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Abstract: Soil quality (SQ) refers to its capacity to perform its functions. Thus, the SQ index (SQI)
is a potentially useful tool for monitoring soil changes induced by mangrove restoration initiatives.
Although the soil management assessment framework (SMAF) is a well-developed tool for SQ
assessments in diverse ecosystems, it has never been tested on mangrove soils. In this study, we
tested the SMAF to evaluate the shifts in the SQ of mangroves in a reforestation initiative using
three- and seven-year plantations, which were compared with degraded and mature mangroves.
A minimum dataset, composed of the pH and available P as chemical indicators, bulk density as a
physical indicator, and soil organic carbon as a biological indicator, was used to calculate the SQI.
The SMAF scores facilitated the monitoring of improvement in the mangrove SQ with vegetation
development, mainly driven by physical and biological indicators. The SMAF may be a useful tool for
monitoring SQ in mangroves under protection and recovery initiatives. Nevertheless, we suggest the
inclusion of additional biological and chemical indicators in the minimum dataset for future studies
to better represent specific processes and functions (e.g., microbial redox reactions and contaminant
immobilization) that can alter the SQ of mangroves.

Keywords: environmental recovery; ecosystem services; wetlands; carbon dynamics

1. Introduction

Different forest biomes at a global scale provide significant ecosystem service (ES)
diversity. Recognizing their importance and the mechanisms controlling their occurrence
are pivotal for sustainable decision-making [1]. Mangroves are estuarine ecosystems
that provide a wide diversity of ESs, such as regulation, support, and culture for human
livelihood [2–5]. Despite this recognition, mangroves are one of the ecosystems most
threatened by human activities, i.e., mainly aquaculture, sewage and industrial disposal,
and deforestation [6,7]. Mangrove degradation is mainly related to the total or partial
suppression of mangrove vegetation, which has declined by 30–50% over the past half
century, triggering a loss in soil quality, which in turn affects ES provisions (e.g., carbon
accumulation and metal immobilization) [8,9].

Additionally, many of the ESs provided by mangroves are directly associated with soil
processes and soil quality (SQ) [10–12]. Accordingly, SQ can be conceptualized as a soil’s
capacity to perform its functions, such as sustaining its productivity, improving water quality,
and providing ESs. This ability to perform specific functions is associated with the inherent
characteristics of each soil type [13,14]. As tidal activity influences mangroves, this flooded
environment has soil characterized by intrinsic geochemical characteristics, such as a high
salinity, low oxygen diffusion, and predominance of anaerobic metabolism [15,16]. More-
over, the geochemical features of mangrove soils lead to low organic matter decomposition
rates and iron sulfide formation, which favor the sequestration of large amounts of carbon
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(reaching ~five-fold that of terrestrial ecosystems) and contaminant immobilization in the
soil [9,17]. In this sense, evaluating SQ is pivotal for ensuring the maintenance of ESs.

However, SQ cannot be measured directly in the field or laboratory, but can be indi-
rectly inferred by soil indicators (e.g., soil chemical, physical, and biological properties)
sensitive to changes in soil functions [13,14,18–20]. The use of a soil quality index (SQI)
may be a strategic tool in providing useful information that can promote sustainability in
highly threatened environments [18].

The SQI approach has been used in mangrove ecosystems to understand the magni-
tude of the effects of land-use changes; for example, the removal of mangrove forests for
rice cultivation [21] and the clearing of mangrove vegetation [22]. These previous studies
focused on developing region-specific SQIs. From this perspective, there is a need for
standardized SQI studies that can be replicated for comparisons and quantifications of the
environmental impacts on mangrove soils. In this study, we innovatively tested mangrove
soils using the soil management assessment framework (SMAF), a widely used tool for
assessing the SQI in agricultural soils [18]; however, to the best of our knowledge, this tool
has never been tested on mangrove soils.

The SMAF uses integrative measurements related to ecosystem processes and func-
tions, which are reflected in the SQI based on the chemical, physical, and biological proper-
ties of soils [19,23,24]. It is a cost-effective framework that uses selected indicators and a
reduced number of measurements (i.e., a minimum dataset) to reliably detect the changes
in SQI [14].

