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Abstract: Air quality forecasting has become an essential factor in facilitating sustainable develop-
ment worldwide. Several countries have implemented monitoring stations to collect air pollution
particle data and meteorological information using parameters such as hourly timespans. This
research focuses on unravelling a new framework for air quality prediction worldwide and features
Busan, South Korea as its model city. The paper proposes the application of an attention-based
convolutional BiLSTM autoencoder model. The proposed deep learning model has been trained on
a distributed framework, referred to data parallelism, to forecast the intensity of particle pollution
(PM2.5 and PM10). The algorithm automatically learns the intrinsic correlation among the particle
pollution in different locations. Each location’s meteorological and traffic data is extensively exploited
to improve the model’s performance. The model has been trained using air quality particle data and
car traffic information. The traffic information is obtained by a device which counts cars passing a
specific area through the YOLO algorithm, and then sends the data to a stacked deep autoencoder
to be encoded alongside the meteorological data before the final prediction. In addition, multiple
one-dimensional CNN layers are used to obtain the local spatial features jointly with a stacked
attention-based BiLSTM layer to figure out how air quality particles are correlated in space and time.
The evaluation of the new attention-based convolutional BiLSTM autoencoder model was derived
from data collected and retrieved from comprehensive experiments conducted in South Korea. The
results not only show that the framework outperforms the previous models both on short- and
long-term predictions but also indicate that traffic information can improve the accuracy of air quality
forecasting. For instance, during PM2.5 prediction, the proposed attention-based model obtained the
lowest MAE (5.02 and 22.59, respectively, for short-term and long-term prediction), RMSE (7.48 and
28.02) and SMAPE (17.98 and 39.81) among all the models, which indicates strong accuracy between
observed and predicted values. It was also found that the newly proposed model had the lowest
average training time compared to the baseline algorithms. Furthermore, the proposed framework
was successfully deployed in a cloud server in order to provide future air quality information in real
time and when needed.

Keywords: air quality forecasting; deep learning models; particle pollution; Busan metropolitan city;
data parallelism architecture

1. Introduction

Industrialization has brought us luxuries in life but, at the same time, many challenges
too. Air pollution is one of the biggest challenges we are facing in the world today.
The biggest contributors to air pollution each year are industries excreting dangerous
gases, rapid urbanization, exponential fuel vehicles, and fossil fuel consumption. Air
quality is getting worse. Several research reports have shown that higher atmosphere
contamination levels and harmful particles impact the population’s health, resulting in
respiratory infections, cardiovascular diseases, and lung cancer. Therefore, air pollution
research is critical and is consistently viewed as an important topic in environmental
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protection. There is a growing need to evaluate and forecast the quality of air because, if
people already know about air quality, they can take more precautions to prevent disease.
Predicting air quality is also critical for emergency management in any administration.
Projections aid the government in taking suitable contingency measures to minimize air
pollution, such as limiting motor vehicles and lowering emissions from highly polluting
companies. Unfortunately, predicting air quality is a difficult process, and improving
forecast accuracy and reducing training time are urgent and difficult problems that need to
be addressed in air pollution prevention.

Air quality prediction is a challenging task, but a lot of research has been done over the
last decade to predict and address air quality challenges. This study uses an experimental
setup to focus on two different forms, or models, of air quality forecasting. A knowledge-
based model is one type, whereas a data-driven model is another. Knowledge-based
paradigms focus on physical and chemical theories to demonstrate the transmission and
deflection of air pollution particles. Several proposed knowledge-based methods have
been studied in the literature survey to evaluate their impact. As expected, the successful
implementation of knowledge-based methods involves intensive knowledge and research
on environmental and atmospheric sciences. Using a knowledge-based model under varied
conditions can also cause the chemistry and transfer rules to alter, resulting in inaccurate
findings. Some scholars in the literature have employed statistical prediction approaches,
including Hidden Markov Models [1], ARIMA models [2], and the LASSO model [3],
to overcome this problem. The statistical prediction technique that uses mathematical
reasoning and regression analysis, on the other hand, has two fundamental drawbacks:
(1) a lack of precision and (2) time and energy consumption that is introduced from the
examination of long-term historical monitoring data. In conclusion, statistical forecasting
approaches [4] may accurately predict air quality, but a variety of air pollution factors make
accurate forecasting challenging.

The other approach for air quality prediction involves evaluating data and is known as
the data-driven model. Thanks to the big data analysis and artificial intelligence boom, this
approach has recently been examined and utilized in various forecasting frameworks. The
machine learning models used in this air quality prediction have been helpful to overcome
the statistical and numerical drawbacks of previous approaches. These algorithms have
established themselves as the backbone of air quality forecasting research. Machine learning
methods for estimating air quality have so far yielded positive results. Wang et al. [5]
proposed an online SVM model to forecast air pollution concentrations in downtown Hong
Kong. They ran a comparative experiment between standard SVM and online SVM. Results
showed that the online SVM proposed by Wang et al. [5] outperformed the standard SVM.
In research performed in 2018, the air quality prediction in Murcia was conducted to predict
ozone levels [6]. Researchers used different traditional machine learning models, out of
which the random forest model performed the best [6]. Four regression techniques were
used to predict air quality using machine learning algorithms, namely regression ANN,
MLP regression, decision trees, and random forest regression [7]. This comparative study
determined the best approach benchmark as processing time and data size. Random forest
regression outperformed other algorithms as it optimally predicted air quality with various
data sets, sizes, locations, and features.

Deep learning (DL) is commonly used in large data analysis to tackle a variety of
issues, such as object recognition [8,9], speech recognition [10], classification [11], and
prediction based on time series data [12]. The forecasted accuracy and efficiency of air
quality is enhanced with the use of deep learning approaches. With the help of deep
learning approaches [13], different air quality features can be obtained using the data-
driven method. A wide range of articles in the literature have generated positive outcomes
when employing deep learning approaches for air pollution prediction [14]. Zhao et al. [15]
introduced a deep learning model named LSTM-Fully Connected Neural Network to
predict the concentration level of particle pollution among specific monitoring stations over
48 h. Researchers used previous air quality data as well as meteorological and weather
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forecast data. Finally, a data collection of records from 36 air quality monitoring stations
was used to test the suggested approach. They made a comparative study between ANN
and LSTM models. Qi et al. [16] used the deep learning approach to propose a hybrid model
incorporating both graph CNN and LSTM networks (GC-LSTM) to model and predict
the spatial-temporal fluctuation of particles concentrations. The authors created historical
observations as spatiotemporal graph series, in which previous meteorological variables
and air quality attributes were defined as graph signals. To evaluate their proposed
system, they compared it with the existing methodologies and noticed that their proposed
model outperformed the conventional approaches. To forecast the air pollution levels,
Wen et al. [17] proposed a convolutional LSTM model. They combined a CNN model with
an LSTM network to extract the spatiotemporal features. Model performance was also
improved by incorporating meteorological and aerosol data. Authors in [18] conducted
another study in which they used Convolutional Neural Network and LSTM to predict the
air quality. The evaluation criteria included RMSE, MAE, agreement index, and Pearson
correlation coefficient.

An hourly concentration of air quality forecasting system was proposed by Bai et al. [19].
The authors used a deep-stacked autoencoding algorithm. It combined the seasonal air
quality analysis and feature learning to predict optimal air quality pollution. Their approach
was evaluated based on the real-time dataset from three monitoring stations located at
Beijing. A. Heydari et al. [20] proposed a hybrid model based on LSTM and multi-verse
optimization algorithm to predict the concentration level of pollutants SO2 and NO2. The
authors used a dataset collected from May to September 2019. The dataset included four
features: wind speed, temperature, SO2, and NO2. The result showed the superiority of
their approach against four other optimization-based algorithms. A multi-task learning
approach based on GRU was proposed in [21] to predict air pollution particles, namely
PM2.5, PM10, and NO2. The authors formalized the particles pollution forecasting into a
multitask architecture. They showed the superiority of their framework by comparing it
with seven different baselines. Xiao et al. [22] proposed a weighted LSTM model to predict
the concentration level of PM2.5. The authors first generated the historical PM2.5 time series
data by using a sites distances feature, wind condition, and pollution concentration as
input to a proposed MLP model. The experiment’s results demonstrated that the proposed
weighted LSTM model can improve the prediction of the PM2.5 particle.

