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Abstract: New scientific and technological (S&T) knowledge is being introduced rapidly, and hence,
analysis efforts to understand and analyze new published S&T documents are increasing daily.
Automated text mining and vision recognition techniques alleviate the burden somewhat, but the
various document layout formats and knowledge content granularities across the S&T field make
it challenging. Therefore, this paper proposes LA-SEE (LAME and Vi-SEE), a knowledge graph
construction framework that simultaneously extracts meta-information and useful image objects from
S&T documents in various layout formats. We adopt Layout-aware Metadata Extraction (LAME),
which can accurately extract metadata from various layout formats, and implement a transformer-
based instance segmentation (i.e., Vision based Semantic Elements Extraction (Vi-SEE)) to maximize
the vision-based semantic element recognition. Moreover, to constructing a scientific knowledge
graph consisting of multiple S&T documents, we newly defined an extensible Semantic Elements
Knowledge Graph (SEKG) structure. For now, we succeeded in extracting about 6 million semantic
elements from 49,649 PDFs. In addition, to illustrate the potential power of our SEKG, we provide two
promising application scenarios, such as a scientific knowledge guide across multiple S&T documents
and questions and answering over scientific tables.

Keywords: multi-modal; document layout analysis; metadata; document structure; document object;
semantic elements; knowledge graph; transformer; decision support

1. Introduction

Decision support systems or specific methods for science and technology (S&T) prob-
lems or social issues can be employed effectively across various domain user types related
to policymaking, research topic search, research method survey, comparing experimental
results, emerging technology trend analyses, etc.

Junior researchers (or novice users) may have difficulty collecting target information
due to lacking domain knowledge. However, even domain experts usually feel burdened
considering the vast and rapidly growing body of scientific literature, expert blogs, com-
mercial technical reports, and patents. Search engines are common tools for information
seeking, allowing users to access related documents or paragraphs containing search
queries on the premise that full document texts have been indexed. An alternative method
to find relevant information for research topic or job is to visit online Q&A communities,
such as Knowledge iN (of Naver), Reddit, and/or Quora. However, although most deliver
substantial information, they can sometimes contain prejudiced opinions or commercial
references that are untrustworthy.

Suppose these S&T documents were well separated and re-organized as reusable
knowledge. Then, users could selectively access only relevant knowledge and utilize it
in decision-making processes. Unfortunately, although the requirement is becoming crit-
ical, few decision support systems are available due to many technical implementation
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limitations. Therefore, in order to resolve these limitations, this study aims to enable a so-
phisticated decision support system by extracting semantic elements from S&T documents
and constructing a knowledge graph with the semantic elements.

Knowledge graphs (KGs) are promising enablers for effective decision support sys-
tems [1]. Most KGs comprise large quantities of triple sentences, representing vast knowl-
edge, but building a well-equipped KG is challenging due to technological limitations and
expensive human evaluation. The KG mainly extracts triples by implementing domain-
specific entity name recognizers and relationship extractors to extract concepts (or entities)
and identify relevant relationships between the concepts. Internal KG structures and hence
their construction performance differ significantly depending on target entity types and
relationship granularities [2–5]. For example, PubMed KG [6] connects bio-entities, au-
thors, articles, affiliations, and funding from approximately 29 million PubMed abstracts.
Although BioBERT [7] based entity extraction outperformed the previous state-of-the-art
(SOTA) models, it only achieved F1-score = 51%, which is far from ideal. Mondal et al. [8]
recently proposed SciNLP-KG, an end-to-end natural language processing (NLP) KG con-
struction with 30,000 NLP papers focusing on four extracted relationship types among
tasks, datasets, and evaluation metrics. However, their relationship extraction modules
still only achieved an F1-score < 80%. Liu et al. [9] defined a metaknowledge architecture
to construct structural knowledge with documents, in contrast with previous KGs but
similar to the present paper’s approach. They employed a multi-modal metaknowledge
extraction model to extract and organize metaknowledge elements (e.g., titles, authors,
abstracts, and sections) from a government policy document dataset and DocBank [10]
dataset. However, due to the computer-annotated data quality, the experiments on the
DocBank are just performed with image features rather than multi-modal.