Although the SMAF was developed for North American soils [18], it is suitable for
assessing the SQI of tropical soils [25–28]. A recent study also showed that is useful for
human-made soils [29]. The SMAF is a three-step framework that includes (1) indicator
selection, (2) indicator interpretation, and (3) integration into an overall SQI [18]. The first
step includes the chemical, physical, and biological indicators to accurately assess the SQ. In
the second step, the SMAF implements non-linear scoring curves to interpret 13 indicators
(i.e., the pH, soil aggregation stability, bulk density (BD), available plant water, water-filler
pore space, electrical conductivity, sodium adsorption rate, extractable phosphorus and
potassium, microbial biomass, soil organic carbon (SOC), potentially mineralizable nitrogen,
and β-glucosidase). In the third step, within these individual scores, the SMAF integrates
them into an overall SQI ranging from 0 to 1, which represents the functioning rate of the
soil compared with its potential capacity.

Although SMAF has been applied worldwide, to the best of our knowledge, no studies
have yet evaluated the sensitivity of SMAF scores for detecting changes in mangrove
soils. We evaluated the applicability of the SMAF to assess the SQ changes in mangroves
subjected to a reforestation initiative (i.e., plots at three- and seven-year-old plantations)
and compared them with degraded and mature mangroves. Based on these analyses, there
is an actual need for the recovery of coastal areas that provide a large range of ESs, which
demand both public and private investors [30,31]. Quantitative proxies of the ecological
evolution, as exposed by soil indicators, may be strategic tools to support the recovery of
mangrove projects and monitor their evolution [28,29]. Therefore, we tested the following
hypothesis: the development of mangrove forests increases SQ scores, and the SMAF can
effectively detect changes in SQ.

2. Materials and Methods
2.1. Study Area

The study area was located in Ceará State, northeast Brazil (Figure 1). The region has
a semi-arid climate (BSh, Köppen climate classification), with well-defined wet (February
to May) and dry seasons (June to January), a mean annual precipitation <900 mm, and
a mean annual temperature of 27 ◦C [32,33]. The mangrove soils in the study area are
characterized by sand–clay textures originating from the sedimentary deposits of the
Barreiras Formation, as well as influence from the surrounding dunes [34–36]. Additionally,
mangroves experience a daily to diurnal mesotidal regime, ranging from 0.75 to 3.25 m [37].
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Figure 1. Location of the studied mangrove in the Cocó River estuary, and the degraded (red area)
and mature (green area) mangrove and plots with 3-year-old (yellow area) and 7-year-old plantations
(blue area). The satellite image was obtained from Google EarthTM. In the satellite image, the XY axes
represent latitude and longitude. In the detail (bottom photo) are the plots with 3- and 7-year-old
plantations compared with mature mangroves, showing the vegetation development differences.
Photo credits: Claudia Albuquerque, Igor de Melo, and Michele Boroh.

Changes in the SQ were investigated in a mangrove reforestation initiative with
three- (3Y) and seven (7Y)-year-old plantations, a degraded mangrove forest (DM), and a
mature mangrove forest (MM; Figure 1). Each plot was separated by approximately 100 m.
Additionally, the MM and DM covered an area of approximately 13,000 and 1000 m2, re-
spectively. The plantation areas of 3Y and 7Y were 3500 and 1000 m2, respectively. The
study plots were located within the Sabiaguaba Environmental Protection Area, which is a
conservation unit created through municipality decrees in February 2006 for mangrove re-
forestation initiatives, sustainable use practices, and educational and tourism activities [38].
The MM plot was a well-developed forest free from disturbances for at least 30 years, com-
posed of Avicennia germinans (L.) L., Laguncularia racemosa (L.) C. F., and Rhizophora mangle L.
After the creation of the conservation unit, previously deforested areas were replanted with



Sustainability 2022, 14, 3085 4 of 12

Rhizophora mangle propagules, as occurred in areas 3Y and 7Y. There was a total absence of
vegetation in the DM plot owing to urban occupation and deforestation.

2.2. Soil Sampling

Four undisturbed soil cores (n = 16) were obtained during low tide within 1 × 1 m
areas in each scenario (i.e., DM, 3Y, 7Y, and MM) using polyvinyl chloride tubes (0.05 m in
diameter and 0.6 m in length) attached to a stainless-steel auger for flooded soils. To avoid
chemical and biological alteration, the tubes were hermetically sealed and transported
(vertically) under refrigeration (~4 ◦C) to the laboratory soon after sampling. Analyses
were performed in triplicate using subsamples collected from the soil cores at depths of
0–30 cm.

