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Abstract: In rural areas with low demand, demand responsive transport (DRT) can provide an
alternative to the regular public transport bus lines, which are expensive to operate in such conditions.
With simulation, we explore the potential effects of introducing a DRT service that replaces existing
bus lines in Lolland municipality in Denmark, assuming that the existing demand remains unchanged.
We set up the DRT service in such a way that its service quality (in terms of waiting time and in-
vehicle time) is comparable to the replaced buses. The results show that a DRT service can be more
cost efficient than regular buses and can produce significantly less CO2 emissions when the demand
level is low. Additionally, we analyse the demand density at which regular buses become more
cost efficient and explore how the target service quality of a DRT service can affect operational
characteristics. Overall, we argue that DRT could be a more sustainable mode of public transport in
low demand areas.

Keywords: demand-responsive transport; microsimulation; operational costs; emissions

1. Introduction

Rural areas often suffer from poor public transport (PT) service quality as the costs of
sustaining a good service frequency and area coverage become high due to the low demand
density. Demand responsive transport (DRT) is one of the proposed solutions to provide a
cost-effective PT service [1]. However, research shows that such expectations are often not
met: many of the existing DRT attempts were not financially sustainable [2,3]. The environ-
mental benefits of PT (compared to private cars) are well known [4]; in rural areas, DRT
services have the potential to reduce CO2 emissions (compared to buses) [5]. Additionally,
DRT systems have been historically used as social service, for example, for people with
disabilities, and social trips are seen as a strong niche for DRT services [1,6]. Altogether,
DRT has the potential to improve the environmental and social sides of PT; however,
the economic effects are less certain. In this study, based on real-world data, we examine a
DRT service in a rural area mainly from economic and environmental perspectives.

DRT is a flexible transport mode in which travellers explicitly request a ride instead of
relying on a schedule. A DRT service can minimise vehicles running empty when there
is no demand and optimise the routes, thereby saving the time and distance travelled.
The service can be organised in a variety of ways, ranging from fixed-lines running by
request to free-floating fleets of vehicles serving the requests in a taxi-like manner [1,7].
The DRT concept was introduced in the 1960s, when travellers were required to call an
operator well in advance. Nowadays, DRT schemes are still extensively used as special
transport services geared towards increasing accessibility for traveller groups with limited
mobility [6]. The development of information and communication technologies made it
possible to route trips dynamically and to provide almost real-time responses to requests.
Consequently, DRT has been re-evaluated as a transport option for the general population,
and there is a growing trend to open DRT to the general public [8,9].
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There is a variety of expectations (and potential purposes) associated with the intro-
duction of DRT services. Some focus on providing universal access in cities, some see it as a
replacement for bus lines with low ridership in rural areas, and others see DRT as a means
for solving first and last-mile problems. From the point of view of public transport author-
ities, the goals for public transport lie in increasing patronage, reducing CO2 emissions,
improving cost efficiency, and increasing accessibility for people with disabilities [10,11].
One of the objectives of public transport actors (in the example of Sweden) is to “ensure
that regional public transport is accessible for all groups of passengers” [10]. In practice,
much effort is dedicated to providing a transport service to the general population, but rel-
atively little attention is given to population groups with disadvantages (either economical,
physical, or mental) [12,13]. DRT, unlike regular buses, has the potential to be utilised for
both the general public and special groups [14]. Moreover, we argue that DRT is inherently
better suited to provide the service required for special groups because it can provide a
flexible level of service corresponding to the needs of travellers [15]. Door-to-door type of
trips could be perceived as secure (when it is dark outside), which could motivate parents
to allow their children to travel alone to their activities [16,17]. Moreover, the reduced
walking time of door-to-door trips could be a factor that allows more elderly people to use
PT [17,18].

The main purpose of this article is to explore how efficient DRT is compared to regular
PT. Therefore, we explored a specific area in the municipality of Lolland in Denmark, but the
results can be generalised to other territories with a similar demand distribution pattern.
In our setup of the service, DRT can be a stand-alone service, carrying travellers within
the service zone. In addition, DRT can serve first or last mile trips that connect travellers
to regular PT for long-distance trips. We performed a single day microsimulation and
obtained operational performance indicators (vehicle kilometres travelled (VKT), number
of vehicles, and operational costs); traveller experience from the services (trip duration
and deviation from the desired departure), and environmental impact (CO2 emission and
energy consumption). We compared the efficiency of DRT to the efficiency of the existing
regular bus network in the area. To enable a fair comparison, we assumed the same demand
for PT and DRT, and configured DRT to provide similar service quality to PT. Our results
show that DRT can be more cost efficient and can produce less CO2 emissions than regular
PT. In further experiments, we analysed how well DRT can adapt its operations to the
different target levels of the trip quality and found that relaxation of trip-level service
quality provides rather limited opportunities for improving the performance. The main
contributions of this article lie in the following points:

• The quantitative evaluation of the DRT service design (integrating DRT with regular
PT) that has not been well studied by using simulation.

• The quantitative evaluation of the environmental impact of DRT and comparison of it
to PT.

• The quantitative evaluation of how service quality impacts the performance of DRT.

This study presents some novel results. We show that DRT is capable of providing
the target service quality within the service area, but changes in the PT supply of the
neighbouring areas are required to satisfy the target service quality level for the long-
distance trips. With the help of the joint analysis of cost-efficiency and environmental
impact, we produce a finding that, to our knowledge, has not yet been published: the
demand density at which DRT and PT have the same cost efficiency is lower than the
demand density at which the services have the same environmental impact.

The rest of the article is organised as follows: Section 2 presents a short review
of research in the area of DRT; Section 3 explains the simulation methods and models;
Section 4 describes the study area and input data; the simulation scenarios and their results
are presented in Section 5; the results and limitations of the study are further discussed in
Section 6, and finally, Section 7 summarises and concludes the article.
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2. Related Work

Autonomous mobility on demand (AMOD) is a concept that is very similar to DRT.
The major difference is that AMOD vehicles have no drivers and operate autonomously,
but the service follows the same main principle as DRT: serving trips based on explicit
requests. In this overview, we consider AMOD, when ride-sharing is part of the service,
as a DRT concept.

