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Abstract: Biomass stored in young forests has enormous potential for the reduction of fossil fuel
consumption. However, to ensure long-term sustainability, the measurement accuracy of tree height
is crucial for forest biomass and carbon stock monitoring, particularly in young forests. Precise height
measurement using traditional field measurements is challenging and time consuming. Remote
sensing (RS) methods can, however, replace traditional field-based forest inventory. In our study, we
compare individual tree height estimation from Light Detection and Ranging (LiDAR) and Digital
Aerial Photogrammetry (DAP) with field measurements. It should be noted, however, that there was
a one-year temporal difference between the field measurement and LiDAR/DAP scanning. A total
of 130 trees (32 Scots Pine, 29 Norway Spruce, 67 Silver Birch, and 2 Eurasian Aspen) were selected
for height measurement in a young private forest in south-east Finland. Statistical correlation based
on paired t-tests and analysis of variance (ANOVA, one way) was used to compare the tree height
measured with the different methods. Comparative results between the remote sensing methods
and field measurements showed that LiDAR measurements had a stronger correlation with the
field measurements and higher accuracy for pine (R2 = 0.86, bias = 0.70, RMSE = 1.44) and birch
(R2 = 0.81, bias = 0.86, RMSE = 1.56) than DAP, which had correlation values of (R2 = 0.71, bias = 0.82,
RMSE = 2.13) for pine and (R2 = 0.69, bias = 1.19, RMSE = 2.08) for birch. The correlation of the
two remote sensing methods with the field measurements was very similar for spruce: LiDAR
(R2 = 0.83, bias = 0.30, RMSE = 1.17) and DAP (R2 = 0.83, bias = 0.44, RMSE = 1.26). Moreover,
the correlation was highly significant, with minimum error and mean difference (R2 = 0.79–0.98,
MD = 0.12–0.33, RMSD = 0.45–1.67) between LiDAR and DAP for all species. However, the paired
t-test suggested that there is a significant difference (p < 0.05) in height observation between the field
measurements and remote sensing for pine and birch. The test showed that LiDAR and DAP output
are not significantly different for pine and spruce. Presumably, the time difference in field campaign
between the methods was the reason for these significant results. Additionally, the ANOVA test
indicated that the overall means of estimated height from LiDAR and DAP were not significantly
different from field measurements in all species. We concluded that utilization of LiDAR and DAP for
estimating individual tree height in young forests is possible with acceptable error and comparable
accuracy to field measurement. Hence, forest inventory in young forests can be carried out using
LiDAR or DAP for height estimation at the individual tree level as an alternative to traditional field
measurement approaches.

Keywords: young forest; LiDAR; digital aerial photogrammetry; Individual tree detection; canopy
height model; tree height

1. Introduction

In 2020, the share of renewable energy sources in Finnish end consumption was 40%,
of which wood fuels alone contributed 29% to the nation’s energy demand, and they are,
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thus, the most used single energy source in Finland [1]. The 50% target for renewable
energy in Finland’s National Energy and Climate Strategy for 2030 is likely to further
increase demand for forest biomass for energy production, and it is estimated that demand
for wood chips for energy use could double by 2030, which would necessitate harvesting
of energy wood throughout the country [2]. Against this background, the government
of Finland is promoting more active young forest management and encouraging forest
owners to undertake small tree harvesting. In addition, the Ministry of Agriculture and
Forestry has presented proposals for the provision of incentives for seedling planting,
young forest management and silvicultural operations through the METKA (Metsätalouden
kannustejärjestelmä) incentive scheme for forestry [3] as the production of energy woods
is not economically feasible without these kinds of support programs [4]. Statistics show
that Finland has a considerable amount of biomass stored in young forests (i.e., forests at
the stage where they are in need of first thinning) and greater utilization of this source can
supply substantial amounts of wood fuel and bioenergy, which will help Finland meet its
renewable energy targets [5].

