
����������
�������

Citation: Ren, X.; Yang, W.; Jiang, X.;

Jin, G.; Yu, Y. A Deep Learning

Framework for Multimodal Course

Recommendation Based on

LSTM+Attention. Sustainability 2022,

14, 2907. https://doi.org/10.3390/

su14052907

Academic Editor: Miltiadis D. Lytras

and Andreea Claudia Serban

Received: 13 January 2022

Accepted: 18 February 2022

Published: 2 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

A Deep Learning Framework for Multimodal Course
Recommendation Based on LSTM+Attention
Xinwei Ren 1,2 , Wei Yang 1,*, Xianliang Jiang 2, Guang Jin 2 and Yan Yu 2

1 College of Science & Technology, Ningbo University, Ningbo 315300, China
2 College of Electrical Engineering and Computer Sciences, Ningbo University, Ningbo 315211, China;

akon_ren@163.com (X.R.); jiangxianliang@nbu.edu.cn (X.J.); jinguang@nbu.edu.cn (G.J.);
1911082064@nbu.edu.cn (Y.Y.)

* Correspondence: yangwei1@nbu.edu.cn

Abstract: With the impact of COVID-19 on education, online education is booming, enabling learners
to access various courses. However, due to the overload of courses and redundant information, it
is challenging for users to quickly locate courses they are interested in when faced with a massive
number of courses. To solve this problem, we propose a deep course recommendation model with
multimodal feature extraction based on the Long- and Short-Term Memory network (LSTM) and
Attention mechanism. The model uses course video, audio, and title and introduction for multimodal
fusion. To build a complete learner portrait, user demographic information, explicit and implicit
feedback data were added. We conducted extensive and exhaustive experiments based on real
datasets, and the results show that the AUC obtained a score of 79.89%, which is significantly higher
than similar algorithms and can provide users with more accurate recommendation results in course
recommendation scenarios.

Keywords: multimodal; deep learning; course recommendation; multimodal recommendation

1. Introduction

With the rapid development of the Internet and online education, traditional education
methods are constantly being transformed, and students are no longer satisfied with the
original rigid curriculum and tend to choose courses they are interested in through online
education platforms. Platforms can provide high-quality, targeted teaching courses, a
complete curriculum, and supporting assignments, while having the advantages of free
courses, rich content, and flexible choices. However, the exponential growth of platforms
and courses leads to “information overload”, and users are easily confused and have
difficulty in choosing courses when facing many classes. Therefore, it is crucial to help
users quickly choose the right course that interests them. When users use the online
education platform to learn new courses, although the courses are classified, in the face
of many courses, quickly locating exciting and personalized valuable courses is of great
significance. To recommend courses to users, a recommendation model based on course
content was proposed [1]. At present, to recommend appropriate courses, it is necessary to
shorten the selection distance between users’ learning ability and a large number of courses.

Currently, there are many problems with course recommendations. Only considering
the user’s nearest neighbor recommendation method and integrating basic personal infor-
mation and social preferences for the recommendation, the user’s implicit feedback data is
ignored [2]. However, the multimodal graph convolution model is used to generate the
specific modal representation of users and videos to capture better the implicit feedback
data of users [3]. In addition, Gong et al. [4] used the knowledge concept of graph neural
networks for course recommendation, considering the fusion of heterogeneous information
to grasp the differences in the interests of different students. However, the implicit and
explicit feedback information of learners should be fully regarded in the extraction of course
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features; moreover, course-related information can further enhance the recommendation
efficiency. At the same time, because the traditional course recommendation system and
algorithm mainly focus on the experiment and test of single-mode information and lack
effective utilization and research of multi-mode information, the system cannot obtain the
deep-seated preferences of users’ construct and complete the user portrait. Therefore, this
paper proposes to use LSTM and Attention deep learning to process multimodal data for
efficient course recommendations.