One popular research direction has been to study how low-capacity door-to-door DRT
vehicles can replace private cars in urban environments. One study shows that in urban
areas, a DRT vehicle without ride-sharing can replace up to nine private cars [19]. A study
in Zurich and surrounding suburban areas shows that a stop-to-stop DRT service type can
replace all private car trips, requiring a fleet size of only 3.7% of the number of private cars
that are replaced. Additionally, DRT vehicles produce similar or up to 10% lower VKT. DRT
(in a form of shared taxi) may improve waiting times for travellers and provide cheaper
service than traditional taxis [20]. Dandl et al. [21] simulated DRT shuttles in a suburban
area for employees of a large company. Their simulations show that DRT, in this scenario,
can achieve a high degree of ride-share and fast travel times, which are only slightly worse
than private cars. Additionally, such shuttles may reduce the total CO2 emissions by up
to 15–26%.

Other researchers explore the effects of replacing regular PT with DRT. In a small-scale
simulation experiment comparing DRT and PT under the same conditions (demand and
number of vehicles), DRT could serve more travellers than PT with the selected level of the
quality of service (QoS) [22]. In contrast, Leich and Bischoff [23] estimate that replacing
PT with autonomous DRT in a suburban area results in slightly worse travel times as
well as in higher costs. A simulation study of light rail replacement by DRT reveals the
trade-offs between the size of the DRT fleet and the resulting QoS and shows that almost
four times more DRT vehicles are required [24]. In a simulation replacing all PT in a city
with DRT, about two-thirds of the PT users switched to walking or cycling, while DRT
attracted almost half of the car users and one-third of the bicycle users [19]. Altogether,
DRT attracted slightly more trips than PT, significantly reducing car share. Oke et al. [25]
show that DRT could absorb not only the PT demand but also some portion of car and
carpool demand.

Rather than replacing regular PT, DRT can function as an additional travel mode
complementing existing services. According to Segui-Gasco et al. [26], different configura-
tions of DRT (e.g., cheap and accessible DRT for the general public, a shared taxi service
with higher costs and smaller vehicles, or a balanced option in between) affect how many
travellers shift their travel modes from buses and private cars to DRT. Their study reports,
on the one hand, reduced trip time compared to buses and high mode shift from bus to DRT
and, on the other hand, an increase of total VKT for all the studied DRT configurations.

DRT can also be seen as an expansion of regular PT. A common approach is to use DRT
as a first-mile connector. Introducing such a service in suburban areas has the potential to
attract up to 43% of car users [27]. The integration of DRT into PT increases the total share
of PT compared to the case of DRT as a competing or replacement service [25,28].

Many researchers have compared the performance of regular PT and DRT using
an analytical approach. One common approach is to define a rectangular service area
where DRT serves either the first or the last mile connecting the area to a PT hub in the
border region [29,30]. Another approach is where DRT operates between two terminals in
a corridor fashion [31–34]. In both approaches, DRT travels with a certain headway on a
central path, deviating from it to pick up new travellers at their origin points. An analysis
of generalised costs (comprising operational costs and user costs) reveals that there is
an optimal headway for DRT [35]. The optimal costs depend on the demand density,
and most of the studies agree that regular PT is more efficient at high-demand levels
(typically more than 10–50 trips/km2/h), whereas flexible services are more efficient with
lower demand [29–34].



Sustainability 2022, 14, 3252 4 of 21

DRT is a flexible service where service quality can vary significantly. To our knowl-
edge, the importance of this aspect on operational characteristics is not commonly studied.
Service quality is often set to a specific level, and a particular scenario is studied (see
e.g., [20,22,36]). In many studies, DRT service is configured to provide as good a QoS as pos-
sible, and the resulting service quality is the output of the simulation [19,25,28,37]. Fewer
researchers investigate how different QoS levels affect the system performance [26,27,38].
Some researchers have proposed simulation frameworks to find an equilibrium of supply
and demand [39] or to optimise service parameters [40].

The role of PT in reducing CO2 emissions from transport because of shared use is
widely accepted. Most research focuses on the development of cleaner engines for vehicles
and on incentives for the mode switch from private cars to PT (e.g., [41]). The optimisation
of PT itself for reducing emissions has also become a topic of discussion [42–45]. Studies
show that DRT systems could help with emission reduction, especially in the areas with
low demand [5,46]. More literature on emissions can be found in the related concept of
shared autonomous vehicles (e.g., [47,48]). However, such systems are typically assumed to
work in a taxi-like manner without ride-sharing. The impact of DRT systems on emissions
is rarely analysed. Specifically, there is a lack of studies investigating emissions caused by
different DRT designs.

DRT services can be configured very differently, and the effectiveness of different DRT
designs needs to be evaluated. Numerous research efforts are dedicated to the analysis of
stand-alone DRT systems, whereas the integration of DRT into PT is relatively new and
requires additional studies. The integration is mostly studied with analytical methods that
use rather crude assumptions on the operational characteristics and demand. However,
the integration is rarely studied with simulation, which allows for more flexible analyses of
potential scenarios. With the simulation study we present in this article, first, we add to the
understanding of the particular understudied service design that combines the replacement
of buses with DRT as well as the integration of DRT into the PT system. Second, we add to
the under-researched aspect of DRT, CO2 emissions. Third, we analyse how different levels
of service quality affect system performance.

3. Methods

To investigate the efficiency of DRT, we conducted a simulation study. For this study,
we made use of an individual-based model in which travellers dynamically request DRT
trips, which triggers a re-optimisation of vehicle schedules for the DRT service.

It is possible to approximate the results of the service work (QoS for travellers, VKT,
and operational costs) on a macro level (e.g., [49]), but this requires a number of coarse
assumptions on how both service and demand operate. Microsimulation is an alternative
approach allowing for a more precise estimation of vehicle costs and QoS for travellers.
Such precision has its price in the form of high computational requirements, which requires
researchers to utilise heuristics to solve vehicle routing problems.

We argue that for a DRT service that positions itself as individualised PT, it is important
to understand and adapt to customer needs (see further discussion in [15]). Additionally,
for a service type that has historically shown a large degree of failed trials [2], it is im-
portant to fine-tune the service configuration for the specific niche in the area. The major
contribution of this study is the comparison of operational costs and CO2 emissions of DRT
and fixed bus services. To achieve this, we set up the DRT service in a way that provides
travellers with a similar QoS as with fixed buses. To ensure that the QoS is similar, we
resorted to microsimulation as the main method. Microsimulation allows accounting for
the large headways between bus departures, which is particularly important for the trips
with a transfer between DRT and regular PT.