To accommodate the high-end needs of sophisticated decision support systems, we
aimed to construct a reusable scientific KG in this paper. To do so, we propose a layout-
aware semantic element extraction (LA-SEE) framework that can extract meta and semantic
knowledge from S&T documents and construct a KG with the extracted semantic elements.
In particular, we combine text-based and vision-based techniques internally to deal with
textual and image features. More specifically, compared with existing multi-modal stud-
ies [10,11], this paper employs a BERT based language model (i.e., layout-aware metadata
extraction (LAME)) [12] to tackle metadata extraction and instance segmentation with trans-
formers (ISTR) (i.e., vision-based semantic element extraction (Vi-SEE)) to achieve vision
based object detection. Combining the two models makes semantic element extraction
insensitive to layout format. Post-processing procedures extract more accurately captions
of figure and table, references, and paragraphs, as well as texts to organize reusable knowl-
edge. Finally, we map those post-processed semantic elements onto the defined semantic
elements knowledge graph (SEKG).

We performed semantic element extraction across 70 journals with different layouts
to verify the proposed LA-SEE feasibility. Two extraction mechanisms (i.e., LAME and
Vi-SEE) were robustly implemented to outperform recent SOTA techniques. Semantic
element extraction from 49,649 input PDFs provided 6,782,685 semantic elements for 11
types. Significant contributions from this paper can be summarized as follows:

(1) We implement the Vi-SEE model with a SOTA instance segmentation object detec-
tion algorithm.

(2) We define a new scientific KG with 11 different semantic elements (i.e., SEKG).
(3) We define a new LA-SEE framework for textual and visual semantic element extraction

and knowledge organization; combining our previously built LAME framework [13]
for metadata extraction, Vi-SEE for visual object detection, and SEKG structure for
knowledge organization.

(4) We propose two user scenarios based on the proposed SEKG to confirm promising ap-
plications.
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2. Related Work
2.1. Metadata Extraction from Articles

Research on document structure and information extraction has been steadily ongoing.
Primary research directions for metadata extraction can be categorized into rule based,
textual feature based machine learning, and vision based object detection. For example,
SVM [14], CNN [15], and CRF [16,17] algorithms are popular techniques used with textual
features. Pre-training approaches based on large scale text corpora have shown signifi-
cant successes in several NLP tasks recently, including text classification and sequential
labeling [12,18–22].

Sufficient high-quality training datasets annotated with target labels are essential
to implement a modest metadata extraction model. Each dataset may have a different
annotation level, depending on the research purpose. For example, reference [14] had
sentence-level metadata annotations. Reference [16] applied BIO tagging for tokenized
words to train a Bi-LSTM-CRF model for metadata extraction, and reference [23] used
paragraph-level (or clustered text) annotations. Other studies considered font, font size, and
location information to re-organize text chunks to detect layout and extract metadata [24,25].
In contrast, reference [26] automatically annotated document layout elements (i.e., text,
titles, lists, tables, and figures) to apply object detection techniques [27,28] for document
layout analysis, which is related to metadata extraction.

2.2. Vision-Based Document Analysis

Several studies introduced transformers into object detection tasks, motivated by
recent successes for transformers in NLP [29]. A detection transformer (DETR) [30] recon-
structed complex object detection components by employing a simple transformer encoder
and decoder architecture, providing a neck component to bridge the CNN body for feature
extraction and a detector head for prediction. However, although DETR achieved a high
detection performance, it suffered from slow convergence, e.g., DETR required 500 epochs,
whereas conventional Faster R-CNN [27] training required less than 50 epochs [31]. Re-
cent studies have confirmed the great potential for end-to-end object detection [30,32,33].
Hence, bipartite matching cost has become an essential component for achieving end-to-
end object detection. For example, in contrast to [34,35], segmentation explored end-to-end
mechanisms with recurrent neural networks, and end-to-end ISTR [36] used the similarity
metric for mask embeddings as bipartite matching cost for masks and incorporated trans-
formers [29] to improve end-to-end instance segmentation. We use ISTR in the proposed
vision-based semantic element detection task because it showed SOTA level performance
even with approximation based suboptimal embeddings.