In Finland, forest resource information data is collected by the Finnish forest center
(Suomen metsäkeskus) based on combined light detection and ranging (LiDAR), aerial
photography, and field measurements of circular sample plots. The forest inventory output
is in the form of 16 × 16 m raster grid squares covering the whole country [6]. The
forest resource information collected by the Finnish forest center is open data. Moreover,
Finnish forest owners receive inventory information about forest plot characteristics such
as volume, growing stock, time of first thinning, etc., at the stand level. On a regional
scale, remote sensing is the main source of data collection for forest inventory in Nordic
countries [7]. At the forest plot scale, however, inventory information at the individual
tree level is essential for planning forest management activities, and information on tree
height is very important when forest owners and managers are making decisions on
silvicultural activities.

Precision in height measurement of trees is crucial for assessing above-ground biomass
(AGB) in young forests, but tree height measurement is relatively difficult regardless of the
method used, be it field measurement or a remote sensing method [8]. It should be noted
that field measurement of tree height is more difficult than diameter measurement because
of the nature of branches and tree crowns, and optical effects [9]. Furthermore, traditional
approaches to field measurement of tree parameters are very time consuming and labor
intensive, and the accuracy of field-measured height remains uncertain until measured
from the felled trees [10]. Biometric factors such as tree species, age, length of the fallen
tree, topography, and stand structure also influence the accuracy of field measurements of
tree height [11].

Remote sensing (RS) methods such as terrestrial laser scanning (TLS), mobile laser
scanning (MLS), airborne laser scanning (ALS), unmanned aerial vehicle (UAV) LiDAR,
and digital aerial photogrammetry (DAP) have proved to be efficient and accurate for
estimating tree parameters [12–19]. In recent years, UAV LiDAR has become increasingly
popular [20–26] as it provides 3D information with a higher spatial resolution due to its
low flying altitude [27–29]. It also accommodates a higher data acquisition frequency for
continuous forest monitoring and offers high temporal resolution [30]. Moreover, it has
been found that LiDAR processing algorithms are robust and standardized, and elevation
data is accurate [31]. The detection rate of individual trees and the crown height estimation
are also very accurate [32–34]. However, the cost of scanning and data acquisition are the
major limitations for LiDAR application in forest inventory [35].

Interest in DAP in forest inventory has similarly grown significantly because of its
ability to provide 3D point clouds and acceptable accuracy [36–38] and the lower cost of data
acquisition and processing [39,40] compared to LiDAR. UAV-DAP can provide accurate
information about individual tree height [19,41–43] by using differences in structure from
motion (SfM) software data in image processing [44,45]. In addition, high-density SfM point
clouds have been found helpful for monitoring canopy structures of boreal forests with
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long temporal and large spatial extent [46]. Research has also shown that forest inventory
can be successfully carried out using photogrammetrically derived drone-based image
point clouds (DIPC) even without in-situ field measurement [47]. Hence, the application
of high-resolution DAP can be considered a reliable alternative to LiDAR for collecting
information on the forest structure [48,49].

Earlier studies have commonly used either LiDAR or DAP data to study forest re-
sources, but only a small number of studies [23,32,33,38,45,50–53] have compared the
performance of both methods simultaneously for the estimation of forest structural param-
eters. It should be noted, however, that these previous studies have mainly focused on
mixed, uneven-aged, and mature forests. Nevertheless, a few studies in which the height of
an individual tree is accurately estimated in small plantation trees utilizing LiDAR [54–57]
and DAP [19,41,42,58–60] have been presented. In addition to these, some very limited
studies have been carried out comparing UAV LiDAR and DAP tree height on small horti-
cultural tree crops [61], young plantation forest [62], and Eucalyptus trees of varying age
and tree height ranging from 5 m to 16 m [45].

Chao et al. [63] reviewed five estimation methods using remote sensing information
for energy crop biomass evaluation. They aggregated remote sensing data from LiDAR
and DAP to acquire physical proxies of plant biomass such as crop height in agriculture.
However, to the best of our knowledge, no work can be found in the literature that compares
individual tree height estimations between UAV LiDAR and digital aerial photogrammetry
in fully grown young energy wood forests. This study aims to address this research gap by
utilizing both UAV LiDAR and DAP data to estimate and compare individual tree height
in a low-density young Finnish forest. The work aims to answer the research question of
whether DAP and LiDAR can be utilized as a tree height measurement method for young
forest inventory.