We built a simulator based on open-source tools. We used the multi-modal travel
planner OpenTripPlanner (OTP, opentripplanner.org, accessed on 1 March 2022) to sched-
ule trips with PT and used jsprit (jsprit.github.io, accessed on 1 March 2022), a library for
solving vehicle routing problems (VRP), to route DRT vehicles. Additionally, we utilised

opentripplanner.org
jsprit.github.io
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OpenSourceRoutingMachine (OSRM, project-osrm.org, accessed on 1 March 2022) to pre-
pare data for the VRP solver. We connected these tools to a custom event-driven simulator
(github.com/serdyt/DRTsim/tree/lolland_dep_tw, accessed on 1 March 2022) that imple-
ments traveller and service models and orchestrates the rest of the tools. More details can
be found in [15].

In the rest of this section, we describe the four main sub-models in our study: a
traveller model dealing with the expected QoS for travellers (in Section 3.1), a service model
optimising vehicle routes (in Section 3.2), and cost and CO2 emission models, which are
applied in the post-processing of the simulation (in Sections 3.3 and 3.4).

3.1. Traveller Model

In the simulation experiments presented in this article, we simulated only the current
PT travellers of the study area. Travellers behave according to the fixed behaviour of plan,
choose, and execute. We assumed that travellers actively plan their trips and perform a
mode choice according to available alternatives (disregarding previous experiences with a
service that the travellers could potentially have).

In our simulation, travellers plan their trips one hour prior to the expected departure
time. This helped us preserve the dynamic nature of the inflow of trip requests to the DRT
system. The DRT service and our simulation have no problem processing real-time trip
requests (pick up as soon as possible), but this introduces more strict QoS requirements
to DRT (less flexibility to route DRT vehicles). We assumed that in the case of fixed PT
(especially in rural areas with long headways), travellers have to plan their trips in advance;
thus, we found it fair to add this restriction explicitly to DRT.

When choosing between available travel alternatives, travellers use a simple rule-
based model capturing only two of the main aspects of the QoS: trip time and deviation
from the desired departure time. While more sophisticated (and realistic) mode choice
models have been developed for DRT (e.g., [50]), our simple model allowed us to focus on
QoS levels and specify a fixed level of demand, ignoring problems of demand elasticity
and mode switch.

The mode choice model is depicted in Figure 1. Given the desired departure time,
a traveller accepts a DRT trip that starts within the time window and lasts no longer than
a direct trip time by car multiplied by a direct time multiplier (DTM). The time window
of departure is constructed to be symmetric around desired departure times. The model
is applied for DRT trips, and the values for parameters are extracted from the PT trip
alternative. In the main part of this study, the time window is the same for all travellers
and equals one hour. The size of the time window is based on the headway between
bus departures on most of the regular bus lines in the area. The maximum trip duration
is individual and equals to the duration of the fastest PT trip the person could get that
starts within the time window. In other words, a DRT trip is allowed to be as long as an
alternative PT trip (before PT removal). This way, we set up the quality of service for DRT
to be close to PT.

Time

Desired
departure time

Time window to start a trip
TWC=1h

Maximum trip duration =
direct time × DTM

Figure 1. Illustration of the time window model for trip acceptance.

3.2. Service Model

The DRT service in our model knows exactly the model for trip acceptance of travellers.
The service has a hard constraint to provide a trip that satisfies the traveller’s restriction.

project-osrm.org
github.com/serdyt/DRTsim/tree/lolland_dep_tw
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If no such trip could be scheduled, the trip is considered unrouteable, and no DRT alternative
is provided to the traveller.

During the simulation, trip requests arrive sequentially to the system. Each time a new
request arrives, the schedule of already scheduled vehicles can be modified. We utilised a
simple insertion heuristic to reduce the computational load. The algorithm preserves the
order of pick-up and deliveries of already scheduled travellers when a new trip should
be inserted. The timing of the trips can change, but the VRP solver ensures that the time
window of departure and maximum trip duration constraints of all trips in the schedule are
satisfied. The vehicle routing algorithm optimises a generalised cost consisting of driving
time for vehicles, a penalty for activating a new vehicle, and a penalty for not serving a
request. The penalty for not serving a request is much larger than the penalty for activating
a new vehicle, which in turn is much larger than the driving cost. This way, the algorithm
prioritises the activation of as few vehicles as needed to serve all the trip requests.

3.3. Operational Costs

To estimate the cost of both bus and DRT services, we used three cost models obtained
from different sources. One cost model is based on contracts procured by the Swedish public
transport agency Västtrafik. Another is based on the costs of special services provided by
the Swedish public transport agency Skånetrafiken. The third cost model is adapted from
Estrada et al. [51], where vehicle costs for large buses were obtained based on data of a bus
operator in Barcelona, Spain. Table 1 shows the models.

Table 1. Cost models.

Model 1 Model 2 Model 3

Temporal Cost,
EUR/h

Distance Cost,
EUR/km

Vehicle Cost,
EUR/day

Temporal Cost,
EUR/h

Distance Cost,
EUR/km

bus 112.9 — 57.1 52.2 1.5
DRT 34.5 1.95 9.4 43.3 0.3

The first model is based on the contract cost of a bus on rural lines. All costs are
recalculated from SEK to EUR according to the average conversion ratio of 0.094 in the
year 2020. The average cost is EUR 112.9 per hour which comprises all operational costs,
including driver salary, fuel costs, maintenance costs, and profit margin. In other words,
these are the costs of having a bus line for the regional budget (covered with public funds
and travellers’ fees). We extracted the operating time for buses from the timetables for buses
in our study area. The buses that operate only at the morning and afternoon peak time
were considered idle at the depot in the middle of the day and had zero cost at that time.

Based on similar data on PT contracts for the special service vehicles, we estimated
the average cost of operation to be EUR 34.5 per hour. We also assumed the costs of DRT
vehicles to be similar to the costs of special service vehicles, as they are typically minibuses,
which corresponds to the type of DRT vehicles used in this article. For the calculation of
the costs, we assumed that all DRT vehicles (the maximum number of vehicles utilised) are
available between 5 a.m. and 8 p.m. The full cost is applied for the time when a vehicle is
riding. When on-demand vehicles are on hold in a depot, a cost coefficient of 0.7 is applied.

The second cost model for DRT derives from the dataset on the cost of 89,000 special
transport trips that happened in November 2019 and November 2020 in the Scania region.
We used the cost of trips performed by special transport vehicles (non-light motor vehicles)
as an approximation of the cost for DRT. This model estimates the overall costs based on
the cost of EUR 1.95 per kilometre.