2.3. Determination of Soil Quality Indicators

The soil pH values were obtained in situ using portable meters (HANNA, model
HI98121, Hanna Instruments, Woonsocket, RI, USA) equipped with a glass electrode,
which was previously calibrated with standard solutions (pH values of 4 and 7).

In the laboratory, the SOC content was determined via dry combustion using an
elemental analyzer (LECO SE-144 DR). Soil samples for the SOC determination were
treated with 1 mol L−1 HCl for carbonate removal, dried at 45 ◦C until a constant weight
was maintained, and then re-weighed [39]. The available P content in the mangrove soils
was extracted using a Mehlich-1 instrument and quantified using calorimetry [40].

The undisturbed soil cores (i.e., collected with minimal compaction) were used to
determine the soil BD. Thus, the soil BD was calculated using the mass of the soil solids
and total soil volume (depth and tube diameter of 30 cm) [39].

2.4. Soil Quality Assessment Using SMAF

The SMAF was used as a tool to evaluate the effects that mangrove replanting had on
the SQ compared to degraded and mature mangroves. The minimum dataset consisted of
four soil indicators, i.e., the pH, available P, SOC, and BD.

The soil pH and available P were selected as the chemical indicators. The soil pH is an
environmental physicochemical variable that indicates the acidity of mangrove soils [41].
Accordingly, soil pH values may reveal certain geochemical processes, such as acid drainage,
which may be caused by the degradation and drainage of mangrove soils [42–44]. Addition-
ally, pH measurements can be easily obtained in situ using portable meters, which facilitate
replicability. The SOC was used as a biological indicator because carbon plays a key role
in the biological activity of mangrove soils [18,45]. Phosphorous is a limiting nutrient in
mangrove soils; therefore, it was selected as a key indicator to provide information on
soil nutrient availability [46]. The soil BD provides information on soil compaction and
aeration; it is also a necessary variable for soil carbon stock calculations [18,22,47].

The biological, physical, and chemical scores calculated by the SMAF scoring curves
were based on site-specific algorithms for several factor classes, including the inherent soil
characteristics (i.e., the soil texture, mineralogy, and weathering class), climate, topography
(slope), crop system, and analytical methods. To calibrate these curves (i.e., establish the
upper and lower limits or optimal values on the curves), different codes were selected in
the SMAF spreadsheet [27]. Thus, we created SMAF algorithms according to the conditions
of this study; Table 1 lists the codes for the indicators.
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Table 1. Factor codes selected in the soil management assessment framework (SMAF) spreadsheet to
interpret the soil quality (SQ) indicators according to the conditions of this study.

Parameter Factor Codes Indicator Scoring Curve
Affected by Class Factor

Soil type 3 (medium–low SOC) SOC
Texture 1 (low clay content) SOC, BD, available P

Soil mineralogy 3 (other) BD
Weathering class 3 (other) Available P

Slope of field 1 (flat) Available P
Climate 2 (high temperature and low rainfall) SOC, available P

Crop Mangrove 117 * pH, available P
P method 1 (Mehlich-1) Available P

SOC: soil organic carbon; BD: bulk density. * Mangrove 117 was a created crop factor whose optimal values for
the pH and available P were set as follows: pH = 7; available P = 30.47 mg kg–1.

Additionally, in the SMAF spreadsheet, the “crop factor” reflects the scores of soil
pH and available soil P associated with the current crop at the time of sampling. In this
study, the “Mangrove 117” crop was created (Table 1). In the “Mangrove 117” crop factor,
we set up the optimum pH value and available P content to adjust the nonlinear scoring
curves of these two chemical factors. We adopted pH = 7 as the ideal pH value because
healthy mangrove soils usually present a high capacity for buffering acidity [41,48], and
for available P we considered the contents registered in the MM plot (i.e., 30.47 mg kg−1;
see Table 2).

Table 2. Mean contents of the SOC and available P, mean values of the pH and BD, and their
corresponding soil quality (SQ) score in the degraded and mature mangrove plots and replanted
areas (3 and 7 years).

