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Abstract: Improving agricultural production in response to the increasing food demand remains
a major challenge in agroecology. The world has made significant efforts to meet this issue by
developing several cultivation techniques, such as the use of chemical fertilizers and arable land
conversion into agricultural land. However, most of these techniques have caused a significant loss
of biodiversity and ecosystems services. Recent data suggest that biological conservation within
and around agroforestry systems are potential solutions that can both reduce biodiversity loss and
guarantee crop production. This logic is based on the hypothesis that increasing plant diversity in
and around agricultural systems can limit the pest attack rate and increase crop yield. We tested
this hypothesis using structural equation modeling on empirical data collected in agroforestry
systems around the Pendjari biosphere reserve in West Africa. We measured crop diversity, crop
yield, arthropod pest diversity, abundance, the rate of crop herbivory, and the diversity of plants
in surrounding natural vegetation in 32 permanent plots. We estimated arthropod diversity and
abundance using pitfall traps. We found a direct positive effect for plant diversity and a direct
negative effect of arthropod herbivory on crop yield. The diversity of plants in surrounding natural
vegetation had a direct positive effect on arthropod pest diversity but a marginal negative direct
effect on the rate of crop herbivory. We found no significant direct or indirect effect for crop diversity.
Our findings underline the important role of biodiversity conservation in agricultural production
improvement. We suggest that the conservation of plant diversity around agroforestry systems may
be an effective option to control herbivory damage. Its combination with other pest control techniques
may further limit crop depredation and ensure the long-term conservation of wildlife.

Keywords: diversity in human modified landscape; agrobiodiversity; pest control; crop yield; theory
of biotic resistance; agroecology

1. Introduction

Improving global agricultural productivity is a major concern in the current context of
increasing food demand [1–3]. In recent decades, advanced agricultural practices focusing
on increased crop productivity rather than increasing arable land led to the improvement
of world food production. For example, the development of effective cropping techniques,
including soil fertility management, agricultural intensification, crop rotation, and genetic
selection contributed to increased world food production [4–7]. World production of cereals,
oilseeds, fruits and vegetables has increased by 47% [8], with an overall yield increase of
25% on only a 7% increase in crop land [2]. However, the increase in world food production
seems to overlap with non-food production.

Globally, 62% of the world crop production is used for human food, 35% for livestock,
and 3% for bioenergy, seeds, and other industrial products, with a remarkable disparity
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between regions [9,10]. Because most of the increase in world food production requires
increasing land conversion and deforestation instead of agricultural intensification [11,12],
the gain that is made on ensuring food security is accompanied with a significant loss of
biodiversity [13–18]. An important sustainability debate has focused on how to mitigate the
increasing demand of land for agricultural purposes and the opportunity to share vs. spare
land to achieve both biodiversity conservation and sustainable use of these lands [19–24].
The rationale behind land-sparing is centered around the urgency to conserve biological
diversity in the current context of increased extinction of species and rapid biodiversity loss.
Thus, sparing lands to provide habitat refuge for vulnerable and endangered species is
considered a valuable land-use form, as converting these lands into pasture or crop thereby
erodes the fundamental basis for sustainable agriculture [24]. Land-sharing promotes
ecosystem services by integrating several land-use forms on limited land with the goal of
liberating other lands for biodiversity conservation [22]. Such intensification of agricultural
land use focuses on promoting agrobiodiversity as a mitigating strategy.

Consequently, the role of remnant natural vegetation and plant diversity in agricul-
tural systems in improving crop yield with limited chemical inputs has received increasing
attention [25]. Plant diversity in agricultural systems provides functional diversity that
can limit the spread of pathogens and pests and promote beneficial insects for efficient
biological control and pollination services [26–30]. Sustainable production of food in poor
or developing countries therefore requires diversified agro-ecosystems to control crop
herbivory [25,26,31]. Despite the increasing human-mediated environmental filtering and
loss of biodiversity, our understanding of the role of diversity in agroecological systems
on human nutrition and health [32,33] and on ecosystem services is still limited but in-
creasing [34,35]. In addition, our understanding of how mixed farming affects crop yield
is limited. However, previous studies have shown that plant diversity in natural ecosys-
tems or agricultural systems can improve agricultural production [3,36–38] due to niche
complementarity [39–41].