The third cost model for buses is adapted from [51]. We assumed an average lifetime
of 12 years for the vehicles and approximated the costs for eight-seat vehicles, assuming a
second-order polynomial trend. The total cost in this model is the sum of three components:
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fixed cost of owning a vehicle, temporal cost of riding a vehicle (includes the cost for
drivers), and distance-based costs.

3.4. Emission Model

To compare the environmental impact of regular PT and DRT, we utilised The Hand-
book of Emission Factors for Road Transport (HBEFA) tool [52], the part that is openly
available online (hbefa.net, accessed on 1 March 2022). The CO2 emissions depend on a
large variety of factors (engine type, fuel type, vehicle mass, road gradient, and driving
pattern). The HBEFA tool provides emission factors for different countries, based on data
about vehicle type and road conditions received from local transport administrations. We
took the emission factors for Sweden. The HBEFA does not have a dedicated vehicle group
for regional buses or minibuses. We assumed that the emission factor for regional buses
is a mean value between city buses and coach buses (long-distance buses) as the vehicle
type and driving pattern of regional buses is somewhat in-between. For DRT, we used the
category of light-duty vehicles, which includes minivans and minibuses. The emission
factors are shown in Table 2 and are limited to CO2 emission factors for diesel-powered
vehicles and energy consumption for electric vehicles. In the analysis of our experiments,
we assume fleets of either 100% combustion engine vehicles or 100% electric vehicles.

Table 2. Emission models.

Diesel Engine
CO2 Emissions, g/km

Electric Engine
MJ/km

bus 807 4.27
DRT 221 0.88

4. Area, Data, and Data Processing

We studied the western part of the municipality of Lolland that is situated on the
western part of the island Lolland in Denmark (see Figure 2a). The municipality had approx-
imately 40,500 inhabitants in the year 2021 (da.wikipedia.org/wiki/Lolland_Kommune,
accessed on 1 March 2022). It has a well-developed public transport network with over
20 local bus lines, and a railroad connects it with the eastern islands Falster and Zealand.

The interest in DRT within the region is raised by the PT actors, including the local
PT operator Movia, which provided the main dataset for the study. We consider the target
area of Lolland representative of a rural Danish area. Additionally, the location of the
area on a peninsula is convenient for simulation and analysis as the number of options for
cross-border trips is limited.

The study area is highlighted in Figure 2b by the black border, and it comprises about
half of the Lolland municipality. We selected this area to reduce the computational load
for simulation (by limiting the number of simulated trips) and to reduce the amount of
data for manual processing. The red lines depict the bus lines that were replaced by DRT,
while the yellow lines are the untouched bus lines. Note that four bus lines are crossing the
border of the study area. Those lines were partially disabled when replaced by DRT.

Input Data and Data Processing

In this study, we modelled only the existing public transport users. The travel dataset
is provided by the PT operator in the region Movia (moviatrafik.dk, accessed on 1 March
2022) and comprises an origin–destination (OD) matrix of PT trips having their origin or
destination within Lolland municipality. The trips start and finish on PT stops (i.e., the
access and egress part of the trips is not included). The data is from the pre-pandemic
situation of November 2019. The OD matrix is computed by Movia and is mostly based
on ticketing data. The popular Danish travel card Rejsekort requires travellers to check-in
and out at their origin and destination, which makes the estimation of travel flows very
precise. However, in some cases, mostly on small bus lines, the only available data are

hbefa.net
da.wikipedia.org/wiki/Lolland_Kommune
moviatrafik.dk
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the recordings of bus drivers. Due to the low precision, we have excluded such bus lines
from the simulation and subsequent analysis when comparing scenarios with and without
bus lines. This concerns lines 771, 772, 773, 774, 791, and 792. According to the dataset,
these lines serve around 20 travellers a day at 29 departures. This data does not allow us to
realistically estimate the replacement of these lines with DRT, although such lines seem
well suited for the replacement.

The input dataset includes an average number of trips between the pairs of bus stops
in one-hour time bins. To generate the demand for a one-day simulation, we sampled
4525 trips, which is the expected value of the total number of trips. The probability of an
OD pair and time bin to a trip is proportional to the flow size between the corresponding
stops within the specific time bin.

(a) (b)

Figure 2. (a) The location of Lolland island (image obtained from https://commons.wikimedia.org
(accessed on 1 March 2022) under Creative Commons Attribution 3.0 Unported license https://
creativecommons.org/licenses/by/3.0/ (accessed on 1 March 2022) ). (b) The study area (black
border) within Lolland municipality and the bus lines (red) replaced by DRT.

In the next step, we generated the desired departure time for a person (with a preci-
sion of one second) within the time bin according to the extrapolated distribution of trip
departure shown in Figure 3a. This allowed us to compare between waiting times for
different services. Setting the desired departure time to the beginning of the respective
hour could give an unrealistic advantage to DRT service. A sampled time distribution is
shown in Figure 3b.

Figure 3c shows the OD matrix for the time bin between 7 a.m. and 8 a.m. Each blue
line represents an origin–destination pair, and the weight of the lines is proportional to
the number of trips. The main attraction points are the main towns: Nakskov, Maribo,
Rødby, Horslunde, and Nykøbing Falster—the largest city of the neighbouring municipality.
The prevalence of the few major OD pairs is also seen in Figure 3d, which shows the
distribution of direct trip distances in the input dataset. The peak at the 10–15 km bin
corresponds to the distance from Nakskov to a big portion of the local villages; the peak
at 25–30 km bin corresponds to the trips Nakskov–Maribo; the peak at 50–55 km bin
corresponds to the trips Nakskov–Nykøbing Falster.

The spatial trip pattern within the study area can be described as radial, where most of
the trips are performed to or from Nakskov. These trips can be performed by DRT directly.
We use the term direct trips for the trips within the study area and term long-distance trips to
highlight the trips crossing the border of the study area and requiring a transfer between
DRT and PT. A large proportion of long-distance trips is captured by the rail line and is
not affected by the simulated switch of buses to DRT. Other long-distance trips require a
transfer from DRT to PT.

https://commons.wikimedia.org
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/
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Figure 3. (a) Distribution of trips over time in the input dataset (blue bars) and linear interpolation
of them (yellow line). (b) A sampled desired departure time used in the simulation. (c) The spatial
distribution of trips for time bin 07:00 (background image obtained from OpenStreetMap, licensed
under the Open Database License https://opendatacommons.org/licenses/odbl/ (accessed on 1
March 2022) ). (d) The distribution of trip distances.