When users use the platform to learn a new course, the first search for the course
name and read the course description to understand the course details. Users also consider
the total review scores and the number of reviews about the course on the platform.
Additionally, demographic information [5,6] represents the user’s characteristic data, so
that course text and numerical information can be used as recommendation data. When
viewing a course, users mark the course according to favorites, collections, comments, and
so forth, and such behaviors can also be used as explicit feedback data; users’ browsing
behaviors just for the course can be used as implicit feedback data. In addition, image
and acoustic information can be extracted from the course videos by using deep learning
models. Therefore, digital, textual, video, and audio information of the course can be used
when building the course recommendation model, and users’ explicit and implicit feedback
data can be used as inputs. Short video recommendations have developed rapidly in the
industry and academia in recent years. Videos contain rich modal features, including video,
audio, text, tags, and other multimodal data. Through these multimodal features, users’
deep interests can be mined. Therefore, it is essential to propose a multimodal in-depth
learning recommendation system, which can be applied to the online education platform
and improve the accuracy of personalized course recommendations.

The main contributions of this paper are as follows: first, multimodal data were used
as model input, mainly including course text, video, and audio information; meanwhile,
user demographic information, explicit and implicit feedback are also considered. Sec-
ond, this paper designs a new multimodal deep learning course recommendation model
for extracting the modal features of learners and courses; the model improves and opti-
mizes the traditional multimodal model to enhance its effectiveness in the field of course
recommendation. The practical significance of this research is to improve recommenda-
tion accuracy and increase the users’ click-through rate of courses by merging various
modal information.

The rest of this paper is organized as follows. Section 2 is about related work, sum-
marizing the current literature related to online course platforms and multimodal course
recommendation research. Section 3, the algorithm framework, describes the extraction of
course features and the overall framework of the algorithm. The experimental section in
Section 4 compares the impact on course recommendation results by different modal course
information and learners. Finally, the conclusion and future work section gives possible
research directions in multimodal course recommendations.

2. Related Works
2.1. Traditional Course Recommendation

Recommendation systems have been widely used in music, movies, videos, and other
fields in recent years. Traditional course recommendations mainly include content-based
recommendations, collaborative filtering recommendations, and hybrid recommendations
combining both advantages. Content-based recommendation mainly considers the demo-
graphic information of learners, such as gender, age, major, and the course text description,
overall rating, and number of reviews. Khribi et al. [7] proposed an online learning plat-
form in which the offline module is loaded to pre-process data to build a model with a
learner–content relationship, and the online module dynamically identifies learner needs
and goals and predicts the recommendation list. However, the cold start of the system is not
considered [8]. For the cold start problem, Sengottuvelan et al. [9] proposed to use multiple
attributes of learners to model their preferences, use data mining techniques to model
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learners’ history records, and finally sort them according to the similarity threshold. The
K-means clustering algorithm effectively reduces data sparsity and cold start problems and
increases the diversity of ecological annotation lists. In addition, demographic information,
learning emotion, motivation, and learners’ style can also be studied as modal information
(Fu et al. [10]). The advantage of content-based recommendation is understanding user
preferences fully and not considering data sparsity. At present, the main advantages of
content-based course recommendation methods are: do not consider the sparse data, and
the recommended content depends on user preferences. However, its main disadvantage is
that it requires the feature content to have a good structure and only considers the user’s
preferences, ignoring the situation of other users.