Yue-Shan Chang et al. [23] proposed an aggregated LSTM model to predict the
PM2.5 particle. Their research used a dataset based on 17 attributes which was collected
from 2012 to 2015 by the Taiwan Environmental Protection Agency. In the experiments,
the authors predicted PM2.5 for the next 1–8 h. The results showed the superiority of the
proposed approach against SVR, GBT, and a standard LSTM model. Another RNN based
model was proposed in [24] to forecast the concentration level of PM10 at different future
time steps (6, 12, and 24 h). On the other hand, Guo et al. [25] proposed a feature engineer-
ing pipeline as well as a deep ensemble network algorithm which combines RNN, LSTM,
and GRU networks to predict the PM2.5 concentration of the next hour. During the data
analysis step, the authors used the Pearson correlation coefficient to evaluate the correlation
of PM2.5 with meteorological data, season data, and time stamp data. The experiments
showed that the proposed model surpassed the performance of the benchmark algorithms.

Attention mechanism is a learning concept which is based on mimicking human
behavior by directing attention toward particular events. This notion of imitating human
attention started a few years ago with computer vision studies [26,27]. The main goal was to
decrease the computational complexity of image processing while enhancing performance
by introducing an approach that would only focus on particular regions of images instead of
the entire input frame. However, the attention mechanism had been utilized more in depth
in the natural language processing field by Bahdanau et al. [28]. The authors in this article
proposed an attention-based approach for a machine translation model. Today, attention
mechanism has become an important part of deep learning models which is widely used in
object detection [29], medical image segmentation [30], time series forecasting [31], natural
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language processing [32], question-answering [33], and more [34–36]. Recently researchers
have started to use attention mechanism for air quality forecasting as well. For instance,
in [37], the authors used a variational autoencoder with multiple directed attention to
predict the concentration of ambient pollutants, namely NO2, O3, SO2, and CO. They
evaluated their model by using six different evaluation metrics and outperformed the
baseline models. Xiangyu et al. [38] proposed an LSTM-based attention algorithm for air
quality prediction. They evaluated their model on a Beijing dataset and then compared it
against six baseline algorithms: ARIMA, MFSVR, DeepST, LSTM, GC-LSTM, and ADAIN.
The presented results showed how their models outperformed the baselines based on
RMSE and R2 evaluation. In [39], the authors proposed a seq2seq attention-based model for
air quality forecasting. They replaced the RNN encoder with a pure attention mechanism
with position embeddings. The proposed model was implemented at two different stations
in Beijing city: the Dongsi and Olympic center monitoring stations. The experiments results
showed that the attention-based GRU seq2seq model was more effective at predicting the
particle PM2.5 for the next 24 h. In the same vein, in [40], a forecasting approach based
on dual LSTM was proposed. The authors first obtained each component by using a
seq2seq method. Furthermore, they implemented an attention-based LSTM network as a
multi-factor forecasting model which was afterwards connected to the seq2seq technology
by using an Xgboosting tree in order to make the final prediction. On the other hand,
Chen et al. [41] proposed an extreme value attention model based on an autoencoder
network for air pollution forecasting. In order to capture long-term dependencies within
the feature set, the authors used a temporal attention mechanism at the decoder level.

There have been numerous studies to address air quality forecasting with AI-based
models, especially with machine learning and deep learning algorithms. Table 1 provides
an overview of some previous approaches to solve the problem of air pollution forecasting.

Table 1. Literature review on air quality forecasting.

Reference Method Dataset Result

[1] Hidden Semi-Markov models
EPA Air Quality System

in Cook County, Illinois (PM2.5
and meteorological data, 2000–2001 period)

Prediction accuracy of 100% with solar
radiation, cloudiness,
temperature, pressure,

humidity, wind speed, dewpoint as
input parameters

[2] ARIMA, ARFIMA and
HW smoothing

AQI from Chandigarh including RSPM,
SPM, SO2, NO2

ARIMA (RMSE: 18.20; MAE: 15.69;
MAPE: 26.86)

HW (RMSE: 30.12; MAE: 25.52;
MAPE: 37.00)

[3]
LASSO regression combined to a
nonlinear autoregressive model
with exogenous inputs (NARX)

1-AQI data from a national monitoring
station in Nanjing (from 14 November 2018

to 11 June 2019) 2-Self data collection
containing 234,717 raws. The data includes

PM2.5, PM10, CO, NO2, SO2, O3.

R-square: PM2.5 (0.933); PM10 (0.918); CO
(0.899); NO2 (0.90); SO2 (0.941); O3 (0.936)
RMSE: PM2.5 (8.687); PM10 (13.208); CO

(0.156); NO2 (7.715); SO2 (4.874); O3 (12.190)
MAE: PM2.5 (5.951); PM10 (8.981); CO (0.098);
NO2 (4.806); SO2 (2.464); O3 (7.788) MAPE:

PM2.5 (0.146); PM10 (0.146); CO (0.095); NO2
(0.177); SO2 (0.131); O3 (0.397)

[4]

Multiple Linear Regression Model
(MLRM) Quantile Regression

Model (QRM)
Generalized Additive

Model (GAM)
Boosted Regression Trees 1way

and 2way

Air quality pollutants data from the city of
Makkah (PM10, CO, SO2, NO2, humidity,

temperature, wind speed)

Mean Bias Error (MBE): GAM (−39.9);
MLRM (−29.3); QRM (−1.4); BRT1 (−43.9);

BRT2 (−41.1)
MAE: GAM (74.3); MLRM (80.0); QRM

(61.0); BRT1 (75.6); BRT2 (80.4)
MAPE: GAM (33.1); MLRM (35.7); QRM

(27.2); BRT1 (33.7); BRT2 (35.8)
RMSE: GAM (120.1); MLRM (123.8); QRM

(95.6); BRT1 (121.1); BRT2 (125.6)

[5] Online SVM Air pollutant data in Hong Kong

Testing set
MAE: 19.2902
RMSE: 25.8993

WIA: 0.7880
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Table 1. Cont.

Reference Method Dataset Result

[6]

Bagging algorithm
Random Committee

Random Forest Random
Forest KNN

Air quality data in the region of Murcia (NO,
NO2, SO2, NOX, PM10, Benzeno, Toluene,

and Xileno)

Alcantarilla city results:
Random Forest

Year 2013: MAE (7.65); RMSE (10.20)
Year 2014: MAE (7.33); RMSE (9.77)

[7]

Decision tree regression
Random forest regression

Gradient boosting regression
ANN multi-layer

perceptron regression

The dataset consists of five cities of China
which include Guangzhou, Chengdu,

Beijing, Shanghai, and Shenyang

MLP Results:
Shanghai: MAE (13.84); RMSE (0.03)

Guangzhou: MAE (12.2); RMSE (0.045)
Chengdu: MAE (9.8); RMSE (0.108)

Shenyang: MAE (13.65); RMSE (0.062)
Beijing: MAE (21.79); RMSE (0.0806)

[14] Convolutional Bi-Directional
LSTM autoencoder model

Air quality data from South Korea (PM2.5,
PM10, NO2, CO, O3, SO2, temperature,

humidity, and wind speed)

PM2.5
MAE: 50.7
RMSE: 6.93

SMAPE:18.27
PM10

MAE: 5.83
RMSE: 7.22

SMAPE: 17.27

[15] LSTM-Fully
connected neural network

AQI dataset
with 36 monitoring stations in Beijing (from

1 May 2014 to 3 April 2015)

1–6 h Prediction:
MAE: 23.97
RMSE: 35.82

7–12 h:
MAE: 38.34
RMSE: 56.03

13–24 h:
MAE: 47.13
RMSE: 65.60

25–48 h:
MAE: 50.13
RMSE: 69.84

[16]
Hybrid learning framework based

on a Graph Convolutional
network and a LSTM model

Hourly scaled dataset of pollutants (PM2.5,
PM10 NO2, CO, O3, SO2), from 76 stations

over Beijing, Tianjin and Hebei.