We obtained public transport timetables for November 2019, in the form of Gen-
eral Transit Feed Specification (GTFS, developers.google.com/transit/gtfs, accessed on 1
March 2022) files, through Movia. The road network was obtained from OpenStreetMaps
(openstreetmap.org, accessed on 1 March 2022). The route planner excluded the aforemen-
tioned PT lines with unavailable data. When lines need to be removed partially, the trip
planner excluded stops related to the part of the line that needs to be removed. This way,
the trip planner can still route a trip with those bus lines, but only the part of the route
where stops are available. We did not alter the timetables of the partially removed bus lines.

5. Simulation Scenarios and Results

This section describes the scenarios of simulation experiments and their results. In all
the scenarios, we removed all the fixed bus lines from the study area and replaced them
with a free-floating DRT fleet consisting of eight-seat minibuses. All local lines have been
removed completely, and the lines passing through the borders of the study area were
removed partially (namely bus lines 725, 780, 717, and 716). We allocated specific bus
stops—namely, the closest bus stops to the study area border—as transfer zones between
DRT and the partially removed bus lines, while any railway station was a valid transfer
point. We examined operational characteristics (VKT, number of vehicles, operational cost,
and emissions) and traveller experience (detour and deviation from the desired departure
time) for buses and DRT.

We simulated three scenarios. In all the scenarios, we assumed that the demand for
DRT is the same as the demand for buses. In the baseline scenario, we analysed in depth
how the existing demand is served by either DRT or PT. In the second scenario, we adjusted
the demand level between 50% and 150% of the baseline demand and analysed how the
main performance indicators depend on the demand level. In the third scenario, we looked

https://opendatacommons.org/licenses/odbl/
developers.google.com/transit/gtfs
openstreetmap.org
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only at DRT and adjusted the parameters of the traveller model to see whether DRT can
handle trips with a very high QoS level and how much can be gained from relaxing QoS.

To account for the day-to-day variations, we generated five input demand files and
provided the average results from five simulation runs. Simulations with different demand
samples produced a very close result, which can be seen in the results in Section 5.1.
The DRT service had access to as many vehicles as needed, but we only considered actually
utilised vehicles in the calculation of costs. DRT was configured to serve the trips within
the study area as a trip without transfers, while long-distance trips were served by the
combination of DRT and regular PT.

5.1. Simulation Scenario 1: Remove All Local Buses

In this scenario, we estimated how DRT can replace the bus lines in the study area.
The goal of this experiment is to put PT and DRT in the same conditions. To implement this,
for each trip request, we found the fastest trip on PT according to the GTFS and measured
the trip time, which was applied as a maximum trip duration constraint when routing
DRT vehicles. In other words, after DRT replaces buses, the trip duration for the travellers
can become better or remain the same, but it cannot become worse. For the time window
size, we used one hour (±30 min from the desired departure time) for the base case, as this
is the resolution of the input data and the frequency of the most fixed bus lines in the
area. However, in some cases, the delay between departures is more than an hour. If the
desired departure time of a trip was not in the time window, we considered that such a
trip could not be satisfied. This is mostly relevant to regular PT because DRT is allowed to
activate additional vehicles when active vehicles cannot pick up a traveller. For example,
unsatisfied trips could appear at the first and last departures of a bus on a line. Some
long-distance DRT + PT trips could not be satisfied due to long transfers. When a trip could
not be satisfied, we assumed that it was either executed by a private car or not executed at
all, so we did not consider such travellers in the further analysis. The number of unsatisfied
trips was on average 0.8% of all the trips in the baseline case.

The simulation results in Table 3 show the mean mode split for five simulation runs
with different samples of demand. We may see that DRT can satisfy most of the demand.
The few unsatisfied trips are attributed to overnight long-distance trips, which the simula-
tion cannot route, or a few occasions of too early trips, when the demand is specified for
the hour without a PT departure. Even when all of the buses are removed, about half of all
trips are still performed by the railway connecting the two largest towns. These people are
not given the option to ride with DRT.

Table 3. Modal split in the base case simulation.

Total Trips Unsatisfied Trips PT Trips DRT Trips Local DRT + PT Trips

2562 9.6 1278.4 1020 229

The comparison between DRT and buses in Table 4 shows that DRT requires 28.6 8-seat
vehicles on average, which is 79% more than the 16 buses used nowadays. (The number of
buses is estimated based on timetables.) DRT vehicles produce more than twice more VKT.
However, the CO2 emissions (and energy consumption for electric vehicles) for DRT are
lower because DRT vehicles are smaller. Cost models 1 and 3 (see Table 1) estimate lower
costs for DRT than for buses. This is due to the drastic difference in temporal costs in model
1 and the large difference in distance-based costs in model 3. However, we did not simulate
drivers and breaks that drivers are legally required to have, but it is included in model
1. Adding the break time for drivers (or switching drivers at some stops) would increase
the total driving time, VKT, and the number of required vehicles. Thus, such a low cost
is likely an underestimation. Cost model 2 gives the highest cost for DRT; however, this
value may be an overestimation as the model is based on a service with a demand density
approximately five times lower than in the study area. A higher demand density would
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allow the routing algorithms to improve the occupancy on DRT vehicles and thus reduce
the cost. Additionally, cost model 1 does not account for the possibility of contracting a
varying number of vehicles during the day (e.g., 30 vehicles during the peak time and 15
at the off-peak time), which would reduce the costs. The standard deviation (STD) row
in Table 4 shows that the difference is rather low between simulation runs with different
input samples.

Table 4. Main results of the base case simulation.

# Vehicles VKT Service
Hours

Cost/Trip,
EUR

Model 1

Cost/Trip,
EUR

Model 2

Cost/Trip,
EUR

Model 3

CO2
Emissions, t Energy GJ

bus 16 3953 130 11.7 - 10.5 3.19 16.9
DRT 28.6 9733 247 10.3 15.1 10.6 2.05 8.6

STD DRT 2.1 408 8.7 0.6 0.5 0.4 0.1 0.4

Figure 4 shows that buses are more efficient in utilising the vehicles. DRT vehicles
produce more empty running time, and riding with only one traveller is more common
(see Figure 4a,b). We did not model buses running empty to or from the depot; for DRT,
the amount of time spent on this is about 1% of the total active time. Buses do utilise their
larger capacity, which is unlimited in simulation, but there are 17 min of ride time with
more than 30 travellers on board (out of 130 bus ride hours in total). Figure 4c,d show
that buses reach the efficiency of 12 travellers per vehicle hour during the morning rush
hour, while DRT reaches the value of 4 travellers per vehicle hour. Additionally, occupancy
on bus lines is slightly underestimated because we did not simulate the travellers on the
partially removed bus lines that could be using the lines in the parts outside the study area.
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Figure 4. Ride-sharing ratio in (a) buses and (b) DRT. Travellers per hour served by (c) buses and
(d) by DRT.

