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Abstract: The characteristics of photovoltaic (PV) are directly affected by partial shading (PS) condi-
tions due to the non-uniform irradiance. The PV system can be compromised based on the shading
pattern as well as the shading area. Thus, the need for a solution that can deal with non-uniform
irradiance has increased significantly. Consequently, this paper proposes a thorough analysis of
the impact of PS patterns on different PV array configurations such as SP, TCT, and BL. The five
optimization algorithms PSO, DA, MLS-SPA, IGWO, and BWO, were used to tune the variable step
of the conventional P&O technique to extract the maximum power point. The proposed PV array is
4× 4 with a fixed location, yet changing electrical connections. The main objective and novelty of
this paper is to locate the Global Maximum Power Point (GMPP) of a PV array while the occurrence
of different PSC with fast change of hybrid load e.g., (resistive and pump load). The results showed
the superior performance of the IGWO algorithm regarding the maximum power tracking and
disturbance rejection.

Keywords: hybrid dynamical load; maximum power point; PV array configuration; partial shading;
optimization

1. Introduction

During the past decade, renewable energy has been grown rapidly around the globe as
an essential resource for electricity. Mostly in the booming economies such as India, there is
a demand for finding a clean resource for energy with less carbon emissions [1]. Generating
energy from renewable resources requires various conversions from wind, hydro, solar, etc.,
however those resources are considered promising for countries seeking clean energy [2].
From the different types of renewable resources, solar or photovoltaic (PV) energy is the
most common for electricity generation due to various merits such as reliability, low-cost
maintenance, and zero polluting emissions [3,4]. Generating electricity from solar energy
is performed using PV cells which have a non-linear current–voltage (I–V) relation along
with Maximum Power Point (MPP) on power–voltage (P–V) characteristic curve [5]. As the
PV system output power relies directly on the amount of solar irradiance and surrounding
temperature, that creates a considerable limitation in the system efficiency [6]. PV module
efficiency can be affected by the phenomenon of Partial Shading (PS). Partial shading can
occur due to clouds, buildings, snow, and trees. PS occurrence has a direct effect on the
(P–V) and (I–V) characteristics of PV modules [7]. The changing of solar irradiance on the
module causes power losses within the system which affects the efficiency. In order to
protect the PV cells from the effect of hot spots, diodes are used to change the connections
of the PV modules based on Maximum Power Point Tracking (MPPT).
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To reduce the partial shading losses, different PV array configurations are proposed
such as Series (S), Parallel (P), Series-parallel (SP), and Total Cross Tied (TCT) [8]. Different
studies focused on the impact of partial shading and the solutions to reduce the PS losses
with various PV configurations and topologies. In [9] PV modules with polycrystalline
and Copper Indium Gallium Selenide (CIGS) are tested to study the impact of PV modules
faults regarding power losses. The authors in [10] utilized a simulation of nine PV array
panels with configurations; SP, TCT, and Bridge-Linked (BL) to test the ideal and non-ideal
switch conditions. The idea of the research was to minimize Mismatch Losses (ML) using
the minimum number of switches between PV arrays and to harvest the maximum power.

The researchers in [11] proposed a dynamic topology reconfiguration based on a
switching matrix aiming to reduce the ML. The approach was applied to different PV
schemes including SP and TCT. To avoid the occurrence of peak points within a PV array,
Ref. [12] presents a static shade dispersion physical array relocation (SD-PAR). The tech-
nique is tested on a 3× 3 PV array to reduce the ML caused by PS conditions. The method
used has proven that PV arrays with SDP can reach a higher maximum power than the one
reached via conventional configurations.

Seeking lower cost and complexity, many other static reconfiguration techniques
were proposed such as Su Do Ku puzzle-based shade dispersion, optimal Su Do Ku, and
Competence Square (CS) [13,14].