+1 h prediction:
IA: 0.98

MAE: 13.72
RMSE: 22.41

+72 h prediction
IA: 0.92

MAE: 24.21
RMSE: 38.83

[17] A spatiotemporal convolutional
LSTM extended model

Hourly PM2.5 concentration data collected at
1233 air quality monitoring stations in

Beijing and the whole China from 1 January
2016 to 31 December 2017.

RMSE: 12.08
MAE: 5.82

MAPE: 17.09

[18] Deep neural network model that
integrates the CNN and LSTM PM2.5 dataset of Beijing

MAE: 14.63446
RMSE: 24.22874

Pearson Correlation: 0.959986
IA: 0.97831

[19] Stacked autoencoder model

The data was collection from three
monitoring stations in Beijing (Station I,

Wangshouxigong; Station II, Nongzhanguan;
Station III, Shunyixincheng)

Station 1 (Spring):
MAE: 8.01

RMSE: 10.28
R-square: 0.880

[20]
LSTM model combined with

multi-verse
optimization algorithm

AQI data from Iran. It composed of wind
speed, air temperature, NO2, and SO2 for
five months. The data was collected from

May–September 2019 with a time step of 3 h

With data type (1): Month of September for
NO2 prediction
RMSE: 0.0545
MAE: 0.0465

MAPE: 17.4011

[21]
Deep multi-task learning

framework based on
residual GRU

KDD CUP of Fresh Air RMSE: 1.85
MAE: 1.15
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Table 1. Cont.

Reference Method Dataset Result

[22] Weighted LSTM extended model
Daily pollutants concentration and

meteorological data from
Beijing–Tianjin–Hebei

RMSE: 40.67
MAE: 26.10

Total accuracy index: 0.59
Spatial anomaly correlation: 0.9524

Temporal correlation coefficient: 0.9930

[23] Aggregated LSTM neural network
The data was collected in Taiwan from 2012
to 2017. It contains 17 attributes based on air
pollutants and meteorological information.

RMSE: 0.44
MAE: 0.91

MAPE: 16.3

[24] RNN and LSTM models Air quality data collected at Skopje

6 h prediction SimpleRNN + Dense
with ReLU:
MSE: 0.0007

RMSE: 0.0273

[25]
Deep ensemble model which
combines RNN, LSTM, and

GRU networks

PM2.5 concentration and meteorological data
collected at 3 stations in Shanghai (From

1 January 2010 to 31 December 2015)

Group 1:
MAE: 6.72

MAPE: 19.60%

[37] VAE with multiple directed
attention mechanism

Data from the United States Environmental
Protection Agency which includes NO2, SO2,

CO, and O3

Case of NO2 prediction in Pennsylvania:
RMSE: 12.373
MAE: 10.370

R-square: 0.831
Explained variance: 0.955

MAPE: 13
Mean bias error (MBE): −2.47718

Relative MBE: −3.21039

[38]
LSTM model based on a

spatiotemporal
attention mechanism

Beijing air quality dataset (from 1 January
2018 to 31 December 2018)

1 h-Prediction:
RMSE: 12.23

R-square with different set of features:
R-square: 0.78

[39] Seq2Seq model with
attention mechanism

Beijing air quality data from April 2017 to
March 2018

Olympic Center:
RMSE: 38.119

R-square: 0.493
Dongsi:

RMSE: 59.508
R-square: 0.337

[40] Integrated dual LSTM with
attention mechanism Beijing air quality data from 2013 to 2018

RMSE: 14.36
MAE: 8.39

MAPE: 35.78
R-square: 0.89

IA: 0.93

[41]
Extreme value attention network

based on encoder and
decoder framework

Air quality data from Fuzhou (2 November
2017 to 2 October 2018) and Beijing

(1 January 2018 to 31 December 2018)

Fuzhou dataset:
RMSE: 17.9914
MAE: 9.3818

Beijing dataset
RMSE: 3.2606
MAE: 2.1867

Recently, the literature has showed that the hybrid model and the attention-based
approach are very effective in predicting the air quality; however, they face some challenges:

• Slow training speed: This issue is caused by the huge amount of data that needs
to be trained on a centralized deep learning architecture. In previous research, the
authors used a centralized deep learning approach for training. This problem with
slow training speed can be bothersome when the data changes. Therefore, models
need to be retrained for more accurate predictions.

• Noisy data: The second disadvantage of these methods is that they dismiss noise
effect. Indeed, noise effect is another potential challenge to evaluating air quality
and meteorological data. Noise affects the accuracy and performance of the forecasts
because the algorithms do not extract the optimal feature and information from
pollutant and meteorological data.
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• No real-time traffic data: The third challenge is that these models do not count traffic
information in their set of features during the training phase. It is widely recog-
nized that traffic flow is a significant source of air pollutants that could damage air
quality. Not considering traffic information while predicting air quality can lead to
nonrealistic forecasting.

These challenges show a need to have a more optimal deep learning model to evaluate
air quality. We first conducted a prior study for air quality forecasting in Busan City [14].
Compared to our previous work, in this research we propose a deep learning model
focusing on the attention-based convolutional BiLSTM autoencoder framework to forecast
air quality. A distributed architecture (data parallelization) has been implemented during
the training. The dataset used in this research is based on three specific feature sets: particle
features, meteorological features, and car traffic-related features. The major contribution of
this research includes:

• The review of new deep learning and machine learning approaches for air quality
prediction alongside attention mechanism.

• The implementation of YOLOv5 model with DeepSort algorithm to collect traffic
information data on the road.

• An extensive feature engineering to find the most important features while predicting
both particles PM2.5 and PM10. Knowing a feature’s importance is an essential step
in prediction tasks. Machine learning models have been widely used in the literature
to find the most relevant features in a given dataset. In this research, we made
a comparative study with four different machine learning algorithms to perform
this task.

• The development of an innovative attention-based convolutional BiLSTM autoencoder
model to predict air quality. The 1D-CNN layers extract deep spatial correlation and
local patterns features from the air pollutants. The autoencoder model encodes the
meteorological and the traffic data. The Bi-LTSM layer interprets the obtained features,
then passes them to several attention layers to make the final optimal prediction.

• The evaluation of the proposed framework which is based on two specific steps. Firstly,
we trained the deep learning framework in centralized architecture using a single
training server. This trained model has been compared with seven state-of-the-art
algorithms, including two attention-based deep learning approaches. Secondly, we
trained the proposed model using a parallelization training approach. We evaluated
the improvement in its accuracy and the reduction of training time during this phase.

• The creation of a deployment pipeline to run online inference based on the proposed
deep learning model. We noticed that most of the previous studies only focused on
offline learning and inference. In our research, we are not only considering offline
prediction but also online prediction based on real-time data.

The structure of the rest of this research paper is as follows. In Section 2, we present
the data collection and methods. In Section 3, we introduce our deep learning framework.
We explain the data pre-processing step, the feature correlation and selection, as well as
the proposed algorithm. The experiments are described in Section 4. The conclusion and
future work are discussed in Section 5.