Collaborative filtering algorithm recommendations can be divided into user-based,
and item-based depending on the object. Firstly, based on the user’s collaborative filtering
algorithm, the user behavior logs are collected for analysis, and the user interest model
vector is constructed; secondly, a label is created for each resource in the system, and
the user score of the resource is collected in the process of user use; finally, according
to the user interest model and resource characteristics, combined with the personalized
recommendation algorithm, the resources that meet the needs of users are recommended to
the target users [11]. In order to effectively alleviate the problems of cold start and sparse
data, a nearest-neighbor collaborative filtering algorithm based on weight optimization
according to user history score is proposed [12]. In item-based collaborative filtering, the
similarity matrix among courses is first calculated, and then the similar courses are further
ranked and recommended based on the user’s positive feedback history of similar courses.
Pang et al. [13] proposed a multilayer Bucketing Model (MLBR) for MOOC course recom-
mendation, which first transforms the learner vector into the same dimension and disperses
it into buckets containing similar learners that have more common courses. Collaborative
filtering can fully consider similar learner or course attributes without concerning about the
content attributes of the courses themselves compared to content-based recommendation
algorithms. In short, compared with the content-based recommendation algorithm, the
advantage of collaborative filtering is that it can fully consider the attributes of similar
learners or courses without considering the content attributes of the course itself. However,
the actual situation is that users have little evaluation of the course, which leads to the
problem of sparse data, and there is no user using data in the initial stage of the platform.
Such problems will also be encountered after the new course is uploaded. At the same time,
traditional collaborative filtering is effective in dealing with small data sets, but in the face
of massive data sets, the accuracy of the recommendation system will decline.

However, all the above recommendation algorithms have corresponding disadvan-
tages, such as cold start problems in content-based recommendations and sparse data and
cold start for new users in collaborative filtering recommendations. Therefore, deployments
often combine the advantages of different algorithms and models for hybrid recommen-
dations. For example, Burke et al. [14] classified hybrid recommendation combination
strategies into weighting, switching, partitioning, hierarchy, waterfall, feature blending, and
feature enhancement, and introduced hybrid recommendation systems based on knowl-
edge and collaborative filtering. Jannach et al. [15] classified the hybrid recommendation
approach into holistic, parallel, and pipelined, where firstly, artificial neural networks are
used to classify learners and users can get course recommendations based on learners’
opinions; then when relevant interest groups are established, data mining techniques can
be used to elicit the best learning paths. To sum up, the current traditional recommen-
dation algorithms mostly use the learners’ preferences and the unimodal information of
demographic information in the representation of the curriculum model, ignoring the text
information and video information of the curriculum itself. In hybrid recommendations,
collaborative filtering and content-based recommendation model fusion are mostly used,
but the audio mode of the course and the explicit feedback and implicit feedback of users
are not considered.
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2.2. Course Recommendation in the Field of Deep Learning

With the application of deep learning in the field of recommendation, it is gradually
applied to the field of course recommendation. The deep course recommendation system
can be divided into personalized learning recommendations based on convolutional neural
networks and recurrent neural networks. Among them is the personalized learning rec-
ommendation based on the convolutional neural network: firstly, the learning behavior
and learning history of learners are represented as feature vectors; then the correlation is
estimated based on the difference between the estimated value and the actual value by
using the attention mechanism; finally, the course is recommended to learners by training
the recommendation model.

Personalized learning recommendation based on recurrent neural networks:
Zhou et al. [16] clustered learners and used the LSTM model to predict learning paths
and achievement, and finally recommended personalized and complete learning paths for
learners. To extract the emotional factors expressed in the text, Ange et al. used the user-
sensitive deep multimodal structure and extracted the rich potential data representation
of users, which improved the effect of text classification [17]. Wang et al. [18] proposed to
extract features by using learners’ behavior and history, combining attention mechanisms
and the difference between predicted and actual values of neural networks to improve
recommendation performance. At the same time, to improve the attention mechanism,
Zhu et al. introduced the double-layer attention mechanism into the summary of the
parallel mental network recommendation model through data preprocessing and standard-
ization, which effectively improved the ability of the model to mine the characteristics of
users and courses [19]. Liu et al. [20] predicted the list of courses that students are good and
bad at in the next semester by a hybrid model of deep learning and collaborative filtering.
On the other hand, Ni et al. [21] first constructed a graph convolution network using the
bipartite graph of user project interaction, and then integrated multi-task learning into the
convolution neural network learning framework using multimodal auxiliary information,
improving the classification effect multi-task.