In this study, we tested the biotic resistance hypothesis that biodiversity mitigates
damage caused by pests and increases productivity [33]. Specifically, we used structural
equation modeling (SEM) to examine the relative roles of plant diversity in natural veg-
etation and in agroforestry systems on crop yield and how such effects are mediated by
reduced crop herbivory. Structural equation modelling [42] is a powerful statistical tool
that combines in a single causal network several predictor and response variables [43].
We hypothesized that plant diversity would increase the diversity of arthropod pests and
indirectly decrease crop yield by increasing pest herbivory rates due to diverse arthro-
pod communities. We hypothesized a stronger indirect effect of plant diversity than a
direct effect on crop yield. We highlighted how the degree of connectivity between natural
landscapes, which house a rich diversity and abundant insect community, and agricul-
tural landscapes during the growing season can influence the productivity of agroforestry
systems [44,45].

2. Materials and Methods
2.1. Study Area

The Pendjari Biosphere Reserve covers 4661.4 km2 and is located in the northwest
of Benin between 10◦30′ N–11◦30′ N and 0◦50′–2◦00′ E. The annual rainfall ranges from
1000 to 1100 mm, with an average annual temperature of 27 ◦C (21–40 ◦C) [46]. The rainy
season lasts nearly five months, from mid-May to October, followed by a dry season from
November to February. The Biosphere reserve is organized into three main zones: a core
area or protected zone (The Pendjari National Park), a buffer zone, and a transition zone,
where sustainable agriculture is permitted. The Pendjari Biosphere Reserve is dominated
by woodland, tree, shrub, and grassy savannas. The most abundant plant species include
Anogeissus leiocarpa, Combretum spp., Pterocarpus erinaceus, Acacia gourmaensis, Crossopteriyx
febrifuga, Detarium microcarpa, Burkea africana, and Terminalia macroptera in the savanna. Pari-
nari congensis and Pterocarpus santalinoides are the main plant species in riparian forests and
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Khaya senegalensis and Vitex chrysocarpa in gallery forests [47]. Wildlife is mainly dominated
by Kob, Kobus kob (9.65 individuals/km2), and western buffaloes (5.91 individuals/km2),
with species such as the cheetah and the waterbuck rare in the reserve [48]. In the transition
zone of the Biosphere reserve, farmers practice traditional agroforestry systems established
on poorly developed tropical ferruginous and hydromorphic soils [49]. Plant communities
in the transition zone are increasingly degraded by a rapidly growing population [50]. A
population growth rate of 36.79% was recorded from 2000 to 2013.

The Pendjari hunting zone is bordered by two main roads (Tanguieta–Batia road,
and the Tanguieta–Porga road), which serve as a clear border for the Biosphere reserve.
Along the two main roads and inside the Pendjari hunting zone, local populations establish
traditional agroforestry systems and are authorized to gather non-timber forest products
within the first 5 km perpendicular to the roads [51]. Along the two roads, three main
ethnic groups are established: the Berba, which accounts for 65% of the population along
the northwestern side, and the Wama and Gourmantche, which account for 30% and are
established along the northeastern side [52]. Farm extensions in the area occupied by
the Wama–Gourmantche are constrained by the Atacora chain of mountains, which have
unsuitable soil for agriculture. Traditional agroforestry systems in the region occupied by
the Berba are more diversified than that of the Wama–Gourmantche [50].

