of vegetation. The specific
calculation formula of RVI is as follows:

RVI =
4 min(λ1, λ2, λ3)

λ1 + λ2 + λ3
(9)

where, λ1, λ2 and λ3 are the eigenvalues of the covariance/coherency matrix.

2.3.3. Machine Learning Algorithms Used
Feature Selection from PALSAR-2 Imagery

Based on the full-polarization SAR image classification, the selection of feature subset
directly affects the classification accuracy; therefore, polarization feature extraction and
selection denote key steps in the process of full-polarization SAR image classification [76].
In this study, a number of 42 extracted polarization parameters included a large speckle
noise. They were weak or indistinguishable for certain features, which could directly
affect the classification result. Thus, it was indispensable to select polarization parameters
that were less noisy and could better reflect the target feature information to improve the
classification accuracy.

The feature subset selection (FSS) has been a hot topic in the machine learning field [19].
The FSS can not only reduce the original data dimensionality and thus improve the algo-
rithm learning efficiency, but can also improve the classification accuracy by filtering a
subset of features from the original dataset, which has the best classification performance
for the particular classifier [76]. In this paper, the random forest (RF) method was used for
optimal feature subset selection, and the optimal feature subset of fully polarized PALSAR-
2 data was obtained. The RF is a type of bagging method, which belongs to the ensemble
learning-based methods [77]. In the application of polarization SAR image classification,
important characteristics of each variable can be calculated by using the out-of-bag (OOB)
error values of various training samples in the RF [77]. The specific calculation process is
as follows: First, the error between each decision tree and its corresponding OOB data is
calculated and denoted as errOOB1; next, the noise interference to a feature k of all samples
of the data outside the bag is randomly added. Then, the error of the data outside the bag
of each decision tree is recalculated and denoted as errOOB2 [78];

The importance of feature k : I(k) is calculated by:

I(k) = ∑(errOOB2− errOOB1)
nTree

(10)

where, nTree denotes the number of decision trees.
When random noise is added, the accuracy of OOB data decreases significantly, that

is, errOOB2 increases, indicating that this feature has a certain impact on the prediction
results of the sample; thus, its importance is relatively high. In this work, to remove
the redundancy and to reduce random interference between features, the importance of
each feature was calculated by Equation (10), and calculated importance values were
arranged in descending order. After the deletion ratio was determined, the features with
relatively low importance were deleted from the original feature set, and a new feature
subset was obtained. The process of sorting and deletion was repeated until m optimal
features remained in the feature subset, where m was a pre-set value [79].

Support Vector Machine (SVM) Classification

The support vector machine (SVM) is a learning method based on the statistical
learning theory proposed by Vapnik [80]. The SVM has been widely used in the field of
pattern recognition [80]. The basic idea of the SVM is to map a sample to the feature space
to construct an optimal classification hyperplane so that it can maximize the generalization
effect of the sample [81]. The classification accuracy of the SVM is relatively high, and it
can achieve satisfactory classification results [82].
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Random Forest Classification

The RF is a machine learning algorithm proposed in 2001 by Leo Breiman [83], which
combines the Bagging ensemble learning theory [77] with the random subspace method [84].
The RF aggregates the output of an ocean of independent base learners, which are generally
decision trees [85]. Using the training dataset D, a subset of the guided aggregation
algorithm is generated; the sub-decision tree used in the classification and regression tree
(CART) algorithm is obtained; and finally, by aggregating all sub-decision trees, an RF
model is constructed [86].

The RF algorithm has the advantages of easy implementation, fast classification speed,
ability to process a large amount of sample data, and the possibility to be rapidly developed
in a host of fields [87].

2.3.4. DL Algorithms

Deep learning (DL) has been an emerging technique in the machine learning field,
which is based on the idea of “end-to-end” holistic learning from a set of input and output
data. It uses a deep hierarchical structure to extract high-level features, such as spatial
details of pixels and their neighborhoods, from data [88]. In recent years, DL has gained
great attention in SAR processing [89,90]. A series of new methods have been proposed
to solve the problems of feature extraction and classification to a certain extent [91,92].
There have been many DL-based methods, but the most commonly used ones include
convolutional neural networks (CNNs), self-encoders, deep confidence networks, and
generative adversarial networks [88,93]. Since polarized SAR classification has certain
characteristics and cannot be copied from the optical remote sensing approach, CNNs have
been the most successful and widely used polarized SAR classification method [94].

The CNNs represent an efficient DL structure [88], which can learn highly abstract spa-
tial features from the original representation of an image through a series of convolutional,
pooling, and fully-connected operations and activation by nonlinear functions [95]. In each
layer, the convolution operation extracts features from an input image and constructs a
feature map [96]. In a single feature map, all units have the same weights, which signifi-
cantly reduces the number of parameters to be learned [97]. In recent years, a large number
of CNN-based image recognition and segmentation models have been proposed [58], in-
cluding the full convolution neural network (FCN), which was the first that implemented
the end-to-end image segmentation [98]; U-Net [99]; SegNet [100], which is based on the
encode-decode (EDC) architecture; residual network (ResNet) [101]; and Google’s DeepLab
series models [102,103]. The basic architecture of the CNN model is presented in Figure 5.
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In recent years, the FCN networks have been gradually replacing CNN networks and
have become the mainstream deep network structure in image processing [99]. The U-Net
network used in this study belongs to the FCN networks for image semantic segmentation.
The U-Net network structure was originally proposed by Ronneberger et al. [99]. The
U-Net structure includes two paths: the contraction path and the expansion path [104]. The
feature maps in the contraction path are cropped and copied to perform upsampling in the
expansion path [105].