Plot SOC (%) pH Available P
(mg kg−1) BD (g cm−3)

Means
DM 0.44 ± 0.06 c 7.68 ± 0.22 a 19.67 ± 2.74 b 1.51 ± 0.08 a
3Y 0.91 ± 0.10 b 6.98 ± 0.15 b 4.34 ± 0.81 d 1.33 ± 0.03 b
7Y 0.92 ± 0.34 b 6.95 ± 0.10 b 8.44 ± 0.71 c 1.35 ± 0.11 b

MM 1.85 ± 0.07 a 6.33 ± 0.05 c 30.47 ± 1.04 a 1.08 ± 0.02 c
SMAF Scores (0 to 1.00)

DM 0.13 ± 0.02 d 0.79 ± 0.12 b 0.95 ± 0.02 a 0.81 ± 0.16 b
3Y 0.40 ± 0.08 c 0.99 ± 0.01 a 0.17 ± 0.08 c 0.99 ± 0.01 a
7Y 0.59 ± 0.14 b 1.00 ± 0.01 a 0.60 ± 0.06 b 0.97 ± 0.03 ab

MM 0.99 ± 0.01 a 0.80 ± 0.03 b 1.00 ± 0.00 a 0.99 ± 0.01 a
DM: degraded mangrove; 3Y: 3 years after replanting; 7Y: 7 years after replanting; MM: mature mangrove;
SOC: soil organic carbon; BD: bulk density. Means followed by the same lowercase letters did not differ among
the study plots according to Tukey’s test (p < 0.05).

Individual scores of the indicators were calculated and grouped into chemical (pH and
available P), physical (BD), and biological (SOC) components. The SQI was calculated using
the weighted additive approach (Equation (1)). Regardless of the number of indicators,
the groups (i.e., chemical, physical, and biological) were integrated and had an equal
weight (33.33%) in the final index, i.e., the SQI [14,26]:

SQI =
n

∑
i=1

SiWi (1)

where Si is the indicator score and Wi is the weighted value of the indicators.
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2.5. Statistical Analysis

The differences between the means of the soil parameters (i.e., SOC, pH, available P,
and BD), SQ indicators, and SQI in the study plots (i.e., DM, 3Y, 7Y, and MM) were tested
using analysis of variance (ANOVA). When significant, the means were compared using
Tukey’s test (p < 0.05).

3. Results

The SOC content varied significantly between the study plots, indicating a gradual
increase with vegetation development (Table 2). Higher SOC contents were observed in the
MM plot (1.85 ± 0.07%), whereas lower contents occurred in the DM plot (0.44 ± 0.06%;
Table 2). No significant differences were observed in the SOC content between the 3Y
(0.91 ± 0.10%) and 7Y plots (0.92 ± 0.34%). Gradual increases in the SOC content were also
observed in the SMAF score, which was attributed to the biological indicator of SQ (SOC;
Table 2). The SMAF scores for the SOC were significantly higher in the MM (0.99 ± 0.01),
followed by a significant decrease in 7Y (0.59 ± 0.14), 3Y (0.40 ± 0.08), and DM (0.13 ± 0.02)
(Table 2).

For the chemical indicators, the soil pH values varied significantly between the study
plots, ranging from slightly alkaline (7.4–7.8) in the DM plot (7.68 ± 0.22) to acidic (6.1–6.5)
in the MM plot (6.33 ± 0.05; Table 2). In the 3Y (6.98 ± 0.15) and 7Y (6.95 ± 0.10) plots, the
soil pH values were close to neutral (6.6–7.3), yielding no significant differences (Table 2).
For the SQ scores, the higher significant values were attributed to the 3Y (0.99 ± 0.01)
and 7Y (1.00 ± 0.01) plots, whereas lower values occurred in the DM (0.79 ± 0.12) and
MM plots (0.80 ± 0.03; Table 2). The available P content did not show a gradual increase
with vegetation development (Table 2). The MM plot had a significantly higher available
P content (30.47 ± 1.04 mg kg−1), whereas the 3Y plot (4.34 ± 0.81 mg kg−1) presented
lower content (Table 2). The available P content was also significantly higher in the DM
plot (19.67 ± 2.74 mg kg−1) compared to the 7Y plot (8.44 ± 0.71 mg kg−1; Table 2). The
SQ score for the available P in the DM plot (0.95 ± 0.02) did not differ significantly from
the MM plot (i.e., optimum SQ score: 1.00 ± 0.00; Table 2). In contrast, the SQ score for
available P in the 7Y plot (0.60 ± 0.06) was significantly higher than the SQ score in the 3Y
plot (0.17 ± 0.08; Table 2).