Document layout analysis is an essential task in automatic document understanding.
Its main goal is to identify regions of interest in unstructured documents and recognize
each region’s roles. However, the task is non-trivial due to document layout diversity and
complexity. Many deep learning models have been proposed for this task in computer
vision (CV) and NLP fields. Most consider either only visual features [26], only textual
features [12], or both modalities [11]. Visual features can identify some regions (e.g., figures,
tables), whereas textual features are critical to discriminate visually similar regions (e.g.,
keywords, abstract, affiliation, author names, etc.). However, single modality models have
insufficient capability for layout modeling, hence multi-modal approaches have recently
become more popular [9,10,37]. However, they typically contain only hundreds of labeled
pages due to prohibitive labeling costs to annotate many layout objects per page, which
is insufficient to train and evaluate deep learning based models [27]. Although some
multi-modal approaches use automatic data construction methods [10,11,38], they are not
interoperable because they employ fundamentally different layout object types and training
data formats.
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2.3. Scientific Knowledge Extraction

The NLP community includes considerable research on extracting information or
knowledge from the scientific literature. Earlier studies focused on identifying citation con-
texts [39] and extracting key concepts [40] or phrases [41,42]. Most approaches attempted
to construct knowledge bases by defining scientific entities and extracting semantic relation-
ships between the entities [2–4]. More recently, reference [8] constructed task-dataset-metric
triples from NLP papers by extracting entities and their relationships within and across
different sentences/documents.

2.4. Document Modeling

Ronzano and Saggion [43] proposed a platform to extract vast amounts of structural
and semantic information from scientific publications, represented as Resource Description
Framework (RDF) datasets. Yang et al. [44] designed a weakly-supervised text-to-graph
neural network to provide concise, structured representations for documents, by generat-
ing concept maps connecting important concepts and interaction links. Zheng et al. [45]
introduced four granularity levels for document modeling: documents, paragraphs, sen-
tences, and tokens, reflecting the natural hierarchical document structure. More recently,
reference [9] defined a document structure tree model to organize knowledge element
extraction from documents and determine their relationships, such as juxtaposition and
inclusive, between sections at different levels.

The above works motivated us to extract key semantic elements within the document
and derive critical links across multiple documents using the proposed document network
structure. Unlike existing knowledge graph construction research, S&T documents exist at
the center of reusable knowledge extraction in this study. Therefore, general metadata of
documents and their figures, tables, and references were considered semantic elements of
knowledge construction. Section 3.3 defines the semantic element knowledge graph (SEKG)
because a large number of documents can be interconnected to build vast S&T knowledge.
It can be linked to the knowledge graph based on the triple sentences (e.g., relation-entity1-
entity2), but we focus on extracting and connecting the document’s metadata and the figures
and tables of the detailed section or page within the document. There is currently no pre-
secured multi-modal training data for semantic elements of different levels. Therefore, text
feature-based model (i.e., LAME) is in charge of metadata extraction, and the vision-based
object detection model (i.e., Vi-SEE) is responsible for the remaining semantic elements.
Moreover, our post-processing delineates the realms of ambiguous semantic elements for
more accurate semantic elements identification.

3. LA-SEE Framework

This study proposed a LA-SEE framework to extract meta-information, text, sub-titles,
references, figures, tables, and captions from scientific PDFs. Figure 1 shows that proposed
LA-SEE framework comprises three major components.

(1) The LAME [13] model extracts five metadata types (title, author, affiliation, keywords,
and abstract) from the first PDF page.

(2) Vi-SEE performs object detection for the remaining pages to extract other semantic
elements (paragraphs, figures, tables, captions, and references) and post-processing
to obtain texts of the elements. Figures and tables are saved as image files, whereas
other metadata and semantic elements are converted to JavaScript Object Notation
(JSON) format.

(3) Extracted semantic elements go through knowledge organizing/mapping under our
SEKG structure defined in Section 3.3. The metadata from LAME and document
objects from Vi-SEE are collectively referred to as semantic elements.
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Figure 1. Proposed system architecture.

3.1. LAME

We adopted our prior work, LAME framework to discriminate metadata elements
in the first document page, considering text block characteristics in the heterogeneous
meta-information layouts [13]. Figure 2 shows that the LAME framework comprises three
major components: automatic layout analysis, layout-aware training data construction,
and metadata extraction. Stage 1 analyzes the PDF’s first-page by using PDFMiner, then is
subject to reconstruction, refinement, and adjustment procedures to identify the various
metadata on the first page due to incomplete PDFMiner parsing results. Stage 2 builds the
many training datasets used in Stage 3. The building process matches identified metadata
from Stage 1 with previous correct metadata values. However, the compared textual
content is not always precisely matched. Therefore, to determine the extent of the match,
we allowed only fields with almost identical (or high similarity) matches for each layout
text information element automatically acquired in the previous step as training data. We
used a mixed textual-similarity measure for efficient computation based on the Levenshtein
distance and bilingual evaluation understudy (BLEU) score.
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The created dataset have not correct answer dataset for comparing results, and manual
comparison spend much time and resource. Thus, to determine the accuracy of the training
data generated through Stage 2, we indirectly evaluated the data quality through the
metadata extraction in Stage 3. Finally, a novel metadata extractor is defined by pre-
training the Layout-MetaBERT model with the Stage 2 training data and fine-tuning it for
the target corpus.