2. Materials and Methods
2.1. Study Area

The study area is located in a private forest in Pieksämäki (62◦21′0” N 27◦6′30” E) in
the Southern Savonia region of Finland, Figure 1.
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Figure 1. Study area: (a) Finland showing the Southern Savonia region and study area with location
of field-measured trees, and (b) LiDAR and DAP point clouds.

The selected study area (2.8 ha) is located within three forest stands. We took the forest
stands boundaries from the open access forest data published by the Finnish Forest Centre.
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We defined the forest stand as young forest because of its age, the mean diameter at breast
height (DBH), and the mean height of the trees [64], and because the plot had recently
undergone its first commercial thinning operation for forest bioenergy [65]. The three
forest stands were regrouped into two study stand areas based on the stand characteristics.
The study area in the northern two stands was designated as stand area 1 and that of the
southern stand as stand area 2 (Figure 1). The stand attributes of the forest studied are
presented in Table 1. The shape of the study area was delineated based on the trail left by
the harvesting machine.

Table 1. Attributes of forest stands located in the study area as defined by the Finnish Forest
Centre [64].

Stands Area
(ha)

Stand Age
(year) Developmental Class Dominant

Species
Mean

DBH (cm) Mean Height (m)

1 3.12 25 Young forest Scots Pine 10.30 9.50
2 6.18 27 Young forest Silver Birch 13.68 13.16

2.2. DAP Data

The digital aerial photographs used in the study were taken on 16 June 2020. The
DAP images were acquired using a 42 MP Sony RX1R II (Sony, Tokyo, Japan) compact
camera with a GEODRONE X4L drone (Geotrim Oy, Vantaa, Finland). This drone can resist
a maximum of 18 m/s of wind speed and the flight range can reach up to 2500 m. A single
flight was conducted for capturing photographs. The flight path of the UAVs for both
LiDAR and DAP was controlled by a predefined ground control system. The GNSS and
inertial measurement unit (IMU) in the drone recorded the longitude and latitude, elevation,
roll angle, and pitch angle of each image in real-time. The five ground control points (GCPs)
were set within the study area and were located using Trimble RTK (Real-Time Kinematic)
positioning. The spatial resolution of the photographs was 4 cm/pixel. Image overlaps
were 80 % for longitudinal and 65 % for lateral sections. A total of 812 images were captured
during flight in the area. Here, the area means a larger area captured from the UAV, of
which the study area is a part. All images had a photo resolution of 7952 × 5304 pixels.

2.3. LiDAR Data

The UAV LiDAR campaign took place on 29 July 2020, one and half months after
the DAP scanning, using the same UAV as used for DAP image collection. The LiDAR
data were acquired by a YellowScan Surveyor® sensor (YellowScan SAS, Saint-Clément-
de-Rivière, France). The system comprises a Velodyne VLP-16 Puck laser scanner, a
high-performance Global Navigation Satellite System (GNSS) antenna, and an Inertial
Navigation System (INS). These features enable highly accurate position and orientation
determination and direct georeferencing. The point cloud data from LiDAR was classified
into ground and non-ground points. The flying parameters for both LiDAR and DAP are
presented in Table 2. More information related to LiDAR and DAP is provided in Figure 1
and Appendix A, Figures A1–A3.

Table 2. LiDAR and DAP flying parameters.

Parameters LiDAR DAP

Flying height (m) 60 140
Average Flying speed (m/s) 5 7
Point density (points/m2) 105 NA *

Pulse rate (kHz) 300 NA *
Overlap in flight direction (%) NA * 80

Side overlap (%) 50 65
Distance between flight lines (m) 50 27

* Not Applicable.
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2.4. Validation Field Data Collection