2.2. Measuring Plant, Arthropod Diversity, and Crop Yield

To test the effects of wild (non-crop) plant and crop diversity on arthropod diversity,
crop herbivory rate, and yield, we randomly sampled 32 traditional agroforestry systems
and 8 surrounding natural habitats within 100 m from the edge of agroforestry systems.
Within each agroforestry system or adjacent natural vegetation, we established a 30 × 30 m
plot to survey and record every plant species in the plot. Adult tree species with a diameter
at breast height (dbh) ≥ 5 cm were counted within each plot, and the species in lower
vegetation layers (dbh < 5 cm), including herbs, were counted within five 5 m × 5 m
quadrats (one quadrat in the center and four in the corners of the plot). Plant diversity in
agroforestry systems and adjacent vegetation was simply estimated as species richness.

Arthropods are both pests and beneficial components of agricultural systems [29,53–55].
As such, they can cause crop damage through herbivory but also serve as predators of
insect herbivores, thereby providing beneficial services that can increase crop yield. It is
estimated that 30–40% of crop yield is lost to pests [22]. Arthropod diversity and abundance
can be influenced by neighboring vegetation [55,56]. We measured arthropod diversity
and abundance, particularly the differences between functional groups, to investigate
how arthropods can affect crop herbivory in traditional agroforestry systems. To measure
arthropod abundance and diversity in soil and litter, we installed in each plot 36 pitfall
traps, each filled with soapy water. These traps were spaced 5m apart, and arthropods
were collected 72 h after the traps were set in the morning and conserved in alcohol prior
to species identification. A total of 1152 pitfall traps were used for the 32 30 × 30 m
plots. Arthropod species were identified (Table 1) by the entomology laboratory at the
University of Parakou (Parakou, Benin), and the number of individuals of each species was
counted. For species that were not directly identified, a morphotype was attributed to each
individual arthropod, according to their morphological aspects, for an in-depth species
determination [57].

The rate of crop herbivory was measured as the percentage of crop leaves damaged
by pests 8 weeks after the period of seed sowing in these farms. To estimate crop yield,
we selected maize and sorghum because they represent the main food source for local
population in the study area [58]. For each of the 32 agroforestry parklands, we visited the
farmers at the end of the farming season during the crop harvesting period to estimate the
quantity of maize and sorghum harvested. To estimate crop yield for maize and sorghum,
farmers harvest corn cobs and sorghum panicle when they are dry. The corns were then
shelled after 14 days and the grain removed from the cob. Because this process is performed
using traditional machines, and each farmer paid CFA 500 (~USD 1) per 100 kg, we were
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able to confirm the production based on the money that they paid. The sorghum panicle
was also sun dried and winnowed to obtain the grains. The grains were put in a container
and then weighed. We estimated the size of each of the 32 farms in hectares and used this
to estimate the total weight for both corn and sorghum in kilogram per unit of hectare. This
was used as our estimate of crop yield [59,60].

Table 1. List of arthropods collected in pitfall traps in the agroforestry systems around the Pendjari
Biosphere Reserve.

Scientific Name Family Order Trophic Group

Oplostomus fuligineus Scarabaeidae Coleoptera Omnivore
Ctenicera destructor Elateridae Coleoptera Herbivore

Gryllus sp. Grillidae Orthoptera Herbivore
Smicronyx fulvus Curculionidae Coleoptera Herbivore

Zonocerus variegatus Pyrgomorphideae Orthoptera Herbivore
Toxoptera citricida Aphidideae Hemiptera Herbivore

Blaniulus guttulatus Blaniulidae Diplopoda Herbivore (roots)
Locusta migratoria Acridideae Orthoptera Herbivore
Cerotoma arcuata Chrysomelidae Coleoptera Herbivore

Stenaptinus insignis Carabidae Coleoptera Herbivore
Tachyura parvula Carabidae Coleoptera Necrophage
Polydesmus spp. Polydesmidae Diplopoda Herbivore (roots)

Caterpillar Papilionidae Lepidoptera Herbivore
Trichopluchia ni Noctuidae Lepidoptera Herbivore

Schistocerca gregaria Acrididae Orthoptera Herbivore
Ichnemonide Ichneumonidae Hymenoptera Carnivore

Dysdercus sp. Pyrrhocoridae Heteroptera Nectarivore
Vanessa cardui Nymphalidae Lepidoptera Nectarivore