The physical indicator (i.e., BD) in the replanted plots (3Y: 1.33 ± 0.03 g cm−3;
7Y: 1.35 ± 0.11 g cm−3) differed significantly from that of the degraded mangrove (DM:
1.51 ± 0.08 g cm−3). Higher BD values were observed in the MM plot (1.08 ± 0.02 g cm−3;
Table 2). Accordingly, the highest significant SQ score for the BD occurred in the MM
(0.99 ± 0.01) and 3Y (0.99 ± 0.01) plots, whereas the lowest was in the DM plot (0.81 ± 0.16;
Table 2). The SQ score for the BD in the 7Y (0.97 ± 0.03) plot did not differ from the 3Y and
DM plots (Table 2).

The SQI score obtained from the integrated SMAF scores for the biological (i.e., SOC),
chemical (i.e., pH and available P), and physical (i.e., BD) components gradually and
significantly increased with vegetation development. According to the observed SQI
(DM: 0.60 ± 0.04; 3Y: 0.66 ± 0.04; 7Y: 0.74 ± 0.09; and MM: 96 ± 0.01), the mangrove SQ
gradually increased following vegetation development (Figure 2).
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Figure 2. Soil quality index (SQI) score for each stage of mangrove development in Ceará state,
northeastern Brazil: degraded mangrove (DM); 3- and 7-year-old plantations (3Y and 7Y, respectively)
and mature mangrove (MM). Means followed by the same lowercase letters did not differ among
studied plots according to Tukey’s test (p < 0.05).

4. Discussions

Several available methodologies focus on integrating physical, chemical, and biological
indicators to assess the quality of mangrove soils [21,45]. Thus, in this study, we tested the
SMAF, a widely used international tool [49,50], to assess SQ in two replanted mangrove
plots, which were compared with degraded and mature mangroves. In this study, we
observed a gradual increase in the SQI scores with mangrove vegetation development. The
SQI scores were between 0.74 ± 0.09 and 0.66 ± 0.04 for the three- and seven-year-old
plantation plots, respectively (Figure 2).

The increase in the SQI score with replanting reflects shifts in the chemical, biological,
and physical indicators. However, the chemical SQ scores showed different tendencies
among the degraded, replanted, and mature mangroves (Table 2). For example, the soil pH
values observed in the study plots ranged from 6.3 to 7.7 (Table 2). These soil pH values
are common for mangrove soils [22,33,51]. Within mangrove soils, the constant influence
of seawater via tidal activity, root exudates, bioturbation, biogenic carbonates, and redox
oscillations results in soil pH values that can vary between ~6.5 and 7.0 [22,33,51,52]. Thus,
despite the significant pH variation, this did not reflect significant variations in the SQ
score associated with the pH; the observed values are plausible for mangrove ecosystems.
However, the SQ score for the pH ranged from 0.77 to 1.00, yielding significant differences
(Table 2). Additionally, as the chemical indicator was composed of only two components
(pH and available P), the SQ score associated with the soil pH values strongly influenced
the chemical component. A potential contribution from this study for the future use of the
SMAF for mangrove ecosystems is that adjustments to the pH scoring curves should be
made to better represent these specific soil environments. Furthermore, the scoring curves
for interpreting the electrical conductivity and sodium adsorption rate available in the SMAF
spreadsheet should be tested in future studies such that they can represent other important
processes that occur in mangrove soils, such as salinization and microbial redox processes.

The available P, which is a chemical indicator for nutrient availability, did not follow
the conservation gradient for mangrove plots. Although P is a key nutrient for vegetation
in mangrove soils, it is usually a limiting nutrient [53,54]. In plantation plots (i.e., 3Y and
7Y), P is a limiting nutrient; plants require large quantities of P, which may explain the
lower available P content [46]. In contrast, in the MM plot, a significantly higher available
P content was likely associated with nutrient cycling [54]. For example, the atypical values
observed in DM may be related to sewage disposal or other anthropogenic effluents [55].
Therefore, in mangrove forests exposed to P-rich waste, we recommend the use of additional
chemical indicators in the minimum dataset. Nevertheless, P should not be substituted with



Sustainability 2022, 14, 3085 8 of 12

other indicators because it is an important nutrient for plant species [54,56]. Furthermore,
as mangroves are one of the ecosystems most affected by anthropogenic activities (e.g.,
effluent discharge and urban waste disposal) [9,57,58], P as a chemical indicator must be
carefully analyzed to avoid positive scores at eutrophication or organic pollution sites.