At present, in the process of improving the model structure, the course recommenda-
tion in the field of in-depth learning continuously excavates the hidden meaning between
the course and the user data, which increases the network depth, increases the calculation
time of the model, and reduces the timeliness of recommendations while increasing the
recommendation accuracy. Therefore, in mining user characteristics, we need to fully
consider the computational performance and the complete modal characteristics of users.

2.3. Multimodal-Based Course Recommendation in Deep Learning Domain

With a large number of applications of deep learning in the fields of image recognition
and sentiment analysis, researchers have gradually fused multi-domain data to achieve
complementarity between heterogeneous information for more comprehensive information.
For example, three kinds of information, such as image, video, and text, are fused in cross-
modal embedding [22]. Tamura et al. [23] suggests a multimodal response synchronization
measurement system with an eye tracker and electroencephalography signals, through
which the eye tracker can obtain information from the learner’s attention and the brain
signal can provide clues to estimate the mental state in learning. Wang et al. [24] used an
online learning system to collect multimodal behavioral data from three dimensions: psy-
chological, physiological, and behavioral, thus providing a more comprehensive evaluation
of the overall situation. Xu et al. [25] proposed a multimodal deep learning framework to
extract multimodal course information, such as course video, text, and audio, as well as
explicit and implicit feedback from users. Chango et al. [26], on the other hand, focused
on improving the recommendation performance using different fusion algorithms for four
types of multimodal information about students’ theory classes, practical classes, online
courses, and final grades. However, the multi-modal data of the course need to capture
representative modal features in the acquisition process, and the implicit feedback data
of users is difficult to obtain. The hidden behavior of users watching videos has essen-
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tial research significance in the platform. Users’ implicit feedback data can be effectively
obtained through users’ pause times, playback times, and playback time nodes.

Multimodal fusion can provide more information for model decision-making, which
can improve the accuracy and precision of the overall decision result. The difficulty lies
in handling heterogeneous information, selecting the fusion method, and adjusting the
modal alignment.

3. Methods

We design and implement a course recommendation system based on a multimodal
deep learning framework, which uses different modal information in the course for fusion
recommendation. The user’s operation while watching the course video involves explicit
and implicit feedback, and therefore, it needs to be differentiated according to the user’s
behavior. This system mainly includes six key components: data collection, data processing,
feature extraction, profiling, deep learning course recommendation and recommended
course result presentation. The overall process of this multimodal course recommendation
framework is shown in Figure 1.

Figure 1. Multimodal course recommendation framework.

3.1. Data Collection Module

The online platform collects data from two aspects: learners and course data. The
learner data mainly includes explicit and implicit feedback data. The explicit feedback data
is reflected in the comments, collections, and thumbs of the course; the implicit feedback is
reflected in the data of only browsing the course without marking. The course data mainly
includes the course name and introduction, video data, and audio data extracted from the
course video. Figure 2 depicts the main process of acquiring data.

Figure 2. Data collection module.

3.2. Data Processing

The course information collected directly has interference information, so the data
needs to be cleaned before extracting the course features. The video information of the
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course is described by video keyframes. However, due to the long duration of course
videos (usually more than 10 min), acquiring video frames frame by frame will cause a
sudden increase in data volume. Therefore, In this paper, video description is performed
by capturing keyframes. We extracted the audio from the course video to obtain the course
audio information and analyzed the obtained audio information. Additionally, the title,
introduction, and comments of the course need to be divided into words to clean up the
deactivated parts, such as “of” and “the”, as well as the markers.

3.3. Feature Extraction Module
3.3.1. Video Feature Extraction

The course video contains visual modality information of the course. To obtain the
course video keyframes, Mahasseni et al. [27] implemented the selection of keyframes
without keyframe annotation through a per-frame score. Inspired by the above idea, in this
paper, the video stream is considered as a series of images, and keyframes are extracted
from the video at intervals by the FFmpeg tool. To obtain the high-level features of video
frames, for extracting the content of each frame a ResNe-16 model is used to extract visual
features, which can provide stable initialization in ensuring semantic recognition. The
complete video is transformed into 12 keyframes by initializing the ImageNet dataset with
pre-training weights, where each keyframe contains 4096-dimensional features.