2.3.5. Accuracy Assessment

The classification accuracy was assessed using the overall accuracy and kappa co-
efficient based on the validation samples and was made using a library of photographs
collected during the field investigation and high-resolution images from OvitalMap®

(https://www.ovital.com, accessed on 1 May 2015) [106]. The kappa coefficient is a mea-
sure of agreement that indicates the rate of correct classification occurring by chance [107].
To evaluate the performance of the DL classification, the F1 score was used as an evaluation
metric [108], and it was calculated by Equation (11). In Equation (11), Precision, which is
also called user accuracy, denotes the ratio of the number of correctly classified pixels to
the number of pixels in the category that represents the classification result; Recall, which is
also called producer accuracy, denotes the ratio of the number of correctly classified pixels
to the actual number of pixels in the category [109].

F1 =
(Precision× Recall)
(Precision + Recall)

(11)

3. Results
3.1. Polarimetric Decomposition of Fully PolSAR Data and Feature Selection

SNAP software was used to perform polarimetric decomposition on the fully-polarized
PALSAR-2 image data of the study area to extract characteristic parameters. First, the
PALSAR-2 data were used to calculate the coherence matrix T3, scattering matrix S, and
covariance matrix C3. Then, different polarization decomposition methods were performed
on the PALSAR-2 image data, and polarimetric parameter information was extracted. The
RVI and four types of polarimetric backscattering coefficients were extracted, and a total of
42 types of features were acquired. The characteristics of extracted features are given in
Table 4, and the polarization decomposition results of the RGB standard composite image
are shown in Figure 6.

In our study, multiple polarimetric parameters and discriminators were extracted for
optimal classification purposes. However, it is not reasonable to adopt all the polarimetric
features for classification and monitoring soil salinization due to some of the redundant
features and noise. Though the PALSAR-2 data were denoised through filtering, the image
was still retaining a certain amount of speckle noise information that was visible; some
of the decomposed elements that contain much noise might hamper and even reduce the
classification accuracy. It is worth noting that employing all these polarimetric parameters
and elements is time-consuming. The RF method was used for optimal feature selection.
The RF was set to have 100 decision trees and a deletion ratio of 10%. The 42 polarization
features were fed to the RF model for training to calculate the importance of each feature.
The ranking results are shown in Figure 7. Eight features with the highest fitness (T33, C33,
Freeman Durden_vol_g, Pauli_b, Pauli_r, Sinclair_g, VanZyl_vol_g, RVI) were selected and
used for classification, as shown in Figure 8.

3.2. Classification Results

To extract different degrees of salinized soil, the SVM, RF, and DL methods were used
to classify OLI data, PALSAR-2 data, and OLI+PALSAR-2 integrated data. The classification
results are displayed in Figure 9.

https://www.ovital.com
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Figure 9 shows the classification results that most of the study area is bare land
(including desert and gravel land), followed by oasis. There were obvious differences
in the spatial distributions of the three soil salinization degrees. The salinized soil was
distributed at the intersection of the Keriya Oasis and the Taklimakan Desert. The degree
of salinization showed a gradual increase trend from oasis to desert. Slightly salinized
soil was distributed around the oasis, while strongly and moderately salinized soil was
distributed on the periphery of the oasis and the edge of the desert, respectively.
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Figure 6. RGB composition images of different polarimetric decompositions and SAR discrimi-
nators including Pauli decomposition (a); Cloude decomposition (b); Freeman decomposition (c);
H/A/Alpha decomposition (d); Freeman durden decomposition (e); Sinclair decomposition (f);
Vanzyl decomposition (g); Yamaguchi decomposition (h); RVI (i).

3.3. Classification Accuracy

The results in Table 5 indicate that regardless of the classification method, the classi-
fication results of the OLI+PALSAR-2 images were relatively positive. In particular, the
OLI+PALSAR-2 image classification result of the DL classification was better, having the
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highest overall accuracy rate of 91.86% and a kappa coefficient of 0.90. The overall accuracy
rates of the SVM and RF were 87.28% and 90.27%, and the corresponding kappa coefficients
were 0.87 and 0.87, respectively. Compared with the SVM and RF classification, the overall
classification accuracy of the DL was increased by 4.53% and 1.59%, respectively.
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Figure 9. Comparison of different data sources and different classification results. (a) OLI data SVM
classification; (b) PALSAR-2 data SVM classification; (c) OLI+PALSAR-2 data SVM classification;
(d) OLI data RF classification; (e) PALSAR-2 data RF classification; (f) OLI+PALSAR-22 data RF
classification; (g) OLI data DL classification; (h) PALSAR-2 data DL classification; (i) OLI+PALSAR-
2 DL classification. WB, BL, VG, HS, MS, and SS represent the water body, barren land, vegetation,
highly salinized soil, moderately salinized soil, and slightly salinized soil, respectively.
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Table 5. Validation of the accuracy of the salinized soil information monitoring classification.

Data
SVM RF DL

OA Kappa OA Kappa OA Kappa
OLI 84.48% 0.84 87.54% 0.83 89.89 % 0.86

PALSAR-2 77.21% 0.70 79.46% 0.74 80.20% 0.75
OLI+PALSAR-2 87.28% 0.87 90.27% 0.87 91.86% 0.90

Note: OA = Overall accuracy, Kappa = Kappa Coefficient.

Figure 10 shows the F1 score, With the growth of Epoch, the F1 scores of all three data
tend to increase, the most obvious one is still the OLI+PALSAR-2, followed by OLI data,
and the lowest is the PALSAR-2 data.
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4. Discussion
4.1. Comparison of Different Classification Methods

The classification results showed that the DL-based method was superior in extracting
salinization information. The DL-based CNN algorithm applied convolution computation,
which considered the surrounding spatial background for prediction. The SAR images
could provide rich spatial and texture details, which were in line with convolution operation
and thus could improve the classification accuracy. Therefore, it has been demonstrated
that DL can achieve better results in extracting salinization information by using SAR
images with clear texture contour information combined with optical images.