A comprehensive review conducted by Dileep and Singh in [15] discusses the soft
computing methods applied with MPPT controller. The review covered the advantages
and drawbacks of various computing techniques such as Fuzzy Logic (FL), Artificial Neu-
ral Network (ANN), nonlinear predictor, Differential Evolution (DE), and metaheuristic
optimization algorithms such as Particle Swarm Optimization (PSO), Gray Wolf Optimiza-
tion (GWO), and Ant Colony Optimization (ACO). In the literature, many conventional
techniques including Open-Circuit (OC) voltage, fractional Short Circuit (SC), and Perturb
and Observed (O&P) were investigated based on their performance. For fractional SC
and OC voltage methods, the solution mainly depends on the linear relation between
the voltage and current which may lead to inaccurate MPP value [16,17]. Recognizing
the stated limitations for the conventional algorithms, many researchers tried to apply
artificial intelligence methods such as ANN for MPPT application, however, the results
showed ANN requires a huge data set for training which in return consumes a relatively
huge memory space. This disadvantage increases the complexity and total cost for such
systems [18].

A different approach is followed in [19] to restructure the PV array dynamically. The
authors used a Marine Predator Algorithm (MPA) along with a novel objective function
instead of the conventional weighted objective functions. Different optimization algo-
rithms such as PSO were used as reconfiguration techniques. For dynamic reconfiguration,
Ref. [19] proposed an adaptive technique that separates the PV array into adaptive and
fixed portions using switches. In [20], novel algorithms were proposed to mitigate the
impact of PS as well as track the Global Maximum Power Point (GMPP). The authors
applied Moth-Flame Optimization (MFO), GWO, Slap Swarm Algorithm (SSA), along with
hybrid PSO-Gravitational Search Algorithm (PSO-GSA). Another study used a hybrid
algorithm (HA-PSO) for the capacity configuration of PV array under PS conditions [21].
Fuzzy Logic Control (FLC) is also used to overcome the uncertainty of PV array caused
by varying solar irradiance in [22]. Numerous meta-heuristic algorithms were used for
MPPT as a solution for the PS such as in [23] where ACO was used with different control
parameters as a convergence method.

Motivated by the findings from the conducted review, this research presents an ap-
proach to minimize the PS effects on solar PV modules based on the MPPT design strategy.
The strategy involves applying multiple optimization algorithms including PSO, Dragonfly
Algorithms (DA), MLS-SPA algorithm, Improved Gray Wolf Optimizer (IGWO), and Black
Widow Optimization Algorithm (BWOA). The proposed methods aim to find the optimum
way of PV array allocation to reverse the impact of PS by dynamically changing the array
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configuration under PS conditions. The implementation of optimization algorithms was
essential in determining the optimum step size of the conventional P&O MPPT controller.
The proposed controller is a hybrid metaheuristic P&O controller to reconfigure the PV
array in the case of PS. The selected optimization algorithms have proven to have superior
behavior in the field of optimization based on their computational ability and fast conver-
gence [24]. Methods such as PSO and GWO have been proven to have a robust and adaptive
behavior in Electrical Array Reconfiguration (EAR) to perform shade dispersion [25].

The remaining parts of the paper are organized as follows: Section 2 includes three
subsections, Section 2.1, discusses the mathematical model of the proposed PV system
based on single diode structure, Section 2.2 presents the main PV configuration used in
this study, and Section 2.3 discusses the characteristics of the system under different PS
conditions. Section 3 formulates the objective function for the system. Section 4 presents
the applied optimization algorithms. Section 5 presents the performance indices to be used
in the comparison. Section 6 is dedicated to the simulation process and results. Lastly,
Section 7 discusses the conclusion and the potential for future work.

2. PV Module Modeling
2.1. System Modeling

Obtaining an accurate model of a PV cell is crucial for improving the effectiveness of
the PV system. Due to the nonlinearity of a PV cell, many researchers have proposed various
modeling techniques to emulate the real-time behavior of the system [26]. In [27] the authors
proposed a PV model using a single diode, in [28] a two-diode model is proposed which
resorts to a more complicated model and different approach to obtain the main system
parameters. In [29] a three-model PV model is used which has the highest complexity in
estimating the system nine parameters, yet it is suitable for specific applications.

Here, the single-diode model is adopted due to its simplicity and accuracy in describ-
ing the nonlinear behavior of the system. A single-diode model contains one p-n junction
diode connected in parallel with a current source Iph. The model also contains series and
shunt resistances Rs and Rp, respectively [30]. The electrical circuit schematic diagram is
shown in Figure 1.

Figure 1. Electrical circuit diagram of single-diode PV model.