2. Data Collection and Methods
2.1. Pollution Particles and Meteorological Data Collection

This research has been conducted based on three main data sources, which are: (1) air
quality particle data from Air Korea (Seoul, South Korea) [42], (2) meteorological informa-
tion from the Korean Meteorological Agency (KMA, Seoul, South Korea) [43], and (3) real-
time traffic data. Both (1) and (2) data sources were collected from Korean government
websites and contain ten specific features, which are: PM2.5, PM10, NO2 (Nitrogen dioxide),
CO (Carbon monoxide), and SO2 (Sulfur dioxide) for air pollution-related features, and
temperature, rain precipitation, dew point, wind speed, and humidity for meteorological
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features. The traffic-based data were collected on the road using a computer vision-based
approach explained in the following section.

2.2. Traffic Data Collection—Car Counting

One of the contributions of this research is the utilization of traffic data to improve the
prediction of air quality. We collected the traffic data near the monitoring stations. Figure 1
shows a road near Namsan Station in Busan city where we collected the traffic data for the
air quality station in Namsan-dong. We used a computer server with an NVIDIA Geforce
RTX 2060 GPU and a camera with a resolution of 1080p 30 fps. The traffic count algorithm
used the object detection model YOLOv5 [44] and the ‘DeepSort’ algorithm to track objects
(cars) to prevent multiple counting for one object. Algorithm 1 presents the process of car
counting using DeepSort.
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Algorithm 1: Input Data verification

Input: Car /*Object that is tracked by Deep Sort Algorithm. */
1. IF Car > diff /*diff: difference reference line and object’s center point. */
2. FOR each entry tl ∈ TL do
3. IF Car in TL /*TL: Track List */
4. THEN pass
5. ELSE
6. THEN Add Car to TL
7. END
8. RETURN length(TL)
END Car Counting

The YOLOv5 is the fifth model of You Only Look Once (YOLO). Compared with
the previous version of YOLO and other object detection models, YOLOv5 considerably
improves the training speed while maintaining a good detection accuracy. The model
divides the input images into grid cells and creates a bounding box for the objects. The
score of each grid is calculated by multiplying the probability that an object exists in the
bounding box on the grid, intersection over union (IOU), and the probability that the object
is the corresponding class. By comparing the score with the threshold, the model can define
from which class the bounding box belongs to. The DeepSort algorithm predicts the next
location of the object by applying the location information of the object detected in the
previous frame with the Kalman filter. The IOU distance of the currently detected object
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and the object predicted in the previous frame is calculated in the next frame. By applying
the calculated result to the Hungarian algorithm, we determined whether it is the same
object or not.

The DeepSort algorithm cannot track the object properly if the boundary box is smaller
than a specific size. Therefore, as shown in Figure 2a, a virtual baseline is set to apply the
algorithm only to the size of the objects. If the center of the bounding box that indicates
the vehicle is located below the reference line, the count increases. To prevent multiple
counting of a single object, the algorithm keeps the bounding box’s index number in a
temporal array and compares it with the new frame’s bounding boxes. The union of
YOLOv5 and DeepSort algorithm is used to recognize an object that has been detected
before. For example, if Object 1 was already detected in Frame 1, the algorithm will not
consider it again if it comes in Frame 2 or 3, as shown in Figure 2b.
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3. Proposed Framework

The proposed framework workflow is shown in Figure 3. Its major phases are com-
prised of the following processes: (i) pre-processing data; (ii) features correlation; (iii) deep
learning models formulation; (iv) hyperparameter fine-tuning; and (v) model evaluation.
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3.1. Data Preprocessing

There are over 490 air quality monitoring stations in South Korea. Data from several
stations encounter the problem of missing values due to some errors with the sensors. To
solve this problem, we used a linear interpolation technique. Linear interpolation imputed
the missing values using the mean value of the last and first available in the dataset. It is
based on the following formula [45]:

f (x) = f (x0) +
f (x1)− f (x0)

x1 − x0
× (x− x0) (1)

In the presented equations, x represents the independent value and x0 and x1 are the
known values of the independent variable. The air quality is impacted by several factors,
including meteorological and traffic data that have their physical properties and dimensions.
With accurate analysis and seamless training, these factors can be helpful in identifying
the air quality. We have combined all data sources into a single dataset in our framework
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during the data pre-processing step. Each dataset is obtained by normalizing it using linear
scaling based on the following equation [46], where xi represent the normalized data.

xi =
x− xmin

xmax − xmin
(2)

3.2. Data Correlation and Analysis

Optimal air pollutants prediction can be achieved by a model that must quantify
and evaluate various air quality indexes. The motivation of this research is to predict the
intensity of air pollutant particles, namely PM2.5 and PM10. We extend our understanding
by finding the relation of these particles with other features, especially meteorological
and traffic data. Findings showed that the particles PM2.5 and PM10 can be impacted by
many measurable factors. However, the challenging part was separating the data that is
not beneficial for the prediction task, as irrelevant factors are burdensome for the model
and training phase. It was important to find a correlation between different relevant and
important particles with meteorological data. To overcome this, a correlation coefficient (δ)
was calculated to each feature and the target particle based on the following formula [47],
supposing that we had an observation vector A = (a1, a2, a3, . . . , an) with another vector
B = (b1, b2, b3, . . . , bn):

δ =
n ∑n

i=1 aibi −∑n
i=1 ai ∑n

i=1 bi√
n ∑n

i=1 a2
i − (∑n

i=1 ai)
2
√

n ∑n
i=1 b2

i − (∑n
i=1 bi)

2
(3)

The prior formula presents a positive correlation when 0 < δ < 1 and a negative corre-
lation when −1 < δ <0. Similarly, in a scenario where the value of δ is closer to 1, a small
variation between A and B is observed, along with a higher correlation. Figure 4 shows the
feature correlation heatmap of datasets used in this research analyzing particles such as
PM2.5 and PM10 as targets. As shown in Figure 4, PM2.5 and PM10 particles are negatively
correlated with temperature and wind speed, so in low-temperature conditions, these
particles will be more concentrated in the air, resulting in worse air quality prediction. If we
consider the wind speed factor, with faster or higher wind speed, the lower concentration of
the pollution particles results in good air quality. With humidity factors, the concentration
of pollution particles is higher, resulting in bad air quality. Other gases which impact the
higher concentration levels of harmful particles relate to high levels of NO2, CO, SO2, and
a low level of O3. On the other hand, the traffic data is highly correlated with both particles,
which makes us think that high car traffic on a specific location can produce air pollution.
Based on this feature correlation heatmap, we can clearly see how the traffic information
impacts levels of both particles, as they are highly correlated.

3.3. Features Importance Assessment

Features importance is a significant step in forecasting tasks. It assesses the relevance
of a feature from the given feature set F = { f1, f2, f3, . . . , fn}; the importance value of
each feature is computed by using the permutation importance. In this research, a feature
assessment was carried out to rule out the useless features that can increase algorithm
complexity. Machine learning algorithms have been widely used in the literature to find
the most important feature in a given dataset. In this study, we implemented four different
machine learning models to perform this task: random forest, Xgboost, AdaBoost, and
gradient boost.