Diabrotica virgifera Chrysomelidae Lepidoptera Herbivore
Blaniulus sp. Blaniulidae Myriapoda Detritivore

Schistocerca sp. Acrididae Orthoptera Herbivore
Helicoverpa armigera Noctuidae Lepidoptera Herbivore

Nymphalis polychloros (larvae) Nymphalinae Lepidoptera Herbivore
Geotrupes stercorarius Geotrupidae Coleoptera Coprophage

2.3. Statistical Analysis

To test the effect of plant species richness (agroforestry systems and adjacent veg-
etation) on arthropod abundance, we used a generalized linear model with a negative
binomial error structure, given the overdispersion of the arthropod abundance. We used
the package boot [61] to conduct a bootstrap regression to test the effects of plant species
richness on arthropod diversity (number of arthropods species). We used a simple linear
model to test the effect of plant species richness (agroforestry system and adjacent vege-
tation) on crop yield. The central goal of this study was to elucidate the mechanistic role
that plant diversity mediated by the effect on arthropods diversity and abundance and
the resulting changes in crop herbivory rate in driving crop yield. For this purpose, we
used the R package lavaan [62] to develop a structural equation model [43] to test the direct
or indirect effects of plant diversity in agroforestry systems and adjacent vegetation on
arthropod diversity and how this affected crop herbivory rate and crop yield. Structural
equation models (SEM) are probabilistic models used to fit a single network of hypotheses
to data that include several predictors and response variables [43]. SEM relies on causal
assumptions between variables [63,64]. All statistical tests were performed in R 3.5.1.

3. Results

In the agroforestry systems, we identified 24 arthropod species, which belong to 16
families and 8 orders (Table 1). The arthropod community was dominated by coleoptera
(29%), lepidoptera (25%), and orthoptera (21%). Herbivores represented 71% of the species.
Nearly 75% of these arthropods were plant pests and were mostly adults. The arthropods
that were pests for crops represented 25% of the total richness and were either at the larval
or adult stages (Table 1). The crops mainly included maize, sorghum, and in some villages,
millet, and cowpea. The minimum crop yield was 0.5 kg/ha, and the maximum was
6235 kg/ha (Table 2). In the agroforestry systems, we identified a total of eight species
with Vittelaria paradoxa (70%) as the most dominant species, followed by Parkia biglobosa
(20.8%) and Lannea acida (5%). Other plant species in the agroforestry system included
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Anarcadium occidentale, Sterculia setigera, Acacia polyacantha, Prosopis africana, and Monotes
kerstingii. In adjacent natural habitats, we identified 31 species, dominated similarly by
Vittelaria paradoxa (30.5%) and Parkia biglobosa (8.5%), also including Combretum fragans
(7.6%), Terminalia avicennioides (6.8%), Burkea africana (5.9%), and Sterculia setigera (3.4%).

Table 2. Main variables for the structural equation model, including mean, median, and standard
deviation (SD) for arthropod number and diversity, crop yield, richness, total plant diversity, and
herbivory rates. The number of sites sampled to estimate these variables is also indicated.

Arthropod
Abundance

Arthropod
Richness

Crop
Yield

(kg/ha)
Total Plant
Richness

Crop
Richness

Herbivory
Rate (%)

Minimum 1 1 0.5 6 2 1.34
Median 9.5 4 550 11.5 3.5 2.96
Mean 13.2 4.7 828.9 10.8 3.7 3.02