Soil salinization, as an environmental problem leading to land degradation and desertifi-
cation, has been a focus of the attention of foreign researchers. Many researchers used different
research methods to extract soil salinity and achieved good results. Nurmemet et al. [23] pro-
posed a WFS-SVM model by using PALSAR-2 data and constructed a salinization detection
model, and the result showed that the overall accuracy and Kappa coefficient of the data
were 87.57% and 0.85. Feng Juan et al. [110] proposed the SVM-Wishart semi-supervised
classification method, which is used to classify the Freeman-Durden decomposition, and
the classification accuracy is 88.00%. Machine learning theory has been widely used in
remote sensing data, but there are few studies using deep learning to extract soil salinity,
especially using radar images combined with deep learning to monitor soil salinization.

In this study, the polarization decomposition theory of radar images and optical
images are combined with the method of deep learning to monitor soil salinity information,
and slightly better results are achieved. The study shows that there is potential to apply
deep learning methods to extract salinization information from radar remote sensing
images. However, there are fewer studies on the application of deep learning to radar
image monitoring of soil salinization. Although the monitoring results are satisfactory to
some extent in this particular arid environment, the generalization of this method in other
fields needs further study and evaluation. As a new technical means, it needs to be further



Sustainability 2022, 14, 2666 18 of 23

improved (future research can try a variety of deep learning models to monitor soil salinity,
such as DeepLabv3 [111], PSPNet [112], etc.). We can also try the CRF [113] post-processing
method to optimize the classification results and introduce the idea of ensemble learning to
integrate the results extracted by various methods to improve the accuracy of classification.

4.2. Polarimetric Decomposition Influence on Classification Results

When extracting soil salinization information by polarimetric decomposition of the
PALSAR-2 data, due to the different scattering mechanisms of ground objects, a single
coherent matrix and a single target polarimetric decomposition method could not fully ex-
ploit the information contained in the radar images. However, the multi-target polarization
decomposition method could effectively extract the information of the study area. After
polarization decomposition, the structural information of the ground objects was more
easily reflected, and the regular texture information was presented better. For instance,
the volume scattering component is sensitive to vegetation. The area with vegetation has
strong backscattering intensity, while the area with less vegetation has weak backscattering
energy. Both single scattering and volume scattering of saline soil were lower than those
of vegetation. For slightly and moderately saline land, the vegetation plants were low,
and the salinity was different, which made the regions of medium and high scattering
entropy strongly random. Strongly salinized soil had the lowest vegetation coverage, and
its backscatter value was lower than those of moderately and slightly salinized soil. The
scattering value of saline land gradually decreased from slight to strong, and its backscat-
tering value was smaller than that of vegetation. In addition, the characteristic parameters
have different sensitivity to the soil information type. The RVI was also beneficial for
distinguishing different degrees of salinized soil.

4.3. Data Source Influence on Classification Results

From the comparative analysis results in Figure 9 and Table 5, it can be seen that the
overall accuracy of OLI+PALSAR-2 multi-source remote sensing data improved by 1.90%,
and the Kappa coefficient improved by 0.04 compared with the OLI optical data when the
classification was performed by DL. The overall classification accuracy of OLI+PALSAR-
2 data improved by 2.73% and 2.8% compared with OLI data when classified by RF and
SVM, and the Kappa coefficients improved by 0.04 and 0.03, respectively. The overall
distribution of salinized soils was well reflected from the DL classification. From east
to west, the land cover types shift from vegetation to slightly salinized soil, moderately
salinized soil, and strongly salinized soil. This is partly due to the high spatial resolution
and apparent polarized backscattering characteristics of the SAR data, and the improved
spectral and spatial quality of the band-synthesized images, which enhance the discrimina-
tion of different salinized soils. This study aims to make full use of the advantages of optical
remote sensing data and radar remote sensing data. Although the spatial resolution of
optical data was not high and the texture contour information was not obvious, it provided
abundant spectral information in the visible-light range. The NDVI and SI could effectively
extract soil salinization and vegetation information. Moreover, although radar data had
high speckle noise, it had clear contour texture information and high spatial resolution.
These two data could complement each other’s shortcomings and could better extract
salt information.

4.4. Distribution Characteristics of Salinization in Study Area

The results demonstrated that the degree, scope, and spatial distribution of soil salin-
ization were different in different regions of the research area. The main reason was that
the study site was affected by the dry and rainless climate conditions and had a strong
dependence on water resources. Tarim Basin is formed by three mountains sandwiched
by two basins and is located in a closed inland environment, making it impossible for soil
salt to run off to the surrounding areas [43]. In addition, the elevation in the north of the
study area was lower than that in the south, which increased the depth of groundwater.
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Furthermore, high-temperature conditions induced strong transpiration, which made solu-
ble salts accumulate to the soil surface with soil moisture under capillary action, leading to
the increase in the soil salt content.

5. Conclusions

In this study, the PALSAR-2 and Landsat-8-OLI (OLI) images are combined with a
deep learning (DL)-based method and used to monitor the soil salinization in the Keriya
oasis to effectively promote the stability of the ecological environment and the sustainable
development of agriculture in the research area.

(1) A variety of target polarization decomposition methods, including the Pauli, Free-
man, Freeman_Durden, Cloude, Yamaguchi, VanZyl, Sinclair, and H/A/Alpha meth-
ods, are used to polarize the PALSAR-2 data. Additionally, the eight best feature
components, namely T33, C33, Freeman Durden_vol_g, Pauli_b, Pauli_r, Sinclair_g,
VanZyl_vol_g, and RVI, are selected by the random forest (RF) method to extract the
information on soil salinization.

(2) The OLI data are used to extract the normalized vegetation index (NDVI) and salinity
index (SI), which are then combined with the optimal feature subsets of the PALSAR-
2 image to form an integrated image to extract salinization information.

(3) Classification methods, such as a support vector machine (SVM), RF, and DL, are
used to extract salinization information from different data types, including the OLI,
PALSAR-2, and OLI+PALSAR-2 data. The results show that the OLI+PALSAR-2 image
classification result of the DL classification was relatively good, having the highest
overall accuracy rate of 91.86% and a kappa coefficient of 0.90.