3.3.2. Audio Feature Extraction

Due to diverse contents and some missing information in the video part, audio modal
information is extracted to supplement the information. The audio modal information
includes the tone, intonation, and pauses of the lecturer. For audio modality extraction, we
use the Librosa module to process the audio content by executing a 10 s window and 80%
overlapping spectrograms, and for obtaining 512-dimensional features of audio modality.

3.3.3. Text Feature Extraction

The text modal information mainly includes the course name and introduction. In this
paper, the course name and introduction are processed using the Jieba word separation
model, and the information that does not contain specific content is eliminated according
to the deactivation word rule. The collection dataset is obtained on a MOOC platform
with complex data dimensions. Therefore, a large Chinese corpus is used to capture the
semantic information between different words [28]. Besides, we use the Word2Vec tool
to convert the text corpus as input and convert the title and course profile content into a
300-dimensional feature vector.

3.3.4. Digital Feature Extraction

To obtain learners’ comments, collections, and thumbs data of the course, we marked
them by one-hot coding. At the same time, learners’ browsing of the detailed interface of
the course was marked by the platform script.

Based on the above four kinds of feature data extraction, the course multimodal infor-
mation extracted in this paper is summarized as follows, which contains 4096-dimensional
visual modal information, 512-dimensional audio modal information, 300-dimensional text
modal information, and 4-dimensional digital features. The course multimodal information
is shown in Table 1.

Table 1. Summary of course multimodal information.

Model Information Dimension

Course Video 4096
Course Audio 512
Course Text 300
Digital Features 4
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3.4. Profiling Module

After obtaining the multimodal features of the course through the feature extraction
module, the different modal features need to be reasonably fused. Given that there is an
interaction between the demographic information of learners and explicit and implicit
feedback data, this paper integrates the above three data into digital modal features. The
specified features are first extracted from the sequential units of each modality, and then
these features are input into the parallel LSTM separately, and finally, the sequential
structures in the visual, audio, text, and digital modal features are captured.

Since the output of the LSTM is a vector sequence model, the variable-length vectors
need to be transformed into fixed-length vectors to facilitate the later model training. This
paper uses an attention-based pooling operation to achieve dynamic adjustment of weights
according to the importance of time steps based on the weighted sum sequences of all time
step vector representations and the content relevance of the weights to each time step [29].
The output of the fully connected layer is used as the result of course recommendation.
Figure 3 illustrates the schematic diagram of the multimodal course recommendation
algorithm model.

Figure 3. Multimodal course recommendation algorithm model.

3.5. Course Recommendation and Recommendation Results

By extracting and processing the features of different modalities, the output of the
fully connected layer is obtained. In this paper, multiple modal information is processed
by LSTM and Attention, and visual, audio, text, and digital modal feature vectors are
connected vertically to finally obtain a 4912-dimensional course vector, which is used
as the input of the recommendation model. The platform will discriminate whether the
learner has completed the course, and if the output target is 1 then the course is completed,
otherwise, the learning is not completed.

In the deep learning-based course recommendation method, Salampasis et al. [30]
presented the use of Recurrent Neural Networks (RNN) to consider the similarity between
the user’s recently viewed items and precomputed items. Pradhan et al. [31] proposed a
bidirectional Long- and Short-Term Memory model (LSTM) and an integrated framework
of a recommender system based on an attention mechanism for recommending suitable
academic papers. Li et al. [32] suggested a neural network model of a Bayes Personalized
Ranking Network (BPRN), which learns paired course preferences based on each user’s
history of course registration. Current deep learning applications in the field of course
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recommendation focus on improving and enhancing the model, but usually consider only
one kind of modal information without mining data features from the text, image, and video
information of the course itself as the representation of course recommendation modeling.