By applying Kirchhoff’s current law to the equivalent circuit, the value of the output
current from each PV model can be calculated as follows:

I = Iph − ID − Ip (1)

where ID is the current passing through the diode, Iph is the generated by the source, and
Ip is the current of flowing through the shunt resistance Rp. The nonlinearity of the model
can be described by substituting ID and Ip with their equivalent equations as follows:

I = Iph − I0[exp
V + IRs

Vt
− 1]− V + IRs

Rp
(2)
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where Vt is the thermal voltage of the diode and I0 is the leakage current. The thermal
voltage of the diode can be calculated from the following formula:

Vt =
NsKT

q
(3)

where K is the Boltzmann constant = 1.3805 × 10−23 J/K, Ns is series connected cells, q is
the electron charge, and T is the temperature of the cell in kelvin. As the total power of the
PV cell depends on the environmental conditions, then the current of the PV source Iph is
calculated as follows:

Iph =
G
G0

[Isc + Ki(T − T0)] (4)

where Isc is the short-circuit current in standard test conditions in which T = 25 ◦C, and
G0 = 1000 W/m2, Ki is the current coefficient factor. G, and T are the actual vales of the
irradiance and temperature, respectively. The reverse leakage current of the diode I0 mainly
relies on the temperature as given in Equation (5) [31].

I0 =
ISC + Ki∆T

exp((VOC + Kv∆T)/aVt)− 1
(5)

where Isc is the short-circuit current, VOC is the open-circuit voltage at Standard Test
Conditions (STC), and Kv is the temperature coefficient of open-circuit voltage (V/kelvin).

2.2. Problem Formulation

The main focus of this study is the behavior of PV modules under PS cases and
enhancing the MPPT under dynamical hybrid load change. The fault of PS is analyzed
and studied on the PV module in Table 1. The system consists of a 4× 4 PV cell array with
initial SP interconnection. Each PV string is connected with switches to the next string
and the optimized configuration will be based on the state of these switches. The initial
topology of the system is simulated using MATLAB Simulink as shown in Figure 2. The
configuration of the PV array will be changed based on the different PS cases to reach the
optimum topology for the system. A comparison will be conducted between three main
interconnection topologies: SP, BL, and TCT.

Table 1. PV module parameters used in the system.

Parameter Variable Value

Maximum power Pmax 100 W
Maximum power point voltage Vmpp 17.5 V
Maximum power point current Impp 5.71 A
Open circuit voltage Voc 21.8 V
Short circuit current Isc 6.52 A
Number of series cell NS 72
Temperature coefficient of Isc KI 0.105%/◦C

In SP configuration PV cells are connected together in series to form strings and strings
are connected in parallel to generate the desired output voltage Figure 3. SP is considered
an economical topology due to installation simplicity and minimization of redundant
connections. The total current of the SP PV array is the summation of string current, and
the array voltage is the same in the string current.
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(a)

(b)

Figure 2. The proposed PV system modeling in MATLAB Simulink with hybrid load. (a) The
proposed 4× 4 PV array with command switches. (b) Schematic overview for the proposed sys-
tem structure.

Figure 3. (a) SP array configuration. (b) BL array configuration. (c) TCT array configuration.

The BL configuration is similar to the SP connection regarding the PV string connec-
tions; however, BL topology can partially solve the main disadvantage of the SP connection.
In SP PV connection, if one module experienced a malfunction or PS, the overall voltage of
the array will drop drastically. To overcome this issue, in BL the series-connected modules
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have bridge rectifiers connected to them as shown in Figure 3. This topology is referred to
as Bridge-Linked (BL) PV array.

In the Total Cross Tied (TCT) PV array, the connection approach between the modules
is different as the cell or modules are originally connected in parallel to form rows. The
rows are then connected in series as shown in Figure 3. This topology is considered one of
the complex PV connections, yet one of the most reliable connections regarding minimizing
power losses [32]. PV array configuration and interconnection have a direct impact on the
generated total power as shown in Table 2.

Table 2. 4 × 4 PV array configurations power.

Configuration Pmax(W) Vmax(V) Imax(A)

SP 1452 82.5.1 17.6
BL 1480 80.1.1 18.47
TCT 1542 78.5 19.71

2.3. Partial Shading Conditions

The shading effect happens partially on the PV module and without any prior expecta-
tions, which causes power losses. Based on the number of shaded cells in the PV array, the
condition of PS can be determined to be one of the following examples: diagonal shaded;
short and narrow; short and wide; long and wide; long and narrow. The P–V characteristics
for each of the mentioned cases are studied with the main three array configurations: SP,
BL, and TCT.