Author Contributions: Conceptualization, A.A. and I.N.; Data curation, A.A., N.M. and J.Z.; Formal
analysis, A.A. and I.N.; Funding acquisition, I.N.; Investigation, A.A., I.N., N.M., S.X. and J.Z.;
Methodology, A.A. and I.N.; Project administration, I.N.; Resources, I.N.; Software, A.A. and N.M.;
Supervision, I.N.; Validation, A.A.; Writing—original draft, A.A.; Writing—review & editing, A.A.
and I.N. The data were processed and analyzed and the final paper was written by A.A. and sent to
all authors for comments and edits. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was sponsored by National Natural Science Foundation of China [No. 42061065,
No. U1703237 and No. 41561089].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We extend our hearty gratitude to the anonymous reviewers of this manuscript
for their constructive comments and helpful suggestions provided during the preparation.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. El Harti, A.; Lhissou, R.; Chokmani, K.; Ouzemou, J.; Hassouna, M.; Bachaoui, E.M.; El Ghmari, A. Spatiotemporal Monitoring of

Soil Salinization in Irrigated Tadla Plain (Morocco) Using Satellite Spectral Indices. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 64–73.
[CrossRef]

2. Akça, E.; Aydin, M.; Kapur, S.; Kume, T.; Nagano, T.; Watanabe, T.; Çilek, A.; Zorlu, K. Long-term monitoring of soil salinity in a
semi-arid environment of Turkey. Catena 2020, 193, 104614. [CrossRef]

3. Naimi, S.; Ayoubi, S.; Zeraatpisheh, M.; Dematte, J.A.M. Ground Observations and Environmental Covariates Integration for
Mapping of Soil Salinity: A Machine Learning-Based Approach. Remote Sens. 2021, 13, 4825. [CrossRef]

4. Yu, P.Y. Effects of Potassium Ion on Physiologicalproperty of Malus Zumi Seedling under Salt. Master’s Thesis, Tianjin Agricultural
University, Tianjin, China, 2014. (In Chinese)

5. Bell, D.; Menges, C.; Ahmad, W.; van Zyl, J.J. The application of dielectric retrieval algorithms for mapping soil salinity in a
tropical coastal environment using airborne polarimetric SAR. Remote Sens. Environ. 2001, 75, 375–384. [CrossRef]

http://doi.org/10.1016/j.jag.2016.03.008
http://doi.org/10.1016/j.catena.2020.104614
http://doi.org/10.3390/rs13234825
http://doi.org/10.1016/S0034-4257(00)00180-2


Sustainability 2022, 14, 2666 20 of 23

6. Li, J.G.; Pu, L.J.; Zhu, M.; Zhang, R.S. The present situation and hot issues in the salt-affected soil research. Acta Geogr. Sin. 2012,
67, 1233–1245. (In Chinese)

7. Singh, A.; Meena, G.K.; Kumar, S.; Gaurav, K. Evaluation of the Penetration Depth of L-and S-Band (NISAR mission) Microwave
SAR Signals into Ground. In Proceedings of the 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC), New Delhi, India,
9–15 March 2019; p. 1.

8. Jakob Van Zyl, Y.K. Synthetic Aperture Radar Polarimetry; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 2.
9. Fan, Z.L.; Xu, Q.Q.; Li, H.P.; Zhang, P.; Zhou, S.B.; Lu, L. Rational groundwater exploitation and utilization, an important

approach of improving Salinized Farmland in Xinjiang. Arid Zone Res. 2011, 28, 737–743. (In Chinese)
10. Muhetaer, N.; Nurmemet, I.; Abulaiti, A.; Xiao, S.; Zhao, J. A Quantifying Approach to Soil Salinity Based on a Radar Feature

Space Model Using ALOS PALSAR-2 Data. Remote Sens. 2022, 14, 363. [CrossRef]
11. Allbed, A.; Kumar, L. Soil salinity mapping and monitoring in arid and semi-arid regions using remote sensing technology:

A review. Adv. Remote Sens. 2013, 2, 373–385. [CrossRef]
12. Andrade, G.R.P.; Furquim, S.A.C.; do Nascimento, T.T.V.; Brito, A.C.; Camargo, G.R.; de Souza, G.C. Transformation of clay

minerals in salt-affected soils, Pantanal wetland, Brazil. Geoderma 2020, 371, 114380. [CrossRef]
13. Qi, Z.; Yeh, A.G.O.; Li, X.; Lin, Z. A novel algorithm for land use and land cover classification using RADARSAT–2 polarimetric

SAR data. Remote Sens. Environ. 2012, 118, 21–39. [CrossRef]
14. Bindlish, R.; Barros, A.P. Parameterization of vegetation backscatter in radar-based, soil moisture estimation. Remote Sens. Environ.

2001, 76, 130–137. [CrossRef]
15. Maghsoudi, Y.; Collins, M.J.; Leckie, D.G. Radarsat–2 polarimetric SAR data for boreal forest classification using SVM and a

wrapper feature selector. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1531–1538. [CrossRef]
16. Del Frate, F.; Ferrazzoli, P.; Schiavon, G. Retrieving soil moisture and agricultural variables by microwave radiometry using

neural networks. Remote Sens. Environ. 2003, 84, 174–183. [CrossRef]
17. Serbin, G.; Or, D. Ground-penetrating radar measurement of soil water content dynamics using a suspended horn antenna. IEEE

Trans. Geosci. Remote Sens. 2004, 42, 1695–1705. [CrossRef]
18. Rhoades, J.D.; Chanduvi, F. Soil Salinity Assessment: Methods and Interpretation of Electrical Conductivity Measurements; Food &

Agriculture Organazition: Rome, Italy, 1999.
19. Zhu, Z.; Woodcock, C.E.; Rogan, J.; Kellndorfer, J. Assessment of spectral, polarimetric, temporal, and spatial dimensions for

urban and peri-urban land cover classification using Landsat and SAR data. Remote Sens. Environ. 2012, 117, 72–82. [CrossRef]
20. Negra, T.; Ilyas, N.; Wang, Y.H.; Mukaddas, A. Soil Salinization Classification in Arid Area Based on H/A/α Decomposition