Therefore, by obtaining the video, audio, text, and digital modal features of the course,
this paper improves the accuracy of recommendation from the perspectives of course
information and learners and increases the click rate of users. Keyframes are extracted
from a series of video frames in the course video, and video modal features are extracted
for each frame by a pre-trained ResNet-16 model; audio modal features are extracted in the
course video by using Librosa; text modal features are extracted by Word2Vec in the course
name and introduction text information; and finally, digital modal features are extracted by
statistical learners’ demographic information, explicit feedback, and implicit feedback data.

The course recommendation results will be based on learners’ collections, favorites,
and comments on the platform, and the multimodal course features will be integrated to
improve the recommendation accuracy and learners’ course click rate.

4. Experimental Settings
4.1. Datasets

The course data and learner data in this paper were obtained from a real online
learning MOOC platform [33]. We mainly collect course data including video information,
audio information, the course name, and introduction of the course. The duration of the
course video was about 10 min. The learner data mainly included the learners’ comments,
collections, and thumbs on the course in the explicit feedback data; the behavioral data
of the learners who only browsed the course content but did not operate were mainly
recorded in the implicit feedback data. This dataset was collected from March 2020, with
a total of 32,413 learners, 813 courses, 63,936 course-explicit feedback data, and 81,537
course-implicit feedback data.

In the experimental process, the data set was further divided into three disjoint sets
in this paper, which were 80%, 10%, and 10% of the course data randomly selected as the
training set, validation set, and test set, respectively. The validation set was used for model
optimization. Finally, the final model performance was verified on the test set.

4.2. Evaluation Indicators

The Area Under the Curve (AUC) [34] represents the area under the ROC curve, and
its practical meaning is to correctly predict the ratio of learner and course pairs to all learner
and course pairs in the recommender system, that is, the probability that a positive sample
ranks ahead of a negative sample based on its rating. Suppose the list of recommended
courses contains a0 positive samples and a1 negative samples, where n positive samples
are predicted to be larger than the negative samples; then, the AUC calculation process can
be expressed as:

AUC =
n

a0 · a1
(1)

The Hit Radio (HR) [35] represents the hit rate, which is the proportion of learners
who have K correct recommendations in the recommended course list. The denominator
GT represents all test sets, and the numerator NumberHits@K represents the sum of the
number of test sets in each learner’s Top-N list. HR@K can be expressed as:

HR@K =
NumberHits@K

GT
(2)

Recall that the Ref. [36] refers to how many of the positive examples in the recom-
mended course were predicted correctly.
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Normalized Discounted Cumulative Gain (NDCG) [37] means the normalized dis-
counted cumulative gain, which is often used as an evaluation of the recommended ranking
results. NDCG can be expressed as:

ANDCGu@K =
BDCGu@K

BIDCGu

(3)

CNDCG@K =
BNDCGu@K

|u| (4)

ANDCGu@K represents the discounted cumulative of the user’s true list; BDCGu@K
represents the score of the user’s true list, and CNDCG@K represents the average of each user.

4.3. Experimental Parameter Settings

We processed the experimental data by Python and built the course recommendation
algorithm framework by PyTorch. In the initialized embedding layer mixed with hidden
layer parameters, a Gaussian distribution was used to set randomly (mean value of 0 and
standard deviation of 0.1). Relu was used as the activation function in the feature extraction
of visual, audio, and text modalities, and the Sigmoid activation function was used in the
fully connected layer. The three modalities were extracted by LSTM, and their hidden units
were set to 300, 200, and 50, respectively. The loss function was “binary cross-entropy” and
the evaluation was “accuracy”. At last, the batch size was set to 12, the number of iterations
is 200, and the learning rate was 0.001.