Reference data were collected on the 10 and 14 June 2021, one year after the LiDAR–
DAP campaign, and are given in the appendix (Figure A4). A total of 130 individual trees
from the three stands were sampled for height measurement. The area had previously
undergone harvesting operations by machine harvester (Ponsse Scorpion King). Eight
straight corridors were marked after the harvesting, and we used these corridors as a
straight line for our measurement. Systematic sampling was conducted, and the nearest
tree (right or left) was measured at 10-m intervals along the line. High-precision GNSS
was not required to locate individual tree positions. Instead, we utilized the LiDAR and
DAP tree list map (polygon and point map) and high-resolution orthophotographs to
locate the individual trees in the field. Moreover, the tree density of the study area was
sparse (LiDAR-1020 trees/ha and DAP-996 trees/ha according to our RS scanning result
for all three stands) because of the harvesting operation. Field height measurement was
carried out only of those trees that had been detected in both the LiDAR and DAP scanning
and were present in the tree list map. The tree height was measured using a Suunto
PM5/1520 clinometer (Suunto Oy, Finland). The dominant tree species in all three forest
stands were Scots Pine (Pinus sylvestris), Norway Spruce (Picea abies), and Silver Birch
(Betula pendula). Planted Eurasian Aspen (Populus tremula) also coexisted as a secondary
species in all stands. There is a discrepancy in time between the field measurement and
drone campaign. The time difference is one growing season with a height growing period
of May–July. In addition, previous study has indicated that trees mostly grow in height
rather than diameter during their young age [66]. Hence, we expected to find a slightly
higher height from field measurement than found with the LiDAR and DAP measurements.

2.5. DAP and LiDAR Processing for CHM

For DAP analysis, the transformation of images into digital maps and 3D point clouds
was performed using the professional software Pix4D (Pix4D S.A. Prilly, Switzerland) [67].
The structure from motion algorithm in Pix4D was used in aerial imagery pre-processing to
generate dense image point clouds. The average point density of the area was 732 pts/m2.
Both data sets, LiDAR and DAP point clouds, were normalized by the LiDAR-generated
digital elevation model (DEM) to derive heights above ground. A canopy height model
(CHM) was created based on the normalized point cloud using the method presented by
Khosravipour et al. [68] for both DAP and LiDAR. The method has two stages. In the first
stage, standard a CHM is created using all first returns and partial CHMs from the first
returns that correspond to higher-up vegetation hits. Note that in DAP data all returns
are first returns. In the second stage, the CHMs are combined into one CHM based on the
highest value across all CHMs for each x and y raster position. The pixel size of CHM for
both LiDAR and DAP was 20 cm × 20 cm. The CHMs from LiDAR and DAP are shown in
Figure 2.

2.6. Estimation of Height from DAP and LiDAR

Individual tree crowns were delineated from the DAP and LiDAR-derived CHM
(Figure 3) separately using the automatic tree delineation method built-in ArboLiDAR
(Arbonaut Oy Ltd., Joensuu, Finland) [69]. The first step is to preprocess the CHM by filling
the small holes in the CHM and masking out small vegetation, in our case vegetation below
2.0 m. Local maxima were then searched from the CHM and a region growing method was
applied to these seed points. The polygons delineated with the method were converted to
points that represented tree locations. The height of an individual tree was estimated to be
the highest observation from the point cloud inside the polygon.
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2.7. Data Analysis

First, correlation of the height of an individual tree from all three combinations, i.e.,
field measurement vs. DAP, field measurement vs. LiDAR, and LiDAR vs. DAP was carried
out. The coefficient of determination (R2) was calculated to find the correlation between all
pairs using Equation (1). Further, we calculated root mean square error (RMSE) and bias
for height accuracy assessment of field-LiDAR and field-DAP using Equations (2) and (3).
For LiDAR-DAP, the root mean square deviation (RMSD) and mean difference (MD) were
computed in a similar manner to the RMSE and bias, respectively.

R2 = 1− ∑n
i=1(xi − x̂i)

2

∑n
i=1(xi − xi)

2 (1)

RMSE =

√
1
n ∑n

i=1(xi − x̂)2 (2)

bias =
1
n ∑n

i=1(xi − x̂i) (3)

where xi represents the field-measured values for tree i, x̂i represents the estimated values
for tree i, xi represents the average field-measured values for all trees, and n is the total
number of trees.