Fully Polarized SAR Data. Jiangsu Agr. Sci. 2019, 47, 273–279. (In Chinese)
21. Wang, Y.Y. Classification of Polarimetric SAR Images Based on Multilaver Network Model. Ph.D. Thesis, Wuhan University,

Wuhan, China, 2015. (In Chinese)
22. Qu, Y.C. Polarimetric Radarsat–2 Image Classification Based on Target Decomposition Theorems in Polarimetry. Master’s Thesis,

Nanjing University, Nanjing, China, 2016. (In Chinese)
23. Nurmemet, I.; Sagan, V.; Ding, J.L.; Halik, U.; Abliz, A.; Yakup, Z. A WFS-SVM model for soil salinity mapping in keriya oasis,

northwestern china using polarimetric decomposition and fully PolSAR data. Remote Sens. 2018, 10, 598. [CrossRef]
24. Weilei, D. The Research on Target Recognition Methods Based on Polarization Radar. Master’s Thesis, Harbin Engineering

University, Harbin, China, 2013.
25. Luo, C.; Feng, X.; Liu, C.; Zhang, Y.; Nilot, E.; Zhang, M.; Dong, Z.; Zhou, H. Full-polarimetric GPR for detecting ice fractures. In

Proceedings of the 2018 17th International Conference on Ground Penetrating Radar (GPR), Rapperswil, Switzerland, 18–21 June
2018; pp. 1–4.

26. Isak, G.; Nurmemet, I.; Duan, S.S. The Extraction of Saline Soil Information in Typical Oasis of Arid Area Using Fully Polarimetric
Radarsat-2 data. China Rural. Water Hydropower 2018, 12, 13–19.

27. Xiao, Y. Research on Object-Oriented Classification. Master’s Thesis, Jilin University, Changchun, China, 2017. (In Chinese)
28. Aldabaa, A.A.A.; Weindorf, D.C.; Chakraborty, S.; Sharma, A.; Li, B. Combination of proximal and remote sensing methodsfor

rapid soil salinity quantification. Geoderma 2015, 239-240, 34–46. [CrossRef]
29. XIE, X.Q.; Yang, J.Z.; Deng, S.W. Identifying flue-cured tobacco in a typical cultivated area of Yuxi based on Sentinel-1 time series

images. J. Agric. Resour. Environ. 2022, 41, 21–39.
30. Taghadosi, M.M.; Hasanlou, M.; Eftekhari, K. Soil salinity mapping using dual-polarized SAR Sentinel-1 imagery. Int. J. Remote

Sens. 2018, 40, 237–252. [CrossRef]
31. Tan, M.; Pang, R.; Le, Q.V. Efficientdet: Scalable and Efficient Object Detection. Available online: https://openaccess.thecvf.com/

content_CVPR_2020/papers/Tan_EfficientDet_Scalable_and_Efficient_Object_Detection_CVPR_2020_paper.pdf (accessed on
4 January 2022).

32. Yan, X.; Cui, B.; Xu, Y.; Shi, P.; Wang, Z. A method of information protection for collaborative deep learning under gan model
attack. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 18, 871–881.

33. Otter, D.W.; Medina, J.R.; Kalita, J.K. A survey of the usages of deep learning for natural language processing. IEEE Trans. Neural
Netw. Learn. Syst. 2021, 32, 604–624. [CrossRef]

34. Gao, J.; Deng, B.; Qin, Y.; Wang, H.; Li, X. Enhanced radar imaging using a complex-valued convolutional neural network. IEEE
Geosci. Remote Sens. Lett. 2019, 16, 35–39. [CrossRef]

http://doi.org/10.3390/rs14020363
http://doi.org/10.4236/ars.2013.24040
http://doi.org/10.1016/j.geoderma.2020.114380
http://doi.org/10.1016/j.rse.2011.11.001
http://doi.org/10.1016/S0034-4257(00)00200-5
http://doi.org/10.1109/JSTARS.2013.2259219
http://doi.org/10.1016/S0034-4257(02)00105-0
http://doi.org/10.1109/TGRS.2004.831693
http://doi.org/10.1016/j.rse.2011.07.020
http://doi.org/10.3390/rs10040598
http://doi.org/10.1016/j.geoderma.2014.09.011
http://doi.org/10.1080/01431161.2018.1512767
https://openaccess.thecvf.com/content_CVPR_2020/papers/Tan_EfficientDet_Scalable_and_Efficient_Object_Detection_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Tan_EfficientDet_Scalable_and_Efficient_Object_Detection_CVPR_2020_paper.pdf
http://doi.org/10.1109/TNNLS.2020.2979670
http://doi.org/10.1109/LGRS.2018.2866567


Sustainability 2022, 14, 2666 21 of 23

35. Zhou, Y.; Wang, H.; Xu, F.; Jin, Y. Polarimetric SAR image classification using deep convolutional neural networks. IEEE Geosci.
Remote Sens. Lett. 2017, 13, 1935–1939. [CrossRef]

36. Jiang, T.; Cui, Z.; Zhou, Z.; Cao, Z. Data Augmentation with Gabor Filter in Deep Convolutional Neural Networks for Sar Target
Recognition. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia,
Spain, 22–27 July 2018; pp. 689–692. [CrossRef]

37. Zhang, C.; Sargent, I.; Pan, X.; Li, H.; Gardiner, A.; Hare, J.; Atkinson, P.M. An object-based convolutional neural network (OCNN)
for urban land use classification. Remote Sens. Environ. 2018, 216, 57–70. [CrossRef]

38. Ndikumana, E.; Minh, D.H.T.; Baghdadi, N.; Courault, D.; Hossard, L. Applying deep learning for agricultural classification
using multitemporal SAR Sentinel-1 for Camargue, France. In Image and Signal Processing for Remote Sensing Xxiv; Bruzzone, L.,
Bovolu, F., Eds.; Spie-Int Soc Optical Engineering: Bellingham, WA, USA, 2018.