2.3.1. Diagonal Shading (Case 01)

Four cells along the diagonal of the PV array are shaded in this condition. Each module
is subjected to different solar irradiance values; 200, 400, 600, and 800 W/m2, as shown in
Figure 4. The figure also shows the impact of the diagonal shading on SP, BL, and TCT PV
configuration, respectively.
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Figure 4. Five cases of partial shading and their impact on PV array configurations.

2.3.2. Short and Narrow Shading (Case 02)

In short and narrow partial shading conditions, the number of shaded strings and
modules per string will be less than half the number of all modules and strings. Applying
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this case of shading, the modules in the PV array is categorized with different values of
solar irradiance as shown in Figure 4. The array is divided into three groups with solar
irradiance values of 300, 700, and 1000 W/m2.

2.3.3. Short and Wide Shading (Case 03)

This shading condition occurs when more than half of the strings are shaded along
with two shaded modules in each string. In this condition solar irradiance values are
300, 500, 700, and 1000 W/m 2. Figure 4 shows the PV array configuration under this
shading condition.

2.3.4. Long and Wide Shading (Case 04)

Three strings are shaded out of the total four and three modules in each string are
shaded to represent the long and wide shading condition. In this case, solar irradiance on
the PV modules has five values as shown in Figure 4.

2.3.5. Long and Narrow Shading (Case 05)

For this case, two strings out of four are shaded along with all the four modules in
each string. The shading is long compared to the total length of the string and narrow
compared to the number of modules in each string. The solar irradiance is categorized into
four groups of values of 200, 500, 700, and 1000 W/m2 as shown in Figure 4.

The maximum power generated by the PV array under the different shading conditions
is shown in Table 3.

Table 3. The sum of individual maximum powers of the modules.

Cases Pmax,i

Case 01 1364.7718 W
Case 02 1291.0394 W
Case 03 1406.8610 W
Case 04 1396.7776 W
Case 05 1386.7776 W

3. Optimization Problem Formulation

The main objective of is to locate the Global Maximum Power Point (GMPP) of a
PV array while the occurrence of different PSC. Different optimization techniques have
been used to enhance the maximum power tracking and reduce the power losses of partial
shading effect. PV array current is considered as the design parameter, and the generated
power is the main objective function. Equation (6) represents the terminal voltage of the
triple junction PV array.

Varr = m× nCell

(
i=3

∑
i=1

(
niKBT

q
ln
[

ILi − I
IOi

+ 1
])
− I × RS

)
(6)

where m and nCell are the number of series modules and the number of cells per module,
respectively. Equation (7) calculates the generated power by the array through both the
terminal voltage and current. The equation represents the objective function which is
maximizing the generated PV array power by configuring the panels.

The maximization approach is to search the value of voltage V to achieve MPP by
changing the duty cycle of the boost converter. The methodology of P&O in [33] is illus-
trated in steps to achieve the maximum power point tracking with the hybrid load (resistive
and pump parallel loads). The optimization objective consists of two main steps, it starts
with assigning the shadow pattern on the array to the optimal configuration to get the
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maximum power. Then tune P&O MPPT to achieve the maximum power point tracking
with the hybrid load by getting the optimal step of P&O (α).

Parr = Varr × I =

(
m× nCell

(
i=3

∑
i=1

(
niKBT

q
ln
[

ILi − I
IOi

+ 1
])
− I × RS

))
× I (7)

The implementation of using bio-inspired optimization algorithms with PV array
configuration has two main merits. The advantages can be described as the fast convergence
to the optimum interconnection pattern that achieves the shades dispersion, the parallel
computation that allows reaching the best solution in a short time period. The methodology
of applying the mentioned optimization algorithms is shown in Figure 5 and detailed
as follows:

Figure 5. Flowchart for optimization algorithms implemented on PV array configuration.