4.4. Experimental Results
4.4.1. Experimental Results in Different Recommendation Models

This section evaluates the impact of the feature extraction module on the results of
the LSTM+ATTENTION network model using the LSTM and the Attention mechanism
networks, and the combination of both. The LSTM model was used to extract multi-
modal information, which can mine the potential temporal details of the data but has
disadvantages in parallel processing. When the Attention model is used to extract the
modal information, it can adjust the weights dynamically according to the extracted in-
formation; however, it is unable to learn the temporal relationships in the sequence. The
LSTM+ATTENTION model can combine the advantages of the two, mine the potential
timing information of the data, and dynamically adjust the weight according to the ex-
tracted information. The above analysis is also demonstrated by the experimental results,
which show that the LSTM+ATTENTION model can combine the advantageous parts of
the LSTM and Attention mechanisms with improving the extraction of modal features. The
LSTM+ATTENTION model proposed in this paper outperforms the baseline model in both
the AUC and the four click-through evaluation metrics. The effects of different extraction
methods on the model are shown in Table 2.

Table 2. Effects of different extraction methods on the model.

LSTM ATTENTION LSTM+ATTENTION

AUC 75.93 78.07 79.89
HR@5 0.68 0.71 0.78
HR@10 1.53 1.54 1.62
HR@15 2.41 2.48 2.53
HR@20 3.03 3.14 3.21

Table 3 compares the experimental results of the baseline model comparison. From
the table, it is shown that the model in this paper achieves better results in both recall
rate and NDCG, which is significantly better than other methods. The main reason is that
LSTM+ATTENTION can fully exploit the temporal features and important dimensional
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features in multimodality. Meanwhile, the improved performance of AUC further supports
the effectiveness of the attention mechanism to effectively distinguish important features
in each modality. As shown in Table 3, a comparison of the performance under different
recommended methods is presented.

Table 3. Performance comparison of different methods.

Methods k = 5 k = 10 k = 15 k = 20
Recall NDCG Recall NDCG Recall NDCG Recall NDCG

LSTM 0.5145 0.4176 0.6723 0.4623 0.7321 0.4832 0.7541 0.5215
ATTENTIONN 0.5132 0.4259 0.6671 0.4672 0.7143 0.4875 0.7583 0.5145

LSTM+ATTENTION 0.5573 0.4531 0.6801 0.4881 0.7412 0.5102 0.7591 0.5257

4.4.2. Experimental Results in Different Course Modalities

To verify the effectiveness of the multimodal features proposed above, we compare
and test the effects of different course feature combinations on the results. In this paper,
the different course modal combinations are as follows: C1 (digital modality), C2 (digital
modality and text modality), C3 (digital modality, text modality, and audio modality), C4
(digital modality, text modality, audio modality, and visual modality), and C5 (all modal
information of the course). Figure 4 represents the comparison of information hit rates
under different combinations of course modalities.

Figure 4. Information hit rate of different course modalities.

The experimental results show that the hit rate of C1 (numerical modality) is the
lowest, which means that it represents the least information of the course. The highest
hit rate of the user for the course is reached in C5 (all modal information of the course),
which improves the hit rate by 0.47% compared with HR@5. In comparing the hit rate of C3
(digital modality, text modality, and audio modality) and C4 (digital modality, text modality,
audio modality, and visual modality), it can be found that visual modality information
of the course effectively improves the accuracy of the recommendation, which further
indicates that the video modality contains more information of the course. Thus, it is shown
that multimodal course information has a positive impact on recommendation accuracy.
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4.4.3. Experimental Results with Different Learner Modal Information

In this section, we verify the impact of four information sets (L1, L2, L3, and L4) on the
results, which represent demographic information (gender, age, major, etc.), learner-explicit
feedback information, learner-implicit feedback information, and the sum information of
all modal characteristics. These information sets mainly describe the users’ operational be-
havior data and their attributes. Figure 5 depicts the hit rate of different learner modalities.

Figure 5. Hit radio of different learner modalities.