39. Hou, B.; Kou, H.; Jiao, L. Classification of polarimetric sar images using multilayer autoencoders and superpixels. IEEE J. Sel. Top.
Appl. Earth Obs. Remote Sens. 2016, 9, 3072–3081. [CrossRef]

40. Zhu, L.K.; Ma, X.S.; Wu, P.H.; Xu, J.G. Multiple classifiers based semi-supervised polarimetric SAR image classification method.
Sensors 2021, 21, 3006. [CrossRef] [PubMed]

41. Ghulam, A.; Qin, Q.; Zhu, L.; Abdrahman, P. Satellite remote sensing of groundwater: Quantitative modelling and uncertainty
reduction using 6s atmospheric simulations. Int. J. Remote Sens. 2004, 25, 5509–5524. [CrossRef]

42. Hao, X.; Chen, Y.; Li, W.; Guo, B.; Zhao, R. Hydraulic lift in Populus euphratica Oliv from the desert riparian vegetation of the
Tarim River Basin. J. Arid Environ. 2010, 74, 905–911. [CrossRef]

43. Yang, X. The oases along the Keriya River in the Taklamakan Desert, China, and their evolution since the end of the last glaciation.
Environ. Geol. 2001, 41, 314–320.

44. Dong, X.G.; Deng, M. Groundwater Resources in Xinjiang; Xinjiang Science and Technology Publishing House: Urumqi, China,
2009; pp. 8–9. (In Chinese)

45. Zaytungul, Y.; Mamat, S.; Abdusalam, A.; Zhang, D. Soil salinity inversion in Yutian Oasis based on PALSAR radar data. Res. Sci.
2018, 40, 2110–2117.

46. Rosenqvist, A.; Shimada, M.; Suzuki, S.; Ohgushi, F.; Tadono, T.; Watanabe, M.; Tsuzuku, K.; Watanabe, T.; Kamijo, S.; Aoki, E.
Operational performance of the ALOS global systematic acquisition strategy and observation plans for ALOS–2 PALSAR–2.
Remote Sens. Environ. 2014, 155, 3–12. [CrossRef]

47. Natsuaki, R.; Nagai, H.; Motohka, T.; Ohki, M.; Watanabe, M.; Thapa, R.B.; Tadono, T.; Shimada, M.; Suzuki, S. SAR interferometry
using ALOS–2 PALSAR–2 data for the Mw 7. 8 Gorkha, Nepal earthquake. Earth Planets Space 2016, 68, 15. [CrossRef]

48. Suzuki, S.; Kankaku, Y.; Osawa, Y. Development Status of PALSAR–2 onboard ALOS–2. Technol. Rep. Ieice Sane 2011, 113, 1–4.
49. Arikawa, Y.; Saruwatari, H.; Hatooka, Y.; Suzuki, S. ALOS–2 launch and early orbit operation result. Int. Geosci. Remote Sens.

Symp. 2014, 2, 3406–3409.
50. Lopes, A.; Touzi, R.; Nezry, E. Adaptive speckle filters and scene heterogeneity. IEEE Trans. Geosci. Remote Sens. 1990, 28, 992–1000.

[CrossRef]
51. Holecz, F.; Meier, E.; Piesbergen, J.; Nisch, D.; Moreira, J. Rigorous derivation of backscattering coefficient. IEEE Geosc. Remote

Sens. Soc. Newsl. 1994, 92, 6–14.
52. Sarmap, S.A. Synthetic Aperture Radar and SARscape: SAR Guidebook; Purasca: Caslano, Switzerland, 2009.
53. Ulaby, F.T.; Dobson, M.C. Handbook of Radar Scattering Statistics for Terrain; Artech House: Norwood, MA, USA, 1989.
54. Mashimbye, Z.E.; Cho, M.A.; Nell, J.P.; De Clercq, W.P.; Van Niekerk, A.; Turner, D.P. Model-Based Integrated Methods for

Quantitative Estimation of Soil Salinity from Hyperspectral Remote Sensing Data: A Case Study of Selected South African Soils.
Pedosphere 2012, 22, 640–649. [CrossRef]

55. Zhang, J.; Zhang, Z.; Chen, J.; Chen, H.; Jin, J.; Han, J.; Wang, X.; Song, Z.; Wei, G. Estimating soil salinity with different fractional
vegetation cover using remote sensing. Land Degrad. Develop. 2020, 32, 597–612. [CrossRef]

56. Huynen, J.R. Phenomenological Theory of Radar Targets. Ph.D. Thesis, Technical University, Delft, The Netherlands, 1970.
57. An, W.T.; Cui, Y.; Yang, J. Three-Component Model-Based Decomposition for Polarimetric SAR Data. IEEE Trans. Geosci. Remote

Sens. 2010, 48, 2732–2739.
58. Cloude, S.R. Groupe theory and polarization algebra. Optic 1986, 75, 26–36.
59. Huang, X.D. The Inconsistency of Polarimetric Sar Model-Based Target Decomposition. Master’s Thesis, China University of

Geoscience, Wuhan, China, 2013.
60. He, M.; Li, Y.Z.; Wang, X.S.; Xiao, S.P.; Li, Z.J. A polarimetric calibration algorithm based on pauli-basis decomposition. J. Astronaut.

2011, 32, 2589–2595.
61. Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: New York, NY, USA, 2009.
62. Cloude, S.R. Target decomposition theorems in radar scattering. Electron. Lett. 1985, 21, 22–24. [CrossRef]
63. Freeman, A. Fitting a two-component scattering model to polarimetric SAR data from forests. IEEE Trans. Geosci. Remote Sens.

2007, 45, 2583–2592. [CrossRef]
64. Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci.