Maximum 47 13 6250 14.0 6 4.52
SD 11.2 3.4 1155.9 2.5 1.03 0.97

Sample size 32 32 32 32 32 14

Total plant diversity had significant effect on crop yield and arthropod diversity (Figure 1).
Arthropod diversity increased non-linearly with arthropod abundance (β = 0.04 ± 075;
Figure 2A) but slightly decreased with plant diversity in the surrounding natural veg-
etation (β = 0.36 ± 0.12; p = 0.01; Figure 2B). We found no significant effect of crop diversity
in agroforestry systems on the rate of herbivory (β = −0.06 ± 0.16, p = 0.71; Figure 2C)
and on crop yield (Figure 1, Table 3), but total surrounding plant diversity tended to in-
crease crop yield (β = 4.21 ± 1.78; p = 0.02, Figure 1) without a direct effect on herbivory
rates (Figure 1). Similarly, arthropod diversity did not affect herbivory rates (Figure 1)
or crop yield (β = −0.64 ± 3.09, p = 0.84, Table 3). Surprisingly, crop diversity had no
significant effect on arthropods diversity (β = 0.06 ± 0.28; p = 0.82, Table 2), crop herbivory
rate (β = −0.04 ± 0.21, p = 0.85), or yield (β = −1.06 ± 2.35, p = 0.65; Table 3, Figure 1).
However, crop herbivory tended to significantly decrease crop yield (β = −0.2 ± 0.61;
Figures 1 and 2D).
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Figure 1. Structural equation model of the effects of plant diversity on crop yield, arthropod diversity
and the negative effect of herbivory on crop yield in agroforestry systems. The thick black lines
indicate positive relationships, the red line indicates negative relationships, and the gray lines
non-significant relationships (n.s). * p < 0.05, ** p < 0.01. R2 is the proportion of variance explained.
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Figure 2. Effects of (A) arthropod abundance, (B) total diversity on arthropod diversity, effect of (C)
crop diversity on crop herbivory intensity, and (D) the effect of herbivory intensity on crop yield. β is
the slope of the regression and ρ is the Pearson correlation coefficient. Asterisks indicate * p < 0.05,
*** p < 0.001 and ns: non-significant.

Table 3. Path coefficients of structural equation model (SEM) between response and explanatory
variables of the functional diversity of natural systems and agroforestry systems and agricultural
yield. The column “Std.all” shows the standardized all-path coefficients, and “Std.lv” shows path
coefficients with only latent variables coefficients standardized.

Causal Relationships in the SEM Estimate SE z p Std.lv Std.all

Herbivory~Arthropod diversity 0.064 0.281 0.228 0.820 0.064 0.078
Herbivory~Crop diversity −0.039 0.213 −0.184 0.854 −0.039 −0.052
Herbivory~Total diversity −0.059 0.162 −0.366 0.714 −0.059 −0.130

Crop yield~Herbivory −6.407 2.937 −2.181 0.029 −6.407 −0.402
Crop yield~Arthropod diversity −0.635 3.099 −0.205 0.838 −0.635 −0.049

Crop yield~Crop diversity −1.063 2.348 −0.453 0.651 −1.063 −0.088
Crop yield~Total diversity 4.210 1.784 2.360 0.018 4.210 0.540

Arthropod diversity~Total diversity 0.363 0.119 3.062 0.002 0.363 0.654
Arthropod diversity~Crop diversity 0.148 0.199 0.747 0.455 0.148 0.160

4. Discussion

We documented how plant and crop diversity can mediate the impact of arthropod
diversity, abundance, and subsequent herbivory on crop yield in traditional agroforestry
systems in a West African biosphere reserve. We hypothesized that crop yield will be
positively associated with plant diversity in natural vegetation surrounding the agroforestry
systems. We found no significant effect of crop diversity, but we found a significant
positive influence of plant diversity around agroforestry systems on crop yield. These
results add to the growing evidence that crop yield can benefit from the conservation of
a range of different tree and shrub species within and around farms [32,65]. Consistent
with the theory of biotic resistance, which suggests that increasing plant diversity will
reduce crop damage caused by pests, one can expect an increase in the productivity and
crop yield of agroforestry systems with higher diversity [33]. The increase in crop yield
observed here can also be explained by the border spillover effect, where farms benefit
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from the surrounding vegetation in terms of organic matter intake [60,66,67]. It may also
result from the positive effects of microbial activity or ecosystem services efficiency. Our
results revealed the presence of many decomposers belonging to Geotrupid family such
as Geotrupes stercorarius, which are normally found in fresh dung, horse dung, and the
droppings of different animals and beetles such as Oplostomus fuligineus (Table 1). Our
results also highlight the importance of ecosystem services on agroecological systems.