The relatively small amount of information represented by demographics leads to a
low hit rate on courses. Adding learners’ explicit feedback data (comments, collections,
and thumbs) and implicit feedback data (browsing operations on the course) can effectively
improve the user hit rate. L4 achieves better performance in the hit rate in all results, with
hit rates of 2.24%, 2.81%, 2.75%, and 3.21% for four different K values, mainly because L4
incorporates all modalities of this paper, and can better obtain more modal information
which is beneficial to improve the recommendation performance. The above experimental
results show that the fusion of multiple modal user information effectively increases the
course hit rate and can improve the course recommendation effect.

4.5. Discussion

When learners browse courses on the platform, they can click on the courses they are
interested in through the course name and recommended courses, and they will comment,
collect and thumb the courses they are interested in. Otherwise, there will be no operation
behavior for the courses they are not interested in. The platform will record various
operation behaviors of learners, and can collect explicit and implicit feedback data of
learners to further explore users’ viewing habits. When users watch the course video,
the video modality, audio modality, course name, and introduction of the course can
effectively build the user portrait. Therefore, by fusing the above modal information, we
can effectively improve the performance of the course recommendation model, and LSTM
and Attention can effectively explore the important contents in different modal information,
as well as explore the temporal information between modalities to effectively improve the
recommendation performance. The experimental results reveal that the framework of this
paper can achieve better course recommendation results, in which the AUC score reaches
79.89% and the hit rate reaches 0.78%, 1.62%, 2.53%, and 3.21% at Top-N values from 5
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to 20, respectively, indicating that the framework can effectively improve the accuracy of
course recommendation.

In summary, the use of multimodal data in course recommendations can effectively
improve the accuracy rate. The LSTM+ATTENTION model used in this paper is more
effective in multimodal feature extraction compared with traditional neural networks, and
the visual modality contains more effective information than the audio modality.

5. Conclusions and Future Work

With the development of the Internet and cloud computing, online education platforms
have proliferated, and it has become especially important for learners to find suitable
courses among the massive courses. Previous studies only consider unimodal features
and build or improve deep learning models for a recommendation; however, less attention
is being paid to multimodal features in courses. Moreover, most of the current course
recommendations focus on digital modal features, and there is less research on video
mode, audio mode, and text mode. When constructing user portraits, researchers pay
more attention to the explicit feedback data of users and less capture the implicit feedback
data of users in the operating platform. In addition, the effective combination of user
demographic information, explicit feedback data, and implicit feedback data can improve
the construction of the user model.

The research contributions of this paper are as follows: first, a deep learning framework
for course recommendation based on multimodality is proposed, which can effectively
improve the accuracy of course recommendation. Among them, the multimodal features
involved in this paper mainly considered the video modality, audio modality, text modality,
feedback, and implicit feedback of users and demographic information. Secondly, the
LSTM+Attention model was constructed to build the course recommendation system
modeling, and the temporal features and important dimensional features in the multimodal
features were effectively mined. Finally, the validity of the model was verified by real data.

The practical significance of this paper lies in the following. The multimodal recom-
mendation system based on deep learning realizes the course recommendation of an online
education platform, effectively reducing the time for users to choose courses and realizing
the Personalized Course recommendation service. In fully acquiring the modal features
of users and the three modal features of courses, the in-depth learning framework of this
paper effectively considers the integration of multiple modal features, so the recommended
personalized course content can meet the needs of users. Because this paper uses the
operation of users browsing the course to obtain the implicit feedback data, most of the
implicit feedback data of users in daily life are difficult to capture, which needs to be
improved in the next step of this paper.

In future work, based on obtaining learners’ implicit feedback data, we will further
delve into modeling learners’ operations, such as the number of pauses, the number of
plays, and the number of repeated views of videos while watching videos. Given that
the degree of preference for the course is represented in the user’s evaluation of the
course, we will subsequently research information on the learner’s evaluation of the course
and conduct sentiment analysis on the learners’ evaluation, modeling and verifying the
relationship between learners’ course preferences and ratings to improve the effectiveness
of course recommendation.
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