Remote Sens. 1997, 35, 68–78. [CrossRef]
65. Freeman, A.; Durden, S.L. A three-component scattering model for polarimetric SAR data. IEEE Trans. Geosci. Remote Sens. 1998,

36, 963–973. [CrossRef]

http://doi.org/10.1109/LGRS.2016.2618840
http://doi.org/10.1109/IGARSS.2018.8518792
http://doi.org/10.1016/j.rse.2018.06.034
http://doi.org/10.1109/JSTARS.2016.2553104
http://doi.org/10.3390/s21093006
http://www.ncbi.nlm.nih.gov/pubmed/33922957
http://doi.org/10.1080/01431160410001719821
http://doi.org/10.1016/j.jaridenv.2010.01.005
http://doi.org/10.1016/j.rse.2014.04.011
http://doi.org/10.1186/s40623-016-0394-4
http://doi.org/10.1109/36.62623
http://doi.org/10.1016/S1002-0160(12)60049-6
http://doi.org/10.1002/ldr.3737
http://doi.org/10.1049/el:19850018
http://doi.org/10.1109/TGRS.2007.897929
http://doi.org/10.1109/36.551935
http://doi.org/10.1109/36.673687


Sustainability 2022, 14, 2666 22 of 23

66. Zhang, W.; Yin, F.; Chai, J.; Bai, X. The Effect of Send/Receive Dual Channel Parameters on Polarization Parameters Measurement.
Chin. J. Electron. 2017, 26, 336–344. [CrossRef]

67. Van Zyl, J.J. Application of Cloude’s target decomposition theorem to polarimetric imaging radar data. In Radar Polarimetry;
International Society for Optics and Photonics: Bellingham, WA, USA, 1993; pp. 184–191.

68. Yamaguchi, Y.; Moriyama, T.; Ishido, M.; Yamada, H. Four-component scattering model for polarimetric SAR image decomposition.
IEEE Trans. Geosci. Remote Sens. 2005, 43, 1699–1706. [CrossRef]

69. Ersahin, K.; Cumming, I.G.; Ward, R.K. Segmentation and Classification of Polarimetric SAR Data Using Spectral Graph
Partitioning. IEEE Trans. Geosci. Remote Sens. 2010, 48, 164–174. [CrossRef]

70. Abuelgasim, A.; Ammad, R. Mapping soil salinity in arid and semi-arid regions using Landsat-8 OLI satellite data. Remote Sens.
Appl. Soc. Environ. 2019, 13, 415–425. [CrossRef]

71. Xie, Q.; Meng, Q.; Zhang, L.; Wang, C.; Sun, Y.; Sun, Z. A Soil Moisture Retrieval Method Based on Typical Polarization
Decomposition Techniques for a Maize Field from Full-Polarization Radarsat-2 Data. Remote Sens. 2017, 9, 168. [CrossRef]

72. He, C.; Xia, G.; Sun, H. SAR images classification method based on Dempster-Shafer theory and kernel estimate. J. Syst. Eng.
Electron. 2007, 18, 210–216.

73. Defries, R.S.; Townshend, J.R.G. NDVI-derived land cover classifications at a global scale. Int. J. Remote Sens. 1994, 15, 3567–3586.
[CrossRef]

74. Wang, F.; Chen, X.; Luo, G.; Ding, J.; Chen, X. Detecting soil salinity with arid fraction integrated index and salinity index in
feature space using Landsat TM imagery. J. Arid Land 2013, 5, 340–353. [CrossRef]

75. Xie, Q.; Lai, K.; Wang, J.; Lopez-Sanchez, J.M.; Shang, J.; Liao, C.; Zhu, J.; Fu, H.; Peng, X. Crop Monitoring and Classification
Using Polarimetric RADARSAT-2 Time-Series Data Across Growing Season: A Case Study in Southwestern Ontario, Canada.
Remote Sens. 2021, 13, 1394. [CrossRef]

76. Pottier, E.; Ferro-Famil, L. PolSARPro V5.0: An ESA educational toolbox used for self-education in the field of POLSAR and
POL-INSAR data analysis. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich,
Germany, 22–27 July 2012; pp. 7377–7380.

77. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
78. Genuer, R.; Poggi, J.M. Variable selection using randomforest. Pattern Recognit. Lett. 2010, 31, 2225–2236. [CrossRef]
79. Han, P.; Sun, D.D. Classification of Polarimetric SAR image with feature selection and deep learning. J. Signal Process. 2019,

35, 972–978.
80. Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: Berlin, Germany, 1995.
81. Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [CrossRef]
82. Keerthi, S.S.; Lin, C.J. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Comput. 2003, 15, 1667–1689.

[CrossRef]
83. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
84. Ho, T. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. 1998, 20, 832–844.
85. Ibrahim, M. Reducing correlation of random forest based learning-to-rank algorithms using subsample size. Comput. Intell. 2019,

35, 774–798. [CrossRef]
86. Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of Statistical Learning; Springer Series in Statistics; Springer: New York, NY,

USA, 2001.
87. Liu, M.; Lang, R.L.; Cao, Y.B. Number of trees in random forest. Comput. Eng. Appl. 2015, 51, 126–131. (In Chinese)
88. Zhang, L.P.; Zhang, L.F.; Du, B. Deep learning for remote sending data: A technical tutorial on the state of the art. IEEE Geosci.

Remote Sens. Mag. 2016, 4, 22–40. (In Chinese) [CrossRef]
89. Wang, J.; Zheng, T.; Lei, P.; Wei, S.M. Study on deep learning in radar. J. Radars 2018, 7, 395–411. (In Chinese)
90. Pan, Z.X.; An, Q.Z.; Zhang, B.C. Progress of deep learning-based target recognition in radar images. Sci. Sin. Inform. 2019, 49,

1626–1639. (In Chinese)
91. Tao, C.S. Reasearch of Polarimetric SAR Detection and Classification Based on Features in Rotation Domain and Deep CNN.

Master’s Thesis, National University of Defense Technology, Changsha, China, 2017. (In Chinese)
92. Hua, W.Q. Study on Polarimetric SAR Images Classification with Small Samples. Master’s Thesis, Xidian University, Xi’an, China,

2018. (In Chinese)
93. Zhu, X.X.; Tuia, D.; Mou, L.C.; Xia, G.S.; Zhang, L.P.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comperehensive

review and list of resources. IEEE Geosc. Remote Sens. Mag. 2017, 5, 8–36. [CrossRef]
94. Deng, S.P.; Sun, S. Comparisions of polarimetric SAR image classifiers based on deep learning. Sci. Survey. Map. 2021, 46, 120–127.