We chose a fine-tuned Layout-MetaBERT (base) with robust metadata extraction
performance (F1 = 94.6%) even for unseen journals with diverse layouts by referring to
various experimental results for the LAME framework [13].

3.2. Vi-SEE

Figure 3 describes the proposed Vi-SEE model, which utilizes ISTR [36] to detect
objects in pages in the PDF document except for the first page. Images from the PDF pass
through the ISTR based detection model to identify candidate bounding boxes (BBoxes) for
text, titles, lists, figures, and tables. Input image passes through the convolution natural
network based on the reset backbone, produces a feature pyramid. RoI (Region of Interest)
feature and image feature are separated from the feature pyramid, and image feature
and position feature are concatenated. Moreover, transformer encoder with dynamic
attention fuses the image + position and RoI features for prediction head. Each detected
area is converted into actual data through a set of post-processing procedures using the
detected BBoxes corresponding categorical labels: (1) text extraction for text, lists, and
titles, (2) figure/table extraction, and (3) caption extraction. Previous studies have only
performed this at area-level detection, whereas the proposed modules include detailed
techniques to extract precise regions for semantic element areas and related texts.
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3.2.1. ISTR Selection

Before selecting the ISTR [36], we compared three popular object detection models,
Mask R-CNN [28], DETR [30], and ISTR, for accurate semantic element extraction from the
document. They all use the ResNet [46] backbone. The Mask R-CNN model is a derived
image segmentation model after Faster R-CNN [27]. It has a similar structure to Faster
R-CNN except its object mask branch, RoI alignment, and decoupling mask prediction and
class prediction. However, the Mask R-CNN model suffers from low detection speed due
to the detection pipeline’s non-maximum suppression (NMS) stage.

On the other hand, DETR omits NMS from the detection pipeline while improving
speed similarly to Faster R-CNN. It predicts all objects at once and only has simple pipelines
that do not require NMS or anchors and is good for finding large objects, but fails to find
small/middle sized objects. The ISTR algorithm provides end-to-end instance segmentation
by regressing low-dimensional embeddings rather than raw masks, which enables training
to be effectively conducted with a small number of matched samples. Regressing with
the embeddings allows a recurrent refinement strategy that can process detection and
segmentation concurrently, boosting performance. It updates query boxes and refines
the prediction sets. We chose ISTR as the main Vi-SEE algorithm because there are many
medium and large objects in our target documents. The primary training method of ISTR
learning follows DETR [30]. A key point in ISTR learning is that there is a refinement stage.
The basic formula for self-attention of ISTR is as follows:

Output = so f tmax
(

Query× KeyTranspose
√

d

)
×Value

In Multi-Head Attention, a dynamic attention module is added so that RoI and image
features can be well fused, and it is summarized as follows.

Featurei = RoIi × f ully− connection(Output)

Furthermore, the refinement stages can improve the performance of the predicted
bounding boxes, classes, and masks by updating the query boxes.

When the page of the document enters as the input of the model, object detection is
performed through the ISTR model. The object detection task is to detect instances of objects
of a certain class within an image by considering the bounding box area, segmentation area,
and candidate labels.

3.2.2. Post-Processing Identified Semantic Elements

• Text extraction: BBox areas are converted into texts using PDFMiner [47] parsing
results for text, lists, and titles extracted from the ISTR based model. PDFMiner
returns parsed texts with position information for PDF document. We extract texts
using the left-top and right-bottom positions for the detected areas. The extracted
semantic elements are references, paragraphs, and section titles.

• Figure/table extraction: We take screenshots encompassing the BBoxes and save them
as images for detected areas such as figures and tables.