Step 1: Initialize PV array size (4× 4), optimization algorithms constants.
Step 2: Generate the switching matrix to determine the needed PV array configuration.
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Step 3: Start the iteration with calculating the voltage of the PV array from Equation (6)
Step 4: Calculate the generated power from the array using Equation (7). Both array

voltage and power are calculated based on irradiance.
Step 5: Update the parameters of the different used optimization algorithms. The velocity

and positions of each population will be updated based on the associated equations.
Step 6: Reconfigure the PV array and the switching matrix. The algorithms will be reinitial-

ized whenever there is a change in solar irradiance caused by PS conditions. The
change in current and voltage of the array will indicate whether the interconnection
needs to be updated or not.

Step 7: The process will be repeated from steps 3 to 6 until the termination criterion is met.

4. Applied Optimization Algorithms
4.1. Particle Swarm Optimization

For solving nonlinear stochastic problems, PSO was proven one of the most powerful
algorithms in optimization problems. PSO algorithms are mainly inspired by the behavior
of swarms such as fishes, birds, etc. [34]. In this algorithm, an artificial particle searches
for the optimum solution through sharing information with other particles in the swam x
in n dimensional solution space [35]. In order to reach the optimum solution within the
boundaries of the solution space, each particle is required to keep track of its best position
denoted by pbest and the best position of the surrounding swarm Sbest [36].

4.2. Dragonfly Optimization Algorithm

The Dragonfly Algorithm (DA) mimics the swarming behavior of the dragonfly insects.
In the static swarming, a sub-group of dragonflies are formed as they fly around different
areas for hunting which emulates the exploration phase in metaheuristic optimization. On
the other hand, in dynamic swarming larger groups of dragonflies are formed to fly in
the same direction which describes the exploitation phase [37]. Through the studying of
swarm behaviors, there are five main followed principles for survival: separation alignment,
cohesion, attraction to a food source, and distraction of outward enemies [38].

Using the same analogy used in PSO, the position of the artificial dragonfly is deter-
mined based on two vectors: step (∆X) and position (X). The step vector and position
vector can be calculated as in (8) and (9), respectively.

∆Xt+1 = (sSi + aAi + cCi + f Fi + eEi) + w∆Xt (8)

Xt+1 = Xt + ∆Xt+1 (9)

where s, a, and c are the separation weight, the alignment weight, and the cohesion weight,
sequentially. f is the food factor and e is the enemy factors. w represents the inertia
weight and t is the iteration counter. In case of the absence of a neighboring dragonfly, the
position updating process is done using the Levy flight technique. Equation (10) shows the
enhancement done to the searching process using Levy flight approach [39].

Levy(x) = 0.01× r1σ

|r2|
1

1.5
(10)

where r1 and r2 are two random numbers, and σ can be calculated as in [37].

4.3. MLSHADE-SPA Algorithm
4.4. Basic LSHADE

Differential Evolution (DE) is a numerical optimization for evolutionary algorithms in
which the population can be represented as vectors xi = x1, ..., xD where i = 1, ..., N as N is
the population size, and D is the dimension of the problem [40]. Various enhancements
have been done to DE to solve different multi-strategy and single-objective optimization
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problems. One of these enhancements is the success-history-based adaptive DE with linear
population size reduction (LSHADE) [41].

4.5. MLS-SPA Description

Based on hybridization between CMA-ES and semi-parameter adaptation (LSHADE-
SPA), a multi-strategy LSHADE (MLS-SPA) algorithm is developed to enhance population
diversity based on weighted mutation strategy [42]. The developed algorithm enhances
the search strategy of both the exploration and exploitation processes. The framework of
the MLS-SPA algorithm can be effectively applied to multi-objective problems by selecting
correlated dimensions to identify the problem mechanism. The framework of the MLS-
SPA starts with the initialization of the following mutation strategies: Enhanced adaptive
differential evolution (EADE), Adaptive DE with Novel Triangular Mutation Strategy
(ANDE), Modified Multiple Trajectory Search (MMTS), and Semi-Parameter Adaptation
(SPA). The framework computational resource max_n f es is divided into multiple rounds
based on the application. The population-based algorithms (EAs) will be used during the
first half of the rounds round_n f es and for the second half, the MMTS algorithm will be
used. The algorithm LSHADE-SPA will use the available resources for the optimization
during the first half of each round. For each round, the population performance will be
calculated as follows:

ωr
alg =

∑n
i=1 f (x)− f (u)
CC−n f esr

alg
(11)

where f is the fitness function calculated using alg algorithm. The next step will be to use
the population performance algorithm ωr

alg to calculate the improvement ratio impr
alg:

impr
alg = max

0.1,
ωr

alg

∑
nalg ωr

alg
alg=1

 (12)