As shown in Figure 5, all the algorithms except Xgboost algorithm selected the cars
traffic as one of the most important features.
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Pollution gas such as CO, NO2, and SO2 are also labelled as relevant features for the
prediction of particle matter (PM2.5 and PM10). We then evaluated the error rate of each
of these models while predicting PM2.5 in order to select the best features that will be
used to train the deep learning algorithms presented in the experiments. Based on the
results presented in Figure 6, we decided to focus only on the feature importance of random
forest, Xgboost, and gradient, since these algorithms had the lowest error rate (MAE, RMSE,
and SMAPE); this led us to remove the rain feature and keep the remaining ones for the
next training step. One reason that explains the poor performance of AdaBoost in this
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experiment is the presence of noise in the air quality dataset. As discussed in previous
studies [48,49], AdaBoost has been proven to be a very efficient ensemble learning model,
which recurrently generates a set of diverse weak learners and combines their outputs
using the weighted majority voting rule as the final decision. However, in some cases,
AdaBoost leads to overfitting, especially when the training dataset is noisy, engaging in
both its reduced generalization performance and non-robustness.
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3.4. Deep Learning Model

The standard deep learning model’s effectiveness can be enhanced using different
hybrid learning approaches. The proposed framework consists of a stacked deep autoen-
coder, a convolutional neural network, and an attention-based bi-directional LSTM layer.
Together these layers of the framework calculate the concentration level of PM2.5 and PM10
based on data collected in Busan city. The deep features were extracted in two stages based
on the proposed deep learning architecture. The first stage extracted all suitable features
from both particles of PM2.5 and PM10 along with time series data, whereas a stacked
autoencoder layer was used to encode meteorological, gas, and traffic-related patterns
during the second stage. Figure 7 shows the architecture of the proposed model.
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3.4.1. One-Dimensional CNN for Local Features Mining

Deep convolutional networks are special neural networks that are based on a convo-
lution operation. Convolution operation is frequently used for extracting the frequency
or temporal features from specific signals in machine learning. The convolution of two
functions f (t) and g(t) can be represented as follows [50]:

( f × g)(t) =
+∞∫
−∞

f (ϑ)g(t− ϑ)dϑ (4)

In the above equation, g(t) is called kernel and * represents the convolution operator.
The time series data for air quality particles is fed into the 1D CNN network to extract local
features of particles. Considering the time series of the ith time window as:

Xi =
[

x1
i , x2

i , . . . , xl
i

]
, xi ∈ Rd (5)

where l represents the window size, xt
i is the multivariate time series obtained at time step

t and d represents the dimension. The temporal convolution layer is the first layer of the
model. It is able to automatically extract local features of multivariate time series. In this
setup, the convolution operation is represented as follows:

Cτ = ReLU (wτ × x + b) (6)

where Cτ is the result feature map of the τth kernel, wτ and b represent the weight and the
deviation parameters, respectively. The 1D CNN model constantly moves the matching
convolution step from the start of the time series to complete the convolution operation of
the entire data. The features obtained from the convolution layer are represented as follows:

Ci = [C1, C2, C3, . . . , Cl−m+1] (7)

In the above equation, m denotes the size of the convolution kernel. As depicted in
Figure 8, which represents the overall diagram of one-dimensional convolution computing,
the input size is represented by n× l × d, in which n denotes the number of input samples,
the output feature map size is computed by (l−m)

(s+l) × τ , with τ representing the number of
kernels. In order to complete the convolution operation at each time step to obtain the local
features, we set the kernel size of m to 1.
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Table 2. 1D CNN Parameters settings.

1D-Convolution Settings

Convolution Layer Kernel Size = (15, 1), Filter = 20, Stride = 1
Max Pooling Layer Pool-size = (2, 1), Stride = 2

Dropout 0.20
Convolution Layer Kernel Size = (10, 1), Filter = 40, Stride = 1
Max Pooling Layer Pool-size = (2, 1), Stride = 2

Dropout 0.20
Convolution Layer Kernel Size = (5, 1), Filter = 80, Stride = 1
Max Pooling Layer Pool-size = (2, 1), Stride = 2

Dropout 0.20

3.4.2. Deep Autoencoders Model for Traffic and Meteorological Data Encoding

Air pollution forecasting requires several crucial indicators to be properly monitored.
For example, to predict the particles PM2.5 and PM10, it is necessary to consider the traffic
features and meteorological data, as they will help predict accurate air quality and precise
decision-making. Failing to consider every relevant factor causes poor accuracy and bad
decision-making. To improve the accuracy for predicting the concentration of PM2.5 or
PM10 particles, we extract the relevant data from meteorological datasets and road traffic
datasets. To achieve this, we implemented a deep autoencoder to encode information from
such features. This autoencoder serves as a neural network with one hidden layer, which
sets the output value equal to the input. This encoder compresses the input into the hidden
layer, then reconstructs the output from that display. Autoencoder is an unsupervised
model consisting of two steps: encoding and decoding. This keystroke enables this neural
network to learn more abstract features unsupervised. To predict PM2.5 or PM10 particles,
we present a vector representation for the traffic and meteorological data.

3.4.3. BiLSTM Layers for Spatiotemporal Features Representation

Statistical-based approaches such as ARIMA and traditional learning models do poorly
in predictive tasks because they dismiss the long-term dependence on time series data. The
LSTM model is a specific RNN which was proposed by Hochreiter et al. [51]. This model
has been found to be the best solution to address the problem of long-term information
dependence on time series data. RNN networks are based on a chained network module.
In a standard RNN, this repeating module has a very basic structure, such as a tanh layer.
LSTM networks have the same structure, but the core of the structure differs from standard
RNN. As shown in Figure 9, LSTM networks have four modules playing different roles.
The core of an LSTM is composed of an input gate it, an output gate ot, and a forgetting
gate ft.
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The input gate decides the information that needs to be stored or updated in the cell.
The input gate has a further two layers: the sigmoid layer responsible for deciding the
value needed to be stored and the tanh layer responsible for building a new candidate value
vector c̃t and insert it in the state. The input gate is based on the following equation [50]:

it = σ(Wi ·[xt ht−1] + bi) (8)

The forgetting gate decides what information must be deleted from the cellular state
at t−1 time with ht−1 as the output value. It is based on the following equation [50]:

ft = σ
(

W f ·[xt ht−1] + b f

)
(9)

In this equation, W f is the weight matrix and b f is the bias matrix of the forget gate.
ht−1 is the historical data, σ represents the activation function, and xt represents the current
input of new data and determines which previous information is discarded. After getting
the coefficient’s values of the input gate and the forget gate, the following equation [50]
will be used to update current cell state:

ct = ft
◦ ct−1 + it

◦ c̃t (10)

c̃t = tanh(Wcxt + bcht−1) (11)

The output gate determines the current stage of output information. The sigmoid
layer of output gates decides the section of cell state that will be output. The obtained value
will be between −1 and 1 through the tanh layer and multiplied with the value of the first
step output. The output gate is based on the following equations [50]:

ot = σ(Wo + xtht−1 + bo) (12)

ht = ot
◦ tan h(ct) (13)

A disadvantage of the traditional LSTM model is that it is only operating in one way
and may discard important information when extracting deep significant features. BiLSTM,
on the other hand, is able to process time series data in a bidirectional way simultaneously.
This leads to deeper functions for better features extraction and prediction. BiLSTM is
formed with a combination of forward and backwards operations for LSTM (as shown in
Figure 10). The sequence of information processing is performed under the forward state.
The forward state LSTM output is completely isolated with the input of backward LSTM
and vice versa. The BiLSTM gathers hidden LSTM states of opposite directions to the same
output represented as follows [13]:

yt = σ

(
W ◦

[ →
ht ,
←
ht, xt

]
+ b
)

(14)

The output layer receives information from both future and past states based on this
architecture. The hidden states of the forward and backward layers are measured using the
following equations:

h f = o f
◦ tan h

(
c f

)
(15)

hb = ob
◦ tan h(cb) (16)
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3.4.4. Attention Layers