Figure 5 shows the deviation from the desired waiting time experienced by travellers.
The desired departure time was distributed within the respective departure hours, and the
time interval of ±30 around the desired departure time defines the time window when a
trip can start. This enabled us to observe waiting or early departure time with relation to
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the desired departure time in the middle (the 30 min mark). The distribution of waiting
time for buses in Figure 5a is close to uniform with a slight skew toward late departures.
The distribution for DRT trips in Figure 5b has a prominent peak for very early departures.
Unfortunately, the routing algorithm does not allow us to specify a soft penalty for the
deviation from the desired departure time, only a hard constraint of the departure being
within the time window. The algorithm routes early departures when possible. With that
in mind, a more advanced algorithm could have transferred the peak to the middle of
the chart (i.e., travellers could receive a trip when they actually want to go). There is a
potential for DRT to improve on this aspect of QoS over the conventional PT. However, this
hypothesis needs to be confirmed. On the other hand, there is a large peak in the number
of travellers getting the latest possible departure time. This helps the system to spread out
the load during peak hours. This can be observed in Figure 4c,d: the 07:00 peak is very
prominent for buses, but it is more spread out to 07:00–08:00 for DRT.
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Figure 5. Distribution of start time of trips on (a) buses and (b) DRT.

5.2. Simulation Scenario 2: Scaled Demand

To check the efficiency of DRT, we performed a second set of experiments with the
demand scaled between 50% and 150% from the original demand size. We assumed buses
would follow the same schedule. As traveller capacity in buses is large and often under-
utilised, they can absorb additional demand without increasing VKT and CO2 emissions,
with an exception for the 150% demand case, when two extra buses were added to one
route in the morning peak due to the demand of more than 60 trips per departure. This
can be seen in Figure 6b, but it does not visibly affect VKT and the other results. In the
50% demand scenario, the occupancy level on buses becomes very low on most of the lines
(down to 1–5 travellers per departure), and on average, 13% of all departures per day serve
zero travellers. However, it is impossible to reduce the required number of buses or cancel
some departures without declining some travellers a trip due to day-to-day variability. DRT
handles the lower demand more efficiently by reducing the number of utilised vehicles,
as seen in Figure 6b. The number of DRT vehicles grows approximately linearly with the
demand. Together with the number of vehicles grows the VKT of DRT. It grows linearly
at almost the same rate. The required number of vehicles in the scenario with 50% of the
demand is close for regular buses and DRT (16 and 18 vehicles, respectively). The VKT
could be projected to equalise between the services at the demand level of 25%.

Despite the larger number of vehicles and higher VKT value in all the simulated
scenarios, DRT can be significantly more cost-efficient than regular buses according to
Figure 6a. This result can be explained by the cost models 1 and 3, which show that DRT
vehicles are significantly cheaper to operate. We can observe that additional demand
improves the efficiency of both services. DRT is cheaper to operate when demand is low,
and the service cost decreases linearly with the increase of the demand. However, regular
PT scales much better with the growing demand and becomes more cost efficient than DRT
with higher demand levels, although the reduction of cost begins to diminish with the
additional demand. The cost models 1 and 3 produce very close results for both service
types, while cost model 2 predicts roughly 40% higher cost of DRT compared to the other
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models. The point at which the operational costs of DRT and regular buses are equal falls
into the region 75–125% of the baseline demand (900–1380 travellers).
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Figure 6. Simulation results for different demand levels: (a) cost per trip, (b) number of vehicles
(left axis) and vehicle kilometres traveller (right axis), and (c) CO2 emissions of vehicles with diesel
engines (left axis) and energy emission of vehicles with electric engines (right axis).

The results presented in Figure 6a show that DRT could be more cost efficient than
regular buses in situations with low demand levels, but when demand level rises, regular
PT takes the lead. This is consistent with the literature, which analytically estimates the
point when both systems have the same efficiency to be around 10–50 trips/km2/h [31–34].
In our study, the initial demand level (100%) corresponds to 16.6 travellers/km2/h, if we
assume a 1 km2 of service area around the bus stops. The cost efficiencies of DRT and
regular buses are the same in the range of the demand of 12.4–21 trips/km2/h, according
to Figure 6a.

Although DRT produces significantly more vehicle kilometres, Figure 6c shows that
there is a significant saving in emissions or energy consumption when using DRT. CO2
emissions and energy consumption scale linearly from VKT according to the emission
model. Electrification increases the savings that DRT could bring compared to buses.
Electrical DRT vehicles save more energy (compare the gap between CO2 emissions and
energy consumption of both services), and energy consumption scales slightly better than
CO2 emissions. Similarly to the operational costs, the reduction in emissions happens
because the DRT service uses smaller vehicles, which produce more than three times less
CO2 and require less energy per kilometre.

5.3. Simulation Scenario 3: Service Quality Variations for DRT

The following experiments explored how different DRT QoS policies affect service
performance. We modified the parameters of the acceptance model for travellers together
with the routing restrictions of the DRT service. We considered only the travellers who have
chosen DRT or DRT + PT option in the baseline scenario (experiment 1). In this experiment,
we continued to assume that the DRT service knows exactly the travellers’ acceptance
thresholds and provides the trips that would satisfy them.

In the baseline experiment, the time window was fixed to one hour. In the first
part of this experiment, we modified the size of the time window between 15 min (i.e., a
time window of ±7.5 min around the desired departure time) and 1.5 h (i.e., ±45 min).
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The results presented in Figure 7a show that relaxing the time-window size allows the
system to improve the cost efficiency, which decreases almost linearly with the increase of
the time-window size. Additionally, Figure 7d indicates that the number of DRT vehicles
and their resultant VKT both start to reduce when the size of the time window is increased
to one hour. The CO2 emissions and the energy consumption decrease accordingly, as seen
in Figure 7b. When the time-window size is increased, the DRT system receives more
opportunities for route optimisation.
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Figure 7. Simulation results for the time-window size between 15 min and 1.5 h: (a) cost per trip,
(b) CO2 emissions for vehicles with diesel engines (left axis) and energy consumption for vehicles
with electric engine (right axis), (c) number of trips on DRT, and (d) vehicle kilometres travelled (left
axis) and number of vehicles (right axis). For (b,d), the colour of axes corresponds to the colour of
line belonging to that axes.