• Caption extraction: Rather than using BBox coordinates for the detected semantic
elements (text, figures, and tables), we find candidate areas for captions based on a
distance measure and change the areas into texts using PDFMiner’s parsed results.
The closest text BBox is resolved as a caption. We compute the distance between the
midpoint for the detected figure (or table) BBoxes and the midpoint for text BBoxes.
FTmid refers to the midpoint found using the bounding box of figure or table. Tmid
refers to the midpoint found using the bounding box of text. Thus, midpoint for figure
(or table) BBox can be expressed as

FTmid(x1, y1) = (|x2 − x1|, |y2 − y1|) (1)
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and text BBox as
Tmid(x1, y1) = (|x2 − x1|, |y2 − y1|) (2)

Distance for each midpoint can be expressed as

Dist =
√
(FTmid(x1)− Tmid(x1))

2 + (FTmid(y1)− Tmid(y1))
2 (3)

and midpoint for a caption as

Caption mid = Min(Dist) (4)

Caption text is extracted in the same way as for normal text extraction.
Figure 4 shows examples of objects extracted through Vi-SEE as well as the semantic

elements and their labels.

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 19 
 

When the page of the document enters as the input of the model, object detection is 
performed through the ISTR model. The object detection task is to detect instances of ob-
jects of a certain class within an image by considering the bounding box area, segmenta-
tion area, and candidate labels. 

3.2.2. Post-Processing Identified Semantic Elements 
• Text extraction: BBox areas are converted into texts using PDFMiner [47] parsing re-

sults for text, lists, and titles extracted from the ISTR based model. PDFMiner returns 
parsed texts with position information for PDF document. We extract texts using the 
left-top and right-bottom positions for the detected areas. The extracted semantic el-
ements are references, paragraphs, and section titles. 

• Figure/table extraction: We take screenshots encompassing the BBoxes and save them 
as images for detected areas such as figures and tables. 

• Caption extraction: Rather than using BBox coordinates for the detected semantic el-
ements (text, figures, and tables), we find candidate areas for captions based on a 
distance measure and change the areas into texts using PDFMiner’s parsed results. 
The closest text BBox is resolved as a caption. We compute the distance between the 
midpoint for the detected figure (or table) BBoxes and the midpoint for text BBoxes. 
FTmid refers to the midpoint found using the bounding box of figure or table. Tmid 
refers to the midpoint found using the bounding box of text. Thus, midpoint for fig-
ure (or table) BBox can be expressed as 𝐹𝑇𝑚𝑖𝑑ሺ𝑥ଵ, 𝑦ଵሻ ൌ ሺ|𝑥ଶ െ 𝑥ଵ|, |𝑦ଶ െ 𝑦ଵ|ሻ (1)

and text BBox as 𝑇𝑚𝑖𝑑ሺ𝑥ଵ, 𝑦ଵሻ ൌ ሺ|𝑥ଶ െ 𝑥ଵ|, |𝑦ଶ െ 𝑦ଵ|ሻ (2)

Distance for each midpoint can be expressed as 𝐷𝑖𝑠𝑡 ൌ ඥሺ𝐹𝑇𝑚𝑖𝑑ሺ𝑥ଵሻ െ 𝑇𝑚𝑖𝑑ሺ𝑥ଵሻሻଶ  ሺ𝐹𝑇𝑚𝑖𝑑ሺ𝑦ଵሻ െ 𝑇𝑚𝑖𝑑ሺ𝑦ଵሻሻଶ (3)

and midpoint for a caption as  𝐶𝑎𝑝𝑡𝑖𝑜𝑛 𝑚𝑖𝑑 ൌ 𝑀𝑖𝑛ሺ𝐷𝑖𝑠𝑡ሻ (4)

Caption text is extracted in the same way as for normal text extraction. 
Figure 4 shows examples of objects extracted through Vi-SEE as well as the semantic 

elements and their labels. 

  
Figure 4. Extracted semantic element examples from Vi-SEE. 

  

Figure 4. Extracted semantic element examples from Vi-SEE.

3.3. Organizing Knowledge with SEKG for Multiple Documents

Many applications that require analyzing a large amount of knowledge from various
angles become possible once the knowledge relationships in S&T documents are identified,
and if knowledge from different documents are interconnected. Suppose those semantic
elements representing knowledge across a considerable number of documents are well
organized. Then, researchers (or policymakers) can expedite their decision-making by
streamlining information/knowledge collection and analysis. For example, reference [48]
performed a behavioral study on citations, reference [3] extracted tasks, datasets, metrics,
and scores from NLP papers to automatically construct a leaderboard, and reference [9]
suggested a metaknowledge construction framework and document structure tree model
to reduce gaps between human knowledge perception and entity-relationship triplets.