In contrast, the biological indicator (SOC) increased with plantation development
(Table 2). This result indicates that mangrove reforestation initiatives have successfully
restored the soil carbon stocks in degraded mangrove forests and improved the SQ. Veg-
etation development mainly enhances organic matter inputs into mangrove soils through
dead roots, microbial biomass, litterfall, wood debris, and fauna activity [59,60]. Additionally,
vegetation development and, ultimately, root system development of Rhizophora mangle L.
decreased the turbulence kinetics and favored a higher water residence time, enhanced fine
particle trapping, decreased oxygen diffusion, and stimulated anaerobic metabolism [61,62].
These changes may favor carbon accumulation [63–68]. A recent study in this region showed
that an increase in fine particles enhanced organomineral interactions, increasing the SOC
with vegetation development [69], which may be enhanced by anaerobic metabolism with
low organic matter degradation rates [63–68]. Owing to the reforestation initiative [5,70], the
increase in the SQ associated with the SOC may indicate an improvement in one of the most
important ESs provided by mangrove soils (i.e., carbon sequestration).

Moreover, SOC is a soil variable that directly or indirectly has a strong influence on
the overall SQI owing to its relationship with other variables (e.g., BD and available P).
Although the biological SQ corresponded to 33.3% of the SQI, it gradually increased with
plant development. The increased SOC content also directly affected the BD results and its
SQ scores [71,72]. Additionally, soil organic matter is an important source of P in mangrove
soils [55,73,74], which can indirectly affect the chemical SQ scores.

However, soil health and the development of soil functions are not the sole responses
to the presence of SOC; thus, asserting that the variations in the integrated SQ depend on a
particular aspect of the soil may be inaccurate [22,72,75]. For example, SOC in mangrove
soils depends on several factors (e.g., climate, soil texture, tidal regime, plant species, and
redox potential), which leads to significant variations in the SOC content in mangrove
soils (>1000%) [22,76–78]. Therefore, adjustments regarding the optimum SOC content in
mangrove soils in the SMAF could avoid overestimations of the SQ at the expense of the
SOC content.

Additionally, we used a small dataset to generate a SMAF score that is accessible and
replicable. However, for mangrove soils, our findings indicate that more indicators could
ensure soil function development and increase the relevance of the SQ scores. Therefore,
the use of SOC as a biological indicator may limit inferences on soil biological health.
One of the most important functions of mangrove soils is their potential to immobilize
contaminants [79,80]. This soil function is closely associated with microbial activity, iron
and sulfate reduction processes, and the formation of metallic sulfides, pyrite, and acidic
volatile sulfides [16,81–83]. Given the importance of anaerobic metabolism in the diverse
soil functions of mangrove soils [84–86], future studies should consider other biological
indicators in the minimum dataset, such as microbial biomass carbon and the enzymatic ac-
tivity of β-glucosidase, both of which already have scoring curves in the algorithms within
the SMAF spreadsheet. Additionally, other chemical indicators (e.g., the Fe and S content)
may play a key role in predicting soil functions because the quantity of these elements
directly affects important soil processes within mangrove soils (e.g., pyritization) [51,87].
These indicators are not available in the current version of the SMAF spreadsheet; therefore,
developing reliable scoring curves for new indicators such as these is a challenging task for
future soil quality research in mangrove soils.

5. Conclusions

This study used the SMAF tool to monitor the effect of a mangrove reforestation
initiative on SQ. Using the SMAF scores, we observed an increase in mangrove SQ with
vegetation development, which was mainly driven by physical and biological indicators
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(e.g., SOC and BD). Our findings provide novel information on the use of the SMAF as
an effective tool for monitoring SQ in mangrove forests under protection and recovery
initiatives. Despite the encouraging results obtained using SMAF in mangrove soils, we
suggest that future studies include additional biological and chemical indicators in the
minimum dataset to better represent specific processes and functions (e.g., salinization,
microbial redox reactions, and contaminant immobilization), which can alter the quality of
mangrove soils.
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