Another factor affects the results when the size of the time window is lower than
one hour. Figure 7c shows that the DRT service has no issues with serving all the direct
trips within the service zone, even with the smallest time-window sizes. However, a large
number of long-distance trips could not be satisfied when the time window is reduced
below one hour: the number of trips goes down to 111 out of the potential 225 trips. Such
a large number of trips not served is explained by the low frequency of the transfer trip
outside of the service zone. That is, even if the DRT system can pick up travellers within a
short time window, there could be no connecting bus or train to finish the trip. The reduction
of demand balances out the reduction of efficiency due to decreased time-window size;
this flattens the charts in the region from 0.25 h to 0.75 h in Figure 7d. However, the cost
per trip in Figure 7a keeps steadily increasing when the size of the time window decreases
below 0.75 h.

The time-window size affects the DRT performance moderately. The increase of
time-window size by 300% from 0.5 h (we chose 0.5 h because the results do not show a
significant decrease in the number of DRT trips) to 1.5 h allows activating 4.8 less vehicles
on average (a decrease by 16%), decreasing the total VKT by 7% and decreasing costs by
8–16% (depending on the cost model).

The second parameter of the service quality we studied is the maximum allowed trip
duration that we could manage with the direct trip multiplier parameter (DTM). In the
baseline scenario, the maximum allowed trip time was individual for every trip. In this
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experiment, we defined the same trip QoS level for all the trips. Again, only the travellers
who used DRT in the baseline scenario are simulated for this experiment. We varied the
DTM between 1.1 and 1.9 (the trip is allowed to be longer than a direct trip by a car by
10–90%), while the time window size is fixed to 1 h. The results concerning the effects
of varying DTM depicted in Figure 8 are similar to those of varying time-window size in
Figure 7.

Figure 8c shows that DRT adapts well even to the strongest restrictions to the allowed
detour and serves all the local trips in the area. However, a large proportion (46%) of
long-distance trips requiring a transfer between DRT and PT could not be served with
the target service quality. This is mainly explained by the slower average riding speed of
regular buses. Even if DRT can provide a fast connection for a part of a trip, the target trip
time for the whole trip is often not achievable due to slower moving buses. Another issue
is the transfer time when the long-distance trip requires multiple transfers. DRT is capable
of synchronising delivery time with the departure time of a bus or a train, but scheduled
lines can synchronise only a limited number of departures.

The cost per trip shown in Figure 8a decreases when the DTM increases. All cost
models estimate that the increase of DTM beyond 1.5 brings a much lower improvement
of costs than the increase of DTM between 1.1 and 1.5. Figure 8d also shows that the
system is unable to utilise DTM values larger than 1.5 to reduce the number of active
vehicles. However, there are improvements in VKT and corresponding improvements in
CO2 emission or energy consumption reduction (see Figure 8b).

Changes in the maximum allowed trip duration have a similar impact on the service
efficiency as the time-window size. The change of DTM from 1.3 to 1.9 (300% increase of
allowed detour from 0.3 to 0.9) causes a reduction in costs by 8–13%, VKT by 7%, emissions
by 8%, and the required number of vehicles by 12%.
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Figure 8. Simulation results for the direct time multiplier size between 1.1 min and 1.9 h: (a) cost
per trip, (b) CO2 emissions for vehicles with diesel engines (left axis) and energy consumption for
vehicles with electric engine (right axis), (c) number of trips on DRT, and (d) vehicle kilometres
travelled (left axis) and number of vehicles (right axis).

6. Discussion and Limitations

The simulations show that replacing PT with DRT has the potential to reduce costs
and CO2 emissions. However, it should be noted that accurately estimating the actual costs
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of on-demand service is challenging. For instance, drivers’ salaries could be different due
to additional responsibilities, and fixed costs of vehicles could be allocated differently in
case the vehicles can be utilised in a different service during the off-peak time (e.g., as
a taxi or for special service trips). Additionally, our cost models are based on data from
different countries with different workforce costs, policies, supply, demand, and PT network
structures. Hence, the values in our study are only approximations of the actual costs.

The main assumption we used in this study is that the demand does not change when
buses are replaced with DRT. In practice, the demand may change significantly when DRT
is introduced, especially when DRT is replacing bus lines [8]. Analysing the potential
change in demand is not the goal of this article; rather, its goal is to estimate the DRT
service efficiency in a somewhat realistic, but still hypothetical, environment. We organised
DRT in a way that the trip quality (i.e., when the trip starts and how long the trip is) stays
approximately the same. We argue that this would ensure the traveller’s experience and,
consequently, the demand stay the same. However, we had limitations in the algorithms
for controlling the pick-up time of DRT within the allocated time window, as discussed
in Section 5.1. The resulting distributions of deviation from the desired departure time
differ significantly between DRT and PT. In general, the waiting time and service reliability
are crucial factors in service satisfaction [53,54] and for potential ridership [50,55]. In our
baseline experiment, travellers could perceive the day-to-day reliability of DRT to be lower
than the reliability of regular buses, as there is no guarantee that the trips would start at
the same time on different days. We argue that a time window of one hour allows for a fair
comparison of operational characteristics, but user satisfaction could be lower, negatively
affecting the demand. Another change in the service that would affect the demand is the
requirement to request trips in advance.

To make the comparison between DRT and buses, we transported travellers between
the existing bus stops. This type of DRT service is generally more efficient but does not
utilise the possibility of door-to-door trips. A door-to-door type of service could attract
new traveller groups, such as the elderly or young people, who may have problems with
long walking distances to bus stops. On the other hand, navigating through smaller streets
and overall longer detours would make a door-to-door type of service less cost-efficient
and make the service produce more VKT and CO2 emissions.

The models that we used have certain limitations in their applicability and some
components could be improved to achieve more precise results. One limitation is that
the traveller model does not enable a realistic estimation of the demand for PT or DRT
under particular circumstances. A rule-based model, taking into account only waiting and
travel time, is too simplistic to realistically predict a modal split. A probabilistic mode
choice model could be used for this purpose, as demonstrated in [50], for example. Another
component affecting the precision of the results is the lack of a model for drivers. In our
simulation, we assumed DRT vehicles to be driven without the need for breaks or returns to
a depot for a change of drivers. This leads to an overestimation of the DRT service efficiency.
In the future, when automated vehicles are fully established, this issue in our model would
be automatically resolved as drivers would not be required. In addition, the automation
of vehicles would significantly change the costs, as drivers are a great portion of the total
costs of transport today. Bosch et al. [56] show that smaller vehicles benefit more from
the shift towards autonomous vehicles. Thus, DRT can become more cost efficient for
higher demand levels than today. Additionally, we utilised a common insertion heuristic
for routing DRT vehicles, which could be improved. Allowing the algorithm to switch
travellers between vehicles or incorporating other state-of-the-art features like demand
forecasting and fleet re-balancing could help to further improve DRT efficiency.