Influenced by those studies, we defined an SEKG for multiple document structures that
can connect multiple semantic elements in a single document, or across multiple documents,
as shown in Figure 5. Relationships are identified between 11 semantic elements types
extracted from documents using the proposed LAME and Vi-SEE modules, and mapped
under the SEKG structure. The first page of most documents includes significant metadata,
including author name(s) and affiliation(s), publisher, abstract, and introduction. We
regarded these metadata separately from document’s contents that were not included in a
specific page or section. These metadata elements provide an essential reasoning link when
several documents are linked, as shown in Figure 6.
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Semantic elements extracted from a document have a hierarchical structure from the
main section to the sub-section. However, it is essential to consider when figures (or tables)
located on different pages can be cited more than once from different pages. Therefore,
the proposed SEKG structure maps extracted semantic elements to a network node rather
than the hierarchical structure, considering various relationships connecting figures, tables,
and references.

4. Experiments
4.1. Datasets
4.1.1. Data for Metadata Extraction

We use the first pages of 65,007 PDF documents from 70 S&T journal articles to reflect
various document layout formats for the metadata extraction task. It is the same dataset
used in our prior work [13]. We extracted major metadata elements, such as titles, author
names, author affiliations, keywords, and abstracts, in Korean and English based on the
automatic layout analysis in Section 3.1. Among the 70 journal articles, two were only in
Korean, 23 were only in English, and 45 were Korean and English. Automatic labeling
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was applied with ten labels for each layout that separated metadata on the first page of
articles with other layouts not included in the relevant information labeled as O. Table 1
summarizes the automatically generated training data.

Table 1. Automatically generated training data [13] (p. 9).

Metadata Field Label (i.e., Layout) Count

Out of boundary O 637,856
Title (in Korean) title_ko 46,056
Title (in English) title_en 64,414

Affiliation (in Korean) aff_ko 39,233
Affiliation (in English) aff_en 63,434
Abstract (in Korean) abstract_ko 31,885
Abstract (in English) abstract_en 55,318

Keywords (in Korean) keywords_ko 21,685

4.1.2. Dataset for Vi-SEE

Large high-quality annotated training datasets are essential to creating a robust object
detection model. However, accurately detecting target semantic elements from PDF docu-
ments is still not guaranteed even if similar datasets exist [10,26,49] due to varying layout
formats across journals. Therefore, we constructed the proposed Vi-SEE module training
dataset with the following steps.

(1) Five major semantic elements (i.e., section title, paragraph, reference, table, and
figure) were pseudo-labeled for the 70 scientific journal articles using the Mask-RCNN [28]
model trained with the PubLayNet [26] dataset following COCO data format [50].

(2) The coco-annotator API was used to modify the mask parts that were not properly
labeled, as shown in Figure 7. Five paid annotators performed a cross-check on each other’s
work to guarantee annotation quality. Revised pages that focused on error-prone cases
amounted to 20,079, summarized in Table 2. The data were randomly divided into training
(i.e., fine-tuning) and testing sets at 80:20, respectively.
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Table 2. Constructed dataset summary.

Semantic Elements Training Set Test Set Total

Section title 32,284 5724 38,008
Paragraph 111,253 19,990 131,243
Reference 57,813 10,197 68,010

Table 4433 782 5215
Figure 12,937 2303 15,240

Total num. of pages 17,024 3055 20,079

4.2. Proposed LA-SEE Performance

Table 3 shows the device information and the version of cuda we used in the experi-
ments. We used i9-10900 CPU and two Tesla v100 GPUs to fine-tune comparison targets
with LAME and Vi-SEE models.

Table 3. Details of the used system settings for experiments.

System Settings Specification

CPU Intel(R) Core(TM) i9-10900X CPU @ 3.70GHz
GPU Tesla V100-PCIE-32GB × 2
RAM 256 G

Cuda Version Cuda 10.1

Table 4 shows that the proposed LAME model effectively extracted metadata, achiev-
ing F1-score ≥ 90% for all extractions and average F1-score = 93%, confirming that pre-
training the layout units with BERT schemes is feasible. Similarly, the proposed Vi-SEE
model effectively detected semantic elements using vision, achieving average mAP = 85%.

Table 4. Experimental results for LAME and Vi-SEE compared with other SOTA models.