The computational resource will be calculated using impr
alg as follows:

CC−n f esr
alg =(1− α) ∗ CC−n f esr−1

alg + α

∗ 0.5 ∗ EA−n f esr ∗ impr−1
alg

(13)

The population size for MLSHADE-PSA will be calculated based on linear population
size reduction (LPSR) as follows:

Nr+1 = round
[(

Ninit − Nmin

0.5 ∗max_n f es

)
∗ n f es + Ninit

]
(14)

where Ninit is the initial population size and Nmin = 20.

4.6. Improved Gray Wolf Optimizer

Improved Gray Wolf Optimizer (IGWO) is an algorithm inspired by the behavior of
the gray wolf packs. The algorithm mimics the patterns of wolves pack while hunting as
well as the social and leadership behaviors. The hunting process starts with encircling the
prey, hunting, then attacking. The mathematical representation of the hunting steps along
with the IGWO algorithm can be found in [43].

4.7. Black Widow Optimization Algorithm

Black Widow Optimization Algorithm (BWOA) is a bio-inspired optimization algo-
rithm that mimics the mating behavior in black widow spiders. The most unique part of
the mating behavior is the stage named cannibalism. Within this stage, the individuals with
inappropriate fitness are neglected from the circle which leads to fast and early convergence.
The algorithm starts with the initial population and goes through the cannibalism stage as
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a third step, then ends with convergence and updating the parameters. The mathematical
representation for the algorithm can be found in [44].

5. The Proposed Performance Indices

In order to ensure the performance of the proposed optimization techniques with
different PSC conditions and MPPT performance under fast dynamical hybrid load. The
following indices have been used:

5.1. Shading Loss

The term shading loss can be defined as the difference between the maximum power
generated from the PV array without any shading effect, and the summation of the module’s
maximum power under PS. Shading loss is calculated as follows:

Pshading loss = Pmax .u − Pmax i (15)

5.2. Mismatch Loss

Definition of mismatch loss is the difference between the summation of modules’ max-
imum power and the GMPP affected by PS conditions. Mismatch loss is calculated from:

Pmismatch loss = Pmax − PGMPP (16)

where Pmismatch loss is the mismatch loss, Pmax is the sum of the individual maximum power
of the modules, and PGMPP is the global maximum power point under PS conditions.

5.3. Fill Factor

The Fill Factor (FF) concept is defined as the ratio between the global maximum power
and the product of the open-circuit voltage and short circuit current under the PS conditions.
The fill factor is given by:

FF =
PGMP

VOC × ISc
(17)

where PGMP is the global maximum power point under PS conditions, VOC open-circuit
voltage of the array, and ISC is the short circuit current.

5.4. MPPT Performance

The expression for the MPPT efficiency is given by

ηmppt =
∑i PPV · ∆Ti

∑j Pmax · ∆Tj
(18)

where PPV and ∆Ti refer to the actual output power and its duration, respectively, and Pmax
and ∆Tj represent the theoretical maximum power and the duration with Pmax, respectively.

6. Simulation Results and Analysis

This section will represent the comparative analysis for the maximum powers gener-
ated under the PS cases with dynamical load variation. The simulation results have been
performed with dynamical profile change of the hybrid load components (resistive and
pump loads) as shown in Figure 6. The study consists of two main objectives, analysis
of the solar array reconfiguration performance to get GMPP then MPPT performance and
tracking efficiency. Simulation results have been demonstrated using MATLAB and the
different optimization algorithms with the same condition of the load variations are shown
in Figures 7 and 8. Regarding the system’s reached GMPP from the PV-array reconfiguration,
a comparison analysis is carried between the impact of the studied PS cases regarding the
mismatch loss, shading loss, and fill factor. Additionally, regarding the MPPT performance
analysis, average tracking time, response to load variations, and MPPT efficiency have
been chosen as shown in Table 4.
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Figure 8. System simulation results under Cases 04 and 05 PS.

Table 4. Simulation results of shading cases.