An attention layer is responsible for assigning weights to sample data and extracting
essential information which can impact the features analysis and forecasting process. This
process provides a better estimate of the final output and reduces the resource consumption
of the computer. Moreover, it is also responsible for decreasing the redundant and noisy
data while assigning them weights during the sampling and training phases. This mecha-
nism is used to remember the long source of input. The attention layer creates the context
vector, a weighted combination of input states to remember the important sequence while
training. These weighted input states are different from the autoencoder model, which
uses the context vector of the last hidden state. Therefore, the context vector can process
the entire input sequence, thus eliminating the problem of forgetting. The Figure 11 shows
the bidirectional LSTM architecture.
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Consider a scoring function f defined: f : Rm ×Rm 7→ R , which determines the
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vector (ct) is a weighted sum of hidden states H = {h1, h2, . . . , ht−1} and represents the
important information for the current time step as depicted in the following equations [52]:

ct =
t−1

∑
i=1

βihi (17)

βi =
exp( f (hi, ht))

∑t−1
j=1 exp

(
f
(
hj, ht

)) (18)

hi =

[ →
hT

i ;
←
hT

i

]T

, i = 1, . . . , n (19)

The context vector is then unified with the previous hidden state unit St−1 and previous
target output yt−1 to predict the current hidden state St as depicted in the following
equation [52]:

Si = g(Si−1, yi−1 , Ci) (20)

3.4.5. Distributed Training Approach

Research lacks evidence towards a deep distributed learning approach for air quality
prediction, especially with training time and memory consumption investigations. We
propose a novel approach by using distributed deep learning data parallelism to address
these issues. It is achieved by distributing air quality traffic information and historical
meteorological data across multiple training workers. Figure 12 shows the proposed
training process.
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We implemented a distributed training process called data parallelization with n
worker machines to mitigate the training time and achieve significant computing perfor-
mance. It helped us to achieve our training goals more quickly by processing n different
partitions in the parallel data training approach. We distributed n copies of the model over
n processing workers in this setup. The machines are trained locally under parallel mode
to reduce the overall training time. A parameter server is used to collect the updates and
request parameters from each training station.
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4. Experimental Results and Discussion

In the following, we demonstrate the usefulness and the efficiency of the proposed
deep learning framework by conducting extensive experiments.

4.1. Experiments Environment Setup

This section unravels the hardware and software environment of the experiments. The
detailed configuration is presented in Tables 3 and 4.

Table 3. Server’s settings.

Components Specs

Server CPU AMD Ryzen 7 2700X 3.7 GHz 8 Cores
Graphic Cards NVIDIA GeForce RTX 2080

Memory 32 GB

Table 4. Data distribution.

Data Split Distribution

Training 70%
Validation 20%

Testing 10%

The proposed model has been built using python programming language. TensorFlow,
a deep learning library, was used to implement our learning model and the other deep
learning state-of-the-art algorithms. The library PySpark was used to create a distributed
computing system. We made a comparative study between our model and seven state-of-
the-art algorithms presented in Table 5.

Table 5. Baseline Models.

Algorithms Description

RNN [53]

Recurrent neural networks are a type of neural
network that used previous outputs as inputs
while having hidden states. They are mostly

used in times series forecasting, speech
recognition, and natural language processing.

LSTM models [15]
LSTM models are a special type of RNN that

overcome the long-term dependency problem
faced by standard RNN.

Autoencoder [54] LSTM

The autoencoder LSTM is a hybrid model
which is implemented with an LSTM encoder
and decoder for sequence data. This model has
the same structure setup as an autoencoder but

is composed of several LSTM layers.

Convolutional LSTM [17] This model is a hybrid framework based on
CNN and LSTM models.

ConvBiLSTM autoencoder [14] This model is based on a convolutional BiLSTM
concatenated with an autoencoder model.

Attention LSTM [40] This algorithm is a dual LSTM model with
attention mechanism.

Attention CNN-LSTM [55]
This model combines a one-dimensional

convolutional neural network, LSTM network,
and attention-based network.
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In this experiment, the performance evaluations were carried out by calculating the
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Symmetric mean
absolute percentage Error (SMAPE) [56].

MAE =
1
n

n

∑
i=1
|yi − ŷi| (21)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (22)

SMAPE =
1

2n

n

∑
i=1

|yi − ŷi|
(|yi|+ |ŷi|)

× 100% (23)

However, our evaluations were divided into two steps. The first step was the training
performed in a centralized deep learning environment. This approach was similar to other
literature studies and evaluated by comparing it with other state-of-the-art models. The
Algorithm 2 shows the steps of phase 1 experimentations.

Algorithm 2: Centralized training process

Input: Historical Data
Output: Error Rates
1. data←MissingValuesFunc (Input)
2. data← NormalizationFunc (data)
3. learning rate α = 10−3

4. Initialize F(x) = Proposed model for N pollutants
5. Split data into train, test and validation sets
6. For epoch = 1 to N do
7. proposed_model← fit_model (train, epoch, learningRate)
8. For t← 1 . . . T do
9. Receive instance xt

10.
^
yt ← forecast_model (f_model, xt)

11. yt ← testy

12. Error_rate = evaluate_fit (yt,
^
yt)

13. RETURN Error_rate
END

We used a distributed training environment called data parallelism to train our model
in the second step. In this step, we employed ten worker machines to train ten different
partitions of the air quality, meteorological, gas, and road traffic data in parallel. Each
worker held a replica of the proposed algorithm. We then utilized a parameter server to
aggregate the model’s updates and parameter requests coming from each worker.

4.2. Experiment Results
4.2.1. Step 1

We employed four input encoding layers and four decoding layers with Relu as the
activation function. The deep learning autoencoder and decoder have several hidden
layers; for autoencoder, the hidden layers were {128, 100, 64,32} and, for the decoder,
they were {32, 64,100, 128}. The traffic and meteorological data were used to pre-train the
algorithm; the resulting data was a compressed hidden layer of the encoder. To make
the final prediction, this encoded layer of data was concatenated with the output layer
of BiLSTM.

Tables 6 and 7 summarize the proposed model’s comparative results with the differ-
ent baseline algorithms. It is based on the observed PM2.5 and PM10 particles with the
corresponding predicted values for 1 h, 2 h, 4 h, 8 h, 10 h, 12 h, 24 h, and 48 h time spans.
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Table 6. Models’ evaluation results for PM2.5 forecasting.

Models Metrics +1 h +2 h +4 h +8 h +10 h +12 h +24 h +48 h

RNN

MAE 8.33 9.49 11.61 15.87 20.67 23.50 26.41 30.08

RMSE 12.17 13.94 16.78 21.18 25.43 30.08 34.59 37.21

SMAPE 25.11 28.54 29.91 36.11 39.09 41.17 44.96 45.78

LSTM

MAE 7.96 9.15 10.78 14.38 18.21 19.98 25.51 29.11

RMSE 11.31 13.90 15.18 16.87 23.14 26.71 31.18 36.92

SMAPE 24.87 26.47 28.39 34.17 35.29 39.49 43.42 46.03

Autoencoder LSTM

MAE 6.83 8.96 9.97 12.24 15.86 18.76 22.29 25.87

RMSE 8.94 11.87 13.83 15.79 18.48 23.44 27.53 30.21

SMAPE 22.39 25.57 28.09 32.93 34.28 35.96 39.49 44.27

CNN+LSTM

MAE 6.03 8.21 10.01 12.18 14.76 17.38 20.53 24.79

RMSE 8.21 10.75 12.64 15.37 17.98 21.89 25.27 29.63

SMAPE 21.08 24.12 27.72 30.33 33.09 35.09 37.89 40.99

Attention LSTM

MAE 5.83 8.10 9.91 12.05 14.53 17.30 20.45 24.14

RMSE 8.14 10.43 12.37 15.14 17.51 21.38 24.80 29.10

SMAPE 20.16 23.53 26.19 30.02 33.05 35.57 37.48 41.05

ConvBiLSTM
autoencoder

MAE 5.34 7.97 9.87 11.62 14.21 16.99 19.84 23.96

RMSE 7.92 9.90 12.18 15.11 16.89 20.34 24.12 28.17

SMAPE 19.27 23.37 25.33 29.74 33.14 36.15 38.90 40.17

Attention
CNN-LSTM

MAE 5.21 7.15 9.27 10.99 14.10 16.13 19.07 22.63

RMSE 7.40 9.61 11.94 14.92 16.32 19.89 23.93 28.05

SMAPE 18.15 21.24 25.09 28.13 30.24 33.98 38.22 39.77

Proposed Model

MAE 5.02 6.96 8.59 10.97 13.87 15.87 18.75 22.59

RMSE 7.48 9.53 11.89 14.28 16.21 19.53 23.61 28.02

SMAPE 17.98 20.91 24.57 27.91 30.28 34.49 37.18 39.81

Table 7. Models’ evaluation results for PM10 forecasting.