When we modified the demand, we assumed that bus schedules are unchanged.
A common practice, in reality, is to decrease bus frequency to consolidate the demand and
save costs when the demand level is low. On the one hand, optimising regular buses for low
demand would lead to a reduction of VKT and CO2 emissions, a consolidation of demand,
and consequently a higher utilisation of buses as well as a reduction of costs per trip. On the
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other hand, increasing the headway between buses could affect the demand negatively.
When demand increases, the frequency of buses is normally increased to accommodate
more travellers, which would lead to an increase in both costs and CO2 emissions for
regular PT. However, there is an optimal range in the headway of buses that minimises a
generalised cost (or maximises profits), as can be seen in [57,58], for example.

The data that we based our study on has overall high quality according to its sources,
as the OD matrix is based on the good quality data from tap-in and tap-out automatic
data collection system. However, we had to exclude a few small bus lines without the
automatic data collection system from the simulation and analysis due to missing data on
the demand. Nevertheless, this does not affect the main finding: dependence of operational
characteristics from the demand density. The OD matrix that we used does not have any
information about individuals or the access or egress parts of the trips. Therefore, we limited
this study to a stop-to-stop type of DRT. The input OD matrix could be algorithmically
expanded (for example, by combining the OD matrix with geographical data on buildings
and their types) to study the efficiency of the door-to-door type of DRT.

Door-to-door types of DRT have long been in use in a form of special services. The ef-
ficiency of DRT for larger demand densities is important to evaluate. The findings in
this article enable PT actors to estimate in what areas DRT service can be economically
viable. An important finding of this work is that the demand level equalising operational
costs between DRT and PT is significantly lower than the demand density equalising the
environmental impact. The savings in CO2 emissions (or energy) by DRT could become
an increasingly important factor in the future both for decision-makers when planning
what type of service to initiate in a certain area and for travellers when choosing between
alternative travel modes.

In addition to the economic potential and environmental benefits we addressed in
this article, DRT systems have the potential to improve the accessibility to the population
groups that have problems using conventional PT. This has been historically shown through
their use in special services. Further evaluation is required of DRT services combining
general and special trips. Other situations when DRT could potentially be beneficial over
regular PT include the restrictions that we experienced during the COVID-19 pandemic.
DRT, by design, is a service with a predictable number of travellers in the vehicles, which
enables travel agencies to control crowdedness. Travel restrictions and recommendations
for teleworking decrease the demand, potentially making even densely populated areas into
areas with low demand and making DRT an attractive alternative in more geographical
areas. This shows the potential of DRT services, but the benefits and shortcomings of
different types of DRT in different conditions should be further evaluated.

7. Conclusions

The simulation results show that DRT can potentially replace buses in the simulated
area. A DRT service would require significantly more vehicles, which in turn would result
in significantly more vehicle kilometres. However, DRT is comparable with the costs of
regular PT. Additionally, despite high vehicle kilometres, CO2 emissions from DRT are
expected to be significantly lower due to lower emissions per kilometre for smaller DRT
vehicles. Electrification also benefits DRT more than buses: the gap in energy consumption
between DRT and buses is larger than the gap in CO2 emissions.

The analysis of different demand levels shows that DRT is significantly more cost
efficient and environmentally friendly in the scenarios with low demand. However, in the
scenarios with higher demand, regular buses become more cost efficient as large buses
can absorb the demand without significant changes in the schedule or number of vehicles.
Emission-wise, when demand increases, DRT vehicles produce proportionally more VKT
and CO2 emissions, while regular buses (if schedules are not modified) stay at the same
level of VKT and emissions. Electrification again benefits DRT as energy consumption
grows slightly slower than CO2 emissions. Importantly, the demand density at which DRT
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equalises in cost-efficiency with regular PT is significantly lower than the demand density
at which the environmental impact of DRT reaches the level of PT.

Our analysis shows that DRT can easily provide a service with a very high quality
(regarding pick-up and trip time), which gives the system the potential to attract more
demand or to prioritise certain trips requiring, for example, strict arrival time. Additionally,
DRT (especially the door-to-door variant) has the potential to improve accessibility to PT
for certain population groups. Kids who have to rely on their parents to deliver them to
sports training or the elderly who may have issues with walking long distances could
benefit from secure door-to-door trips.

The demand density at which DRT and regular PT have the same cost efficiency is
estimated to be in the range 12.4–21 trips/km2/h (75–125% of existing demand), which is in
line with the mathematical modelling results in the literature. Our study focused primarily
on operational costs, whereas most of the literature used generalised costs comprising both
operational costs and traveller costs [30,32–34]. However, as we set up our simulations
to equalise traveller costs for the DRT and regular PT, we could compare the numbers.
Additionally, we assumed that the schedules for regular PT do not change if demand
changes, whereas other studies optimised this, improving the cost efficiency of regular PT.
This makes the results of the simulations with scaled demand more favourable for DRT
than they would be in reality.

We have found that DRT can provide high service quality levels (in terms of time-
window size and allowed trip duration) for direct trips. However, it is hard to satisfy the
required trip quality for long-distance trips that require transfers between DRT and PT
(or multiple transfers on PT). The effects on efficiency metrics (cost, VKT, and number of
vehicles) caused by the quality of service parameters (trip duration and time window) are
similar in magnitude. The magnitude of these effects is not high. For example, changing
the service quality from almost taxi-like (allowed travel time is equal to 1.1 of direct trip
time) to rather slow trips almost twice as slow (allowed travel time is equal to 1.9 of direct
trip time) allows the DRT service to reduce the total operating costs by only about 11–13%.
We speculate that costs could be further reduced with higher demand levels and better
optimisation strategies.

The results of our simulations show that in rural areas with rather low and spread out
demand, DRT has the potential to improve cost efficiency and reduce the environmental
impact of PT. Moreover, DRT has the potential to improve accessibility for vulnerable
population groups, improving social equity of public transport.
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