One of the consequences of biological diversity is to maintain ecosystem services,
including soil quality, pollination services, and pest control in agricultural systems [25]. We
hypothesized that the positive effects of plant diversity on crop yield will be mediated by a
negative direct effect on pest diversity and abundance, which is expected to cause increased
crop herbivory rates. We found that plant diversity increased crop yield without reducing
herbivory rate. However, arthropod pest diversity increased with diversity in surrounding
natural vegetation, particularly with the predominance of Coleoptera and Lepidoptera
larvae (Table 1). This contrasts with the prediction from the biotic resistance hypothesis [33]
that plant diversity mitigates damage caused by pests. This result may be explained by the
positive effect of plant diversity in surrounding habitats on positive ecological interactions
such as crop pollination services due to pollinators’ diversity and abundance in adjacent
agroforestry systems [68,69]. Consistent with the associated resistance hypothesis, such
diversity of neighbouring species could have mitigated herbivory damage by reducing
the effect of specialized pests [70,71]. In addition, previous studies show that regional
and agricultural biodiversity can decrease plant diseases and the proportion of grain-
eating or fruit-eating animals in farms [44,72,73], which altogether can positively affect
crop yield. The positive effect of plant diversity in surrounding habitats on arthropod
diversity is perhaps due to the mitigating effect of a diverse surrounding habitat, which
acts as a windbreak to limit agricultural pesticide spillover into agroforestry parklands
and its negative effect on arthropod species [74,75]. In addition, arthropods encompass
a wide range of species, including flying insect species, which can have positive and
antagonistic interactions with crops. We did not record any flying arthropod species during
our fieldwork, and this may explain the positive correlation between arthropod diversity
or abundance and plant diversity in surrounding habitats [76,77].

Pest diversity can increase herbivory rate and reduce crop yield. However, in our
study system, we found no significant direct or indirect effect of arthropod diversity on
herbivory rate and on crop yield. Previous studies suggest that such lack of arthropod
diversity effect may be due to pest specialization, environmental conditions, pest specificity,
or the indirect effects of herbicide use in neighbouring fields [78–81]. The traditional
agroforestry systems we studied in northern Benin were mixed systems composed of cereal
crops, yam fields, cassava, sweet potato, and trees such as Vitellaria paradoxa and Parkia
biglobosa [82]. These crop systems also coexist with large cotton farms that require heavy
use of pesticides, which may affect the arthropod communities. This area was subjected
to long-term agricultural activities that caused massive losses of forest land and modified
forest management [50,52]. Crop pests can be affected by forest management and plant
diversity around agricultural systems [83].

Our results show that pest diversity was not associated with herbivory rate. However,
we found that herbivory rate had a significant negative direct effect on crop yield. This
result adds to similar evidence provided by previous studies [84]. Cereals are annual crops
that allocate more resources to growth and reproduction rather than to their survival [85].
Herbivory, by reducing crop growth, directly negatively impacts crop productivity [86]
due to increasing biomass replacement costs and shifting biomass allocation away from
reproduction [87]. The loss of leaves or the reduction in the leaf biomass due to pests could
increase crop sensitivity to water stress that might reduce stomatal conductance necessary
for photosynthesis [88].
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5. Conclusions

In this study, we found that the diversity of natural vegetation surrounding agro-
forestry systems played a major role in crop yield improvement by directly increasing
yield or by reducing the effect of herbivory. Fragments of natural habitats surrounding
traditional agroforestry systems may be sufficient to provide essential ecosystems ser-
vices for increasing agricultural yield. Our results suggest that plant species around and
within traditional agroforestry systems need to be safeguarded to improve crop yield.
Maintaining biodiversity around agroforestry systems must be prioritized in areas with
strong demographic growth, limited by agricultural land availability, and a subsequently
weak economy.
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