(In Chinese)
95. Zhai, Y.K.; Ma, H.; Cao, H.; Deng, W.B.; Liu, J.; Zhang, Z.Y.; Guan, H.X.; Zhi, Y.H.; Wang, J.X.; Zhou, J.H. MF-SarNet: Effective

CNN with data augmentation for SAR automatic target recognition. J. Eng. 2019, 2019, 5813–5818. [CrossRef]
96. Li, Q.; Cai, W.; Wang, X.; Zhou, Y.; Feng, D.D.; Chen, M. Medical image classification with convolutional neural network.

In Proceedings of the 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV), Singapore,
10–12 December 2014; pp. 844–848.

97. Li, G.Q.; Bai, Y.Q.; Yang, X.; Chen, Z.C.; Yu, H.K. Automatic deep learning land cover classification methods of high-resolution
remotely sensed images. J. Geo-Inform. Sci. 2021, 23, 1690–1704. (In Chinese)

http://doi.org/10.1049/cje.2017.01.002
http://doi.org/10.1109/TGRS.2005.852084
http://doi.org/10.1109/TGRS.2009.2024303
http://doi.org/10.1016/j.rsase.2018.12.010
http://doi.org/10.3390/rs9020168
http://doi.org/10.1080/01431169408954345
http://doi.org/10.1007/s40333-013-0183-x
http://doi.org/10.3390/rs13071394
http://doi.org/10.1007/BF00058655
http://doi.org/10.1016/j.patrec.2010.03.014
http://doi.org/10.1145/1961189.1961199
http://doi.org/10.1162/089976603321891855
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1111/coin.12213
http://doi.org/10.1109/MGRS.2016.2540798
http://doi.org/10.1109/MGRS.2017.2762307
http://doi.org/10.1049/joe.2019.0218


Sustainability 2022, 14, 2666 23 of 23

98. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440.

99. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Proceedings of the
International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October
2015; pp. 234–241.

100. Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A deep convolutional encoder-decoder architecture for image segmentation.
IEEE Trans. Pattern Anal. 2017, 39, 2481–2495. [CrossRef] [PubMed]

101. He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

102. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic image segmentation with deep convolu-
tional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. 2018, 40, 834–848. [CrossRef]

103. Chen, L.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with atrous separable convolution for semantic image
segmentation. In Proceedings of the European conference on computer vision (ECCV), Munich, Germany, 8–14 September 2018;
pp. 33–851.

104. Xu, H.M. Method Research of High Resolution Remote Sensing Imagery Classification Based on U-Net Model of Deep Learning.
Master’s Thesis, Southwest Jiaotong University, Chengdu, China, 2018. (In Chinese)

105. Ibtehaz, N.; Rahman, M.S. MultiResUNet: Rethinking the U-Net architecture for multimodal biomedical image segmentation.
Neural Netw. 2020, 121, 74–87. [CrossRef]

106. Pontius, R.G.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment.
Int. J. Remote Sens. 2011, 32, 4407–4429. [CrossRef]

107. Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37,
35–46. [CrossRef]

108. Hand, D.J.; Christen, P.; Kirielle, N. F*: An interpretable transformation of the F-measure. Mach. Learn. 2021, 110, 451–456.
[CrossRef] [PubMed]

109. Erenel, Z.; Altincay, H. Improving the precision-recall trade-off in undersampling-based binary text categorization using
unanimity rule. Neural Comput. Appl. 2013, 22, S83–S100. [CrossRef]

110. Feng, J.; Ding, J.L.; Wei, W.Y. Soil salinization monitoring based on Radar data. Remote Sens. Land Resour. 2019, 31, 195–203.
111. Wang, D.; Wan, J.; Liu, S.; Chen, Y.; Yasir, M.; Xu, M.; Ren, P. BO-DRNet: An Improved Deep Learning Model for Oil Spill

Detection by Polarimetric Features from SAR Images. Remote Sens. 2022, 14, 264. [CrossRef]
112. Wu, F.; Wang, C.; Zhang, H.; Li, J.; Li, L.; Chen, W.; Zhang, B. Built-up area mapping in China from GF-3 SAR imagery based on

the framework of deep learning. Remote Sens. Environ. 2021, 262, 112515. [CrossRef]
113. Shi, C.; Jiang, Q.; Duan, F.; Shi, P. GF-2 Landuse classification based on UNET+CRF. Glob. Geol. 2021, 40, 146–153.

http://doi.org/10.1109/TPAMI.2016.2644615
http://www.ncbi.nlm.nih.gov/pubmed/28060704
http://doi.org/10.1109/TPAMI.2017.2699184
http://doi.org/10.1016/j.neunet.2019.08.025
http://doi.org/10.1080/01431161.2011.552923
http://doi.org/10.1016/0034-4257(91)90048-B
http://doi.org/10.1007/s10994-021-05964-1
http://www.ncbi.nlm.nih.gov/pubmed/33746357
http://doi.org/10.1007/s00521-012-1056-5
http://doi.org/10.3390/rs14020264
http://doi.org/10.1016/j.rse.2021.112515

	Introduction 
	Materials and Methods 
	Study Area 
	Data 
	Remote Sensing Data 
	Field Data 

	Methods 
	Polarimetric Decomposition 
	Calculate the NDVI, SI and RVI 
	Machine Learning Algorithms Used 
	DL Algorithms 
	Accuracy Assessment 


	Results 
	Polarimetric Decomposition of Fully PolSAR Data and Feature Selection 
	Classification Results 
	Classification Accuracy 

	Discussion 
	Comparison of Different Classification Methods 
	Polarimetric Decomposition Influence on Classification Results 
	Data Source Influence on Classification Results 
	Distribution Characteristics of Salinization in Study Area 

	Conclusions 
	References