Models Metrics +1 h +2 h +4 h +8 h +10 h +12 h +24 h +48 h

RNN

MAE 12.20 15.75 19.63 24.73 26.21 29.87 35.59 37.19

RMSE 15.38 19.32 22.68 25.41 29.37 34.63 39.44 43.28

SMAPE 29.74 33.52 36.37 40.08 42.19 45.60 46.32 48.17

LSTM

MAE 11.86 13.09 16.75 18.67 21.49 24.84 27.18 31.49

RMSE 14.56 17.56 19.36 22.49 25.68 29.09 33.18 35.85

SMAPE 27.41 30.25 34.34 37.58 40.18 45.02 46.82 47.32

Autoencoder LSTM

MAE 11.21 13.25 16.54 19.05 21.53 23.31 26.54 30.97

RMSE 13.67 16.53 18.11 21.25 24.57 27.33 31.85 34.37

SMAPE 25.89 28.09 31.52 35.47 37.69 40.08 44.16 45.99

CNN+LSTM

MAE 9.95 12.38 15.49 18.96 21.78 23.07 25.46 29.60

RMSE 11.53 13.56 17.18 20.31 23.45 27.27 30.79 32.40

SMAPE 23.96 26.54 28.49 30.08 33.17 35.53 38.28 41.72

Attention LSTM

MAE 9.17 12.05 14.21 17.31 21.11 22.35 25.30 28.37

RMSE 11.36 13.33 16.47 19.87 22.69 27.04 29.76 32.11

SMAPE 22.84 26.27 27.81 30.93 32.92 35.29 38.05 40.84
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Table 7. Cont.

Models Metrics +1 h +2 h +4 h +8 h +10 h +12 h +24 h +48 h

ConvBiLSTM
autoencoder

MAE 8.29 11.25 13.85 16.67 19.07 21.48 25.07 27.39

RMSE 11.27 13.96 16.34 18.75 21.49 26.07 28.96 31.09

SMAPE 22.79 25.38 27.75 31.96 32.51 34.09 37.69 39.83

Attention
CNN-LSTM

MAE 8.15 10.19 11.69 15.23 17.43 19.39 23.42 26.39

RMSE 9.81 12.93 14.70 17.82 20.28 22.71 24.80 25.93

SMAPE 20.48 23.37 25.97 29.05 30.97 30.69 33.13 34.33

Proposed Model

MAE 7.38 9.57 11.19 13.96 14.37 18.56 20.74 25.89

RMSE 9.71 12.27 14.68 16.74 17.82 20.33 23.66 25.09

SMAPE 19.57 23.17 24.99 27.07 29.49 30.28 32.99 34.26

• PM2.5 forecasting results analysis: The experimental results show that our proposed
framework outperformed the baseline models both on short- and long-term predic-
tions. As can be seen, for the forecasting results based on both 1 h (short-term) and 48 h
(long-term) time steps, the proposed attention-based model obtained the lowest MAE
(5.02 and 22.59, respectively, for short-term and long-term predictions), RMSE (7.48
and 28.02) and SMAPE (17.98 and 39.81) among all the models. This indicates strong
agreement between observed and predicted values. The recurrent neural network
had the lowest prediction accuracy both on short- and long-term predictions. It had
the highest MAE, RMSE, and SMAPE values, which were, respectively, 8.33, 12.17,
and 25.11 for the short-term prediction and 30.08, 37.21, and 45.78 for the long-term
prediction. All hybrid LSTM based models performed better than the standard LSTM,
which recorded 7.96, 11.31, and 24.87, respectively, for MAE, RMSE, and SMAPE
evaluation metrics for the short-term prediction, and 29.11, 36.92, and 46.03 for the
long-term prediction. Among the hybrid LSTM baseline models, the attention-based
CNN-LSTM recorded the second lowest error rates after the proposed approach; these
second lowest error rates were 5.21, 7.40, and 18.15 for MAE, RMSE, and SMAPE for
the short-term prediction and 22.63, 28.05, and 39.77 for the long-term prediction. The
ConvBiLSTM autoencoder model came right after as it obtained 5.34, 7.92, and 19.27
for MAE, RMSE, and SMAPE for the short-term prediction and 23.96, 28.17, and 40.17
for the long-term prediction. The ConvBiLSTM autoencoder model was followed
by the attention-based LSTM algorithm with 5.83, 8.14, and 20.16 for the short-term
prediction and 24.14, 29.10, and 41.05 for the long-term prediction.

• PM10 forecasting results analysis: As depicted in Table 7, our proposed model still
performs better than the baseline models both on short- and long-term forecasting. It
achieved the minimal MAE (7.38 and 28.89, respectively, for 1 h and 48 h future time
steps), RMSE (9.71, and 25.09, respectively, for 1-h and 48-h future time steps), and
SMAPE (19.57, and 34.26, respectively, for 1-h and 48-h future time steps). On the
other hand, the recurrent neural network captured the highest error rates, which were
12.20, 15.38, and 29.74, respectively, for the MAE, RMSE, and SMAPE metrics through
1h time step prediction and 37.19, 43.28, and 48.17 for the 48h time step prediction.
The Attention CNN-LSTM model has the second-best result, as it recorded 8.15, 9.81,
and 20.48, respectively, for the MAE, RMSE, and SMAPE metrics on the 1h time step
prediction. For the 48 h time step, it achieved 26.39 for MAE, 25.93 for RMSE, and 34.33
for SMAPE. The ConvBiLSTM autoencoder recorded 8.29, 11.27, and 22.79 for MAE,
RMSE, and SMAPE on 1h time step prediction, and on 48 h time step, it achieved 27.39,
31.09, and 39.83 for the same evaluation metrics. The other hybrid LSTM baseline
models have similar results as they both outperformed the standard LSTM model on
both 1 h (short-term) and 48 h (long-term) time steps.

The following images shown in Figure 13 illustrate how the proposed model outper-
formed all baseline algorithms through the eight different future time steps. In Figure 13,
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we have graphed each evaluation metric (MAE, RMSE, and SMAPE) for each short- and
long-term prediction of both particles PM2.5 and PM10. As shown in the figure, the per-
formances of PM2.5 and PM10 long-term predictions are significantly lower than that of
the short-term predictions. As the forward prediction size increases, the forecasting perfor-
mances of these models gradually decrease. Nonetheless, even with long-term forecasting,
the proposed model is still better than the baseline methods. This is mainly because the
attention mechanism improves the long-term prediction performance of PM2.5 and PM10.
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Figure 13. Comparison of evaluation metrics for different future time steps. (a) MAE comparison
at different future time steps for PM2.5 prediction. (b) MAE comparison at different future time
steps for PM10 prediction. (c) RMSE comparison at different future time steps for PM2.5 prediction.
(d) RMSE comparison at different future time steps for PM10 prediction. (e) SMAPE comparison at
different future time steps for PM2.5 prediction. (f) SMAPE comparison at different future time steps
for PM10 prediction.
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A detailed comparison between the proposed deep learning air quality model was con-
ducted with baseline models of RNN, LSTM, LSTM autoencoder, CNN+LSTM, Attention-
based LSTM, ConvBiLSTM autoencoder, and attention-based CNN LSTM to forecast air
quality particles of PM2.5 and PM10. The factual results are presented in Figures 14 and 15
as the comparison between all models to predict the air quality values for PM2.5 and PM10.
The x-coordinates represent observation time steps, and y-coordinates represent the PM2.5
values in Figure 14 and PM10 values in Figure 15. We decided to focus on 1-h short-term
prediction only. As represented in these figures, the results show that the prediction pattern
of the proposed deep learning air quality model is similar to the real pattern of time series
data for both particles.