Bio-Inspired MPPT PSO DA MLS-SPA BWOA IGWO

Average tracking time

Case-01 2.5 s 1.95 s 2.1 s 1.65 s 1.52 s
Case-02 2.82 s 1.86 s 1.93 s 1.75 s 1.67 s
Case-03 3.1 s 2.4 s 2.17 s 1.85 s 1.71 s
Case-04 2.74 s 1.95 s 1.77 s 1.32 s 1.41 s
Case-05 1.88 s 1.73 s 1.43 s 1.26 s 1.22 s
Average 2.608 s 1.978 s 1.88 s 1.566 s 1.506 s

Mismatch loss %

Case-01 1.21 1.18 1.13 1.14 1.13
Case-02 2.38 1.41 2.31 1.36 1.42
Case-03 4.27 3.79 4.72 3.42 3.12
Case-04 2.19 9.02 8.03 4.32 2.85
Case-05 6.12 7.34 12.35 3.78 4.17
Average 3.234 4.548 5.708 2.804 2.538

Fill factor

Case-01 0.24 0.71 0.63 0.76 0.74
Case-02 0.38 0.41 0.54 0.67 0.79
Case-03 0.42 0.61 0.68 0.74 0.77
Case-04 0.37 0.64 0.72 0.68 0.82
Case-05 0.45 0.57 0.69 0.81 0.83
Average 0.372 0.588 0.652 0.732 0.79

Shading loss (W)

Case-01 168 128 131 118 121
Case-02 142 115 105 103 104
Case-03 126 109 102 116 101
Case-04 166 133 114 117 102
Case-05 125 112 98 87 79
Average 145.4 119.4 110 108.2 101.4

Response to load variations Slow Slow Average Fast Fast

MPPT average efficiency 91.6 94.7 95.1 97.41 98.23

The following results were obtained from analysis Figure 9 which shows the Gmpp
obtained from reconfiguration of PV- array using the different optimization algorithms and
different PS cases:

• Case 01, IGWO configuration gives the highest maximum power (1342 W). The
BWOA configuration reached the second-best value of maximum power, yet the PSO
configuration scored the lowest maximum power.

• Case 02 and Case 05, approximately all the configurations have the approximated
maximum power.

• Case 03 and Case 04, IGWO algorithm generates the highest maximum power, in the
second rank is the MLS-SPA.
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Figure 9. System Gmpp output under different PS cases.

Studying the shading cases, mismatch loss (%), shading losses, and fill factor values
for all configurations are represented in Table 4. The results show the superior performance
of the IGWO then BWOA over the other optimization techniques and the low performance
of PSO. On the other hand of the compression regarding MPPT with load variations, the
results shown in Figure 10 illustrates also the high performance of IGWO then BWOA
in tracking the MPP and achieving the highest steady-state power at different PS cases.
Additionally, Table 4 shows other different tracking indices and fast response of IGWO and
BWOA to load variations and high MPPT average efficiency.

Figure 10. System Pmpp output under load variations.

7. Conclusions

In this study, a comprehensive study has been carried out considering SP, TCT, and
BL PV array topologies while using optimization techniques PSO, DA, MLS-SPA, BWOA,
and IGWO under five PS cases with dynamical hybrid load change. A PV array 4× 4
configuration experimental set has been implemented using MATLAB-Simscape for real-
time physical simulation of the proposed system. The results were obtained through
simulation for all the studied array configurations during the exposure to a variety of PS
cases and dynamical load variations. Five different metaheuristics optimization techniques
have been implemented using MATLAB in order to achieve the optimal configuration and
MPPT from the proposed system.

The simulation results showed the superior performance of metaheuristics in achieving
the optimum array configuration compared to conventional methods (SP, BL, and TCT)
under the different shading cases. The comparison in Figure 10 states that the proposed
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algorithm consists of higher features in comparison with other metaheuristic algorithms
used for MPPT.

Both the IGWO and BWOA configurations generated higher maximum power values
compared to the other used algorithms regarding shading loss, mismatch loss, and fill
factor for all the array configurations under PS cases. However, the lowest metaheuristics
performance values were achieved by PSO.

Studying the system behavior, the conclusion is that the efficiency of PV array mainly
relies on the used array configuration algorithm and MPPT. Additionally, other factors can
affect the efficiency of the array such as shading cases and solar irradiation level. Future
work will focus on the comparative analysis of more recent practical optimization technique
implementation on other conventional PV systems.
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