Element LAME [13]
(F1-Score)

KoELECTRA [51]
(F1-Score)

Title 0.92 0.87
Abstract 0.9 0.9

Keywords 0.94 0.91
Author 0.9 0.73

Affiliation 0.92 0.57

Average 0.93 0.87

Element Vi-SEE
(mAP)

Mask R-CNN Trained with
PubLayNet and Fine-Tuned

with Our Data (mAP)

Section title 0.6841 0.6445
Paragraph 0.8456 0.8018

Table 0.9323 0.8989
Figure 0.8975 0.7144

Reference 0.8959 0.8398

Average 0.8493 0.7798

We performed a set of transfer learning for the constructed data before building the
Vi-SEE module, based on three pre-trained models (as shown in Table 5):

(1) Mask R-CNN model pre-trained with PubLayNet data,
(2) DETR model pre-trained with ImageNet data, and
(3) ISTR model pre-trained with ImageNet data.
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Table 5. Algorithm performances under different configurations.

Model AP AP50 AP75 APm APl

A 77.99% 93.46% 86.98% 41.61% 80.23%
B 81.5% 97.1% 90.1% 59.3% 82.1%
C 85.11% 98.16% 93.33% 65.44% 85.60%

Notes: A: Detectron2 with PubLayNet and Our Data, B: DETR with Our Data, C: ISTR with Our Data.

We used the Mask R-CNN model trained with PubLayNet data based on the De-
tectron2 framework for our fine-tuning task. Both DETR and ISTR used the pre-trained
ResNet-101 model [52,53] as the backbone in their fine-tuning stage. We follow the default
configurations of each model.

The fine-tuned models achieved overall modest performance on AP50, whereas the
ISTR based model achieved highest mAP on AP50. Semantic elements in the documents
were primarily large and medium scale, but small scale when Common Object in Context
(COCO) metrics were applied [54]. The ISTR based model, detects medium and large
objects well, achieving superior results to DETR, whose strength lies in detecting large
objects. Looking at Table 5, ISTR is about 23% higher than Mask R-CNN in average
precision medium (APm) and about 6% higher than DETR. In average precision large (APl),
it is about 5% higher than Mask R-CNN and about 3% higher than DETR, showing the best
performance. Therefore, it better detects the area of the semantic element than others.

4.3. Constructed Semantic Element Statistics

Table 6 shows the statistics for 6,782,685 semantic elements extracted from 49,649 PDF
documents using the proposed LA-SEE framework. Although semantic element counts for
each type differ, this statistic is useful for estimating the number of knowledge instances
acquired considering the number of input documents.

Table 6. Automatically constructed SEKG summary.

Semantic Element Types Extracted Elements (Count)

Title 49,094
Abstract 60,526

Keywords 56,634
Author 52,216

Affiliation 50,951
Section title 1,019,749
Paragraph 2,700,498

Table 138,613
Figure 388,416

Caption 527,029
Reference 1,711,959

Total PDF documents 49,649

Total extracted semantic elements 6,782,685

5. Decision Support Applications in Science and Technology Domain

When users search for desired information using search engines, such as Google or
Naver, users employ relevant keywords to search for desired information using search
engines, such as Google or Naver, and check search results (title, snippets, summary,
and document) one by one to determine if they are relevant for their information needs.
However, users often perform very repetitive searching and checking processes to access
sufficient suitable information. The proposed SEKG framework provides relational infor-
mation access that supports quick decision-making while reducing laborious information
searches. For example, users can perform numerous reasoning types over the relationships
among research data, relationships between semantic elements across multiple documents,
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related keywords through directly (or indirectly) linked documents, and large KG compris-
ing triple sentences.

The SEKG can be applied to several real-world S&T applications in various fields,
including, but not limited to, science knowledge guides, question answers over a large
number of figures and tables, and generating textual explanations for scientific issues. We
describe how SEKG satisfies scientific requirements with two applications below.

5.1. Scientific Knowledge Guide

Researchers commonly find and compare academic documents and research reports,
time costs for information-seeking are rapidly increasing due to continuously increasing
number of documents.

The proposed SEKG framework offers an elegant solution for the problem, providing
relevant figures, tables, and captions that satisfy user requirements. A semantic query is
sent to the SEKG for knowledge discovery, and the SEKG delivers a group of figures that
meet the query conditions.