The proposed model performed better in forecasting as it predicted the pollution
particles accurately and quickly, verifying the feasibility of our algorithm to capture the
temporal variations, whereas other algorithms, especially RNN, were unable to track to
the trends of PM2.5 and PM10. The attention-based models also produced good forecasting
trends. In this experiment, the wave peak period highlighted the difference of prediction
and ground truth pattern more accurately.

Moreover, we evaluated the training time of all models as shown in Figure 16, and
we found that the proposed framework had not only the best accuracy compared to the
baseline models but it also had the best training average times alongside the Attention
LSTM and the ConvBiLTM autoencoder model, as they all averaged 310/s during the
training process for the prediction of both particles PM2.5 and PM10.

The RNN model took the longest training time with 482 s, followed by the autoencoder
LSTM with 479 s. The standard LSTM and the convolutional LSTM models had almost the
same average training time. In step 2 we will show how the distributed architecture can
reduce the training time of the proposed model and be further optimized to perform better.

4.2.2. Step 2

We distributed the architecture and employed ten specific training workers to perform
the task to achieve better performance. Each training worker was provided with the same
model parameters, and the algorithm was performing with the same capacity. We intended
to predict the same particles using the same data as step 1. For this step, we only focused
on the 1 h, 24 h, and 48 h future time step predictions to evaluate how the proposed
model will perform both on short- and long-term predictions while being trained using ten
worker nodes. For short-term prediction, as shown in Figure 17a,b, the proposed model
performed the best for both particles PM2.5 and PM10 when it is using five and six workers,
respectively, during the training process. As depicted in that figure, at five workers for
PM2.5 forecasting, we can see how the error rates decrease suddenly. The same observation
can be seen at six workers during PM10 forecasting. In Figure 17c,d, which correspond
to t+24 h future time step forecasting, the proposed model achieved its best performance
for both particles PM2.5 and PM10 while training it with seven workers. And finally, in
Figure 17e,f, which represent to t + 48 h future time step prediction, the best performance
results for both particle forecasting was recorded while using eight workers. The shape
changes in the rate error are mostly due to the fact that the model had some difficulty
generalizing well with a smaller number of training workers, and it was not stable at the
beginning of the training. In further research, we are planning to investigate in depth all the
potential causes of such changes, which may include the utilization of some optimization
techniques. This experiment concluded that the right number of workers for the training of
these two air quality particles should be between five and eight nodes.
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We were interested in evaluating the reduction in training time with the introduction of
distributed architecture and parallel training sessions. As shown in Figure 18, the training
time of our framework decreased while the number of workers increased. At five training
workers, we reached 250 s, and the training time increased slightly at six workers to 260 s,
then decreased again to the lowest recorded time at eight workers, which was 200 s, and,
from eight to 10, it was consistent. Compared to the centralized training in step 1, the
training time in phase 2 almost decreased twice, making our method more effective and
less time-consuming.
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Figure 17. Evaluation of the proposed model during distributed training over 10 workers at t + 1 h,
24 h, and 48 h future step prediction. (a) Error rate at t + 1 h future time step (PM2.5). (b) Error rate at
t + 1 h future time step (PM10 ). (c) Error rate at t + 24 h future time step (PM2.5 ). (d) Error rate at
t + 24 h future time step (PM10 ). (e) Error rate at t + 48 h future time step (PM2.5 ). (f) Error rate at
t + 48 h future time step (PM10 ).
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4.3. Proposed Model Deployment and Online Inference

With the goal of starting to use the proposed distributed deep learning model for
practical decision-making, it needs to be effectively deployed into production. To do so, we
created an online inference pipeline based on stream data, cloud server, and GPU instances,
as depicted in Figure 19.
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• Input Stream Data: The air quality, meteorological, and traffic data are collected every
hour and then preprocessed and stored inside cloud servers.

• Online Worker: Since we decided to deploy our distributed model based on data
parallelism, we have created several data pipelines based on Apache Spark that
represent our workers. These training workers will have a model replica and a
partition of the stream data. The workers will train their local replica by using the
assigned data partition.

• Parameter Server: The parameter server is responsible for aggregating model updates
and parameter requests coming from different online workers.

• User Interface: After the distributed training, the final model is then used to make the
predictions every hour for the next 48 h and show it on the web application for the
user to observe the predicted values as presented in Figure 20a. The web application
also offers the option to upload a csv file containing the meteorological and road traffic
features to predict air quality. This would help the government and the citizens to take
all the necessary precautions to either control air pollution or protect themselves from
the harmful effects of bad air quality.
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5. Conclusions

This study proposed a new attention-based convolutional BiLSTM autoencoder model
for air quality prediction. The approach utilized historical and time series data for traffic
information, as well as encoded meteorological information in order to perform predictions
of air quality at various time points. Car traffic data was collected by implementing a
computer vision-based model called YOLO with DeepSort algorithm. Since the Deep-
Sort algorithm could not track the approaching objects (cars) on the road properly if the
boundary box was smaller, a virtual baseline or reference line was applied to the tracking
algorithm. If the center of the bounding box indicated the vehicle was located below the
reference line, the count increased. Multiple counting is prevented by keeping the previous
bounding box’s index number in a temporal array and comparing it with the new frame’s
bounding boxes. The proposed deep learning approach performed optimally in different
atmospheric conditions, i.e., stable and unstable. This was achieved by using a two-stage
feature extraction method. The first feature extraction stage was achieved by using a
stacked autoencoder to extract information on several features, including pollution, traffic,
and various meteorological properties. During the second stage, an attention-based convo-
lutional BiLSTM layer extracted deep spatial correlation features from air quality particles
data and performed the final prediction after concatenation with the encoded features from
stage 1. The attention mechanism was used to capture the dynamic correlation of both
PM2.5 and PM10 particles between previous and future time points. A distributed training
method, data parallelism, was adopted to train the proposed model in the second phase of
the experiments. It used a coordinator server that successfully aggregated the updates on
the model and the parameter requests of working nodes. The experimental results showed
that the proposed deep learning model outperformed the classical state-of-the-art deep
learning architectures. For PM2.5 prediction, the model obtained the lowest MAE (5.02 and
22.59, respectively, for the 1-h short term and 48-h long-term predictions), RMSE (7.48 and
28.02) and SMAPE (17.98 and 39.81). The proposed model also achieved the best results
for PM10 prediction with the minimum MAE (7.38 and 28.89), RMSE (9.71 and 25.09), and
SMAPE (19.57 and 34.26). This indicates a strong agreement between observed and pre-
dicted values. For both benchmarks of short-term and long-term predictions, our proposed
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model performed better. In addition, the distributed training architecture significantly
reduced the training time. It is a helpful step towards resources saving, more optimal
training, smart training of algorithms, and more precise and accurate prediction. With
improved training time, different organizations and governments can mitigate air pollution
levels in a timely manner and take the proper steps to fix problems with air pollution.
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