Figure 8 shows SEKG results differ significantly from general search engine results.
For example, suppose an NLP beginner examines pre-trained models published in recent
studies with the query, “Text Pretrained Model”. The SEKG enables easy and quick access
to pretrained model pictures (e.g., BERT, TinyBERT, BART, ELECTRA, and DialogBERT)
mentioned in various research papers, affiliations for authors that developed these models,
and related paper titles. New knowledge, such as research trends for major research
institutions, can also be summarized as required by modifying user queries over the SEKG.
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5.2. Questions and Answering over Tables

Tables in papers and reports deliver condensed information, commonly employing
numerical values to represent actual experimental performance or statistical results. There-
fore, accessing the values provides many benefits to researchers. Suppose a table search
is performed to satisfy the user’s information request. For example, search for tables that
contain captions and descriptions that match user keywords, but still require a selection
process is within them. In this case, the SEKG can directly access exact values in the tables
while minimizing the selection process or inferring new values based on these values.

For example, suppose a user is interested in water pollution content in the environ-
mental field and wants to know the mean annual pH for 2012–2014 water measurements.
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SEKG will select the table containing pH values from 2012, 2013, and 2014 among several
water pollution documents, as shown in Figure 9.
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Employing a table QA (Question-Answer) module [55] and mathematical reasoning
injection [56] allows the user to obtain average pH between 2012 and 2014. Rather than
simply providing the information, the average value is computed using the language
model’s mathematical reasoning capability. Furthermore, several tables extracted from
two or more document types in the same field can be processed and provided to suit the
user’s requirements.

For example, suppose a researcher wants to know Busan’s BOD (the degree of contam-
ination by organic substances) in 2003 and wonders if the distribution of pollutants affects
BOD. In this case, SEKG finds a table of BOD content in water pollution-related documents,
as shown in Figure 10, Table 2, which contains the content for Busan in 2003. For more
complex questions, SEKG may search the pollutant distribution table (Figure 10, Table 1)
and provide pollutant distribution for Busan (Figure 10, Table 2). Thus, various informa-
tion comprising tables, figures, and statistics can be provided to suit user requirements
regardless of specific fields and data quantities, by analyzing, processing, and combining
data beyond simple information provisioning.
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6. Conclusions and Future Work

This paper proposed the LA-SEE framework to build a reusable SEKG from various
documents. In particular, 11 semantic element types were defined and extracted from
various S&T journals using LAME and Vi-SEE. LA-SEE uses BERT based metadata ex-
traction with textual features and ISTR based object detection to achieve SOTA performance
with textual and image features. As results, we established a large scale SEKG comprising
6 million semantic elements using LAME and Vi-SEE and discussed two usage scenarios
(i.e., scientific knowledge guide and QA over tables) to highlight the proposed SEKG
framework applicability and extensibility. In the first scenario, it was possible to find and
present figures of similar architectures belonging to semantically similar topics in several
different documents through SEKG. Furthermore, in the second scenario, we showed that
it is possible to present values that satisfy user needs by accessing joinable tables’ values in
different documents.

The limitation of this study is that the training data of 11 semantic elements of SEKG
do not have consistency. Each of the LAME and Vi-SEE training data has different levels of
annotation (i.e., text or vision), and multi-modal features are not considered yet. Therefore,
it is necessary to construct a dataset and apply an advanced training algorithm to consider
multi-modality in our future research. In addition, although the currently constructed data
sets are composed of about 40 journals in different formats, there is still a limit to accurately
processing S&T documents in various subject domains. Therefore, when an S&T document
of a new subject domain is an input, it may be challenging to extract semantic elements,
so to apply it to documents in other domains, a process of generating a new dataset and
training a new model is required.

Moreover, further work remains to better handle various exceptions and errors natu-
rally occurring due to formatting and related differences among documents. For example,
LAME does not always correctly identify target elements and Vi-SEE fails to distinguish
figure regions comprising complex images. We plan to employ multi-modal transformer
techniques to address these issues, rather than single-modal approaches, which will require
high-quality Optical Character Recognition (OCR) module(s) to convert document data
into multi-modal training sets containing massive documents numbers.

We will also investigate accurately extracting related figure and table descriptions and
add them as new semantic elements to SEKG. Although figures and tables are primary
information in S&T documents, their corresponding descriptions are not currently consid-
ered. If SEKG were empowered with explanatory texts for figures and tables, it would be
possible to build new scientific, conversational AI applications by enabling table-to-text (or
figure-to-text) functionality.
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