Next, the height differences were calculated from three measurements to check the
range of the differences. The mean difference, standard deviation, and minimum and
maximum values of the differences were calculated for all species to ascertain whether
tree heights derived from one method were, on average, greater or smaller than those of
other methods. The normality of the height differences (residuals) was tested using the
Shapiro-Wilk test. Further, comparative analyses of the three methods were carried out
using both paired t-tests and one-way analysis of variance (ANOVA).

3. Results
3.1. Descriptive Results

Information on the height observed with the three methods is presented in boxplots in
Figure 4. Aspen is omitted from the figure since there were only two observations of aspen
trees during the field campaign. Due to the time difference between the remote sensing
and field campaigns, the mean height from field measurement is, as expected, higher for
all species.

Details of the descriptive statistics are shown in Table 3. The field measurements
resulted in heights ranging from 7 to 26 m with a mean value of 13 m for all species,
whereas LiDAR and DAP gave heights ranging from 5 to 26 m with a mean of 12 m.
Among the 130 individual trees, pine was found to have the shortest and tallest tree based
on the field measurements. On the other hand, LiDAR and DAP found birch and pine to
have the shortest and tallest tree, respectively. The standard deviation for pine is greater
than that of the other species with standard deviation ranging from 3.1–3.3 m observed for
all methods. The minimum standard deviation value is found for aspen (0.5–1 m) because
there are only two close height readings (16 and 18 m) for this species.

Table 3. Descriptive results of height (m) derived from field measurements, LiDAR, and DAP.

Species
Field Measurement LiDAR DAP

Mean (SD) Min Max Mean (SD) Min Max Mean (SD) Min Max

Pine (n = 32) 11.23 (3.25) 6.50 25.50 10.53 (3.52) 5.30 25.80 10.42 (3.64) 5.10 25.70
Spruce (n = 29) 12.26 (2.66) 7.50 19.00 11.98 (2.82) 6.00 19.40 11.83 (2.89) 5.20 19.60
Birch (n = 67) 13.68 (2.84) 7.50 19.50 12.82 (2.94) 5.20 20.10 12.49 (3.06) 5.00 19.00
Aspen (n = 2) 17.00 (0.71) 16.50 17.50 16.70 (1.27) 15.80 17.60 16.45 (0.50) 16.10 16.80
All (N = 130) 12.82 (3.10) 6.50 25.50 12.13 (3.22) 5.20 25.80 11.89 (3.30) 5.00 25.70
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3.2. Correlation Analysis

Correlation analysis was performed for individual tree height measured and estimated
from each combination of field measurement, LiDAR and DAP for pine, spruce, and birch,
which resulted in nine outputs. Scatter plots in Figure 5 show the nine correlation outputs.

The comparison of the field, LiDAR, and DAP tree height for the three species is
summarized in Table 4. The obtained R2 values, error (RMSE or RMSD), and bias or MD
showed a good correlation between the field, LiDAR, and DAP tree height observations.
The R2 values are 0.85 (Measured vs. LiDAR), 0.70 (Measured vs. DAP), and 0.86 (LiDAR
vs. DAP) for all species. LiDAR values are more closely correlated with measured height
than DAP values in all species. The error associated with LiDAR is smaller than the error
obtained for DAP in all three species. Interestingly, spruce has lower error (Bias= 0.30 and
RMSE= 1.17) and higher correlation (R2 = 0.83) with measurement data, which are very
comparable and minimum errors shown by LiDAR. In addition, the LiDAR–DAP relation-
ship is strongest among the three pairs, followed by Measured-LiDAR when combining
all species. Similarly, for all species, the LiDAR–DAP pair has the lowest MD and RMSD
values, whereas Measured–DAP shows the highest RMSE and bias.

Table 4. Correlation and errors of tree height derived from the field, LiDAR, and DAP data for
different species.

Species
Measured vs. LiDAR Measured vs. DAP LiDAR vs. DAP

R2 Bias RMSE R2 Bias RMSE R2 MD RMSD

Pine 0.86 0.70 1.44 0.71 0.82 2.13 0.79 0.12 1.67
Spruce 0.83 0.30 1.17 0.83 0.44 1.26 0.98 0.15 0.45
Birch 0.81 0.86 1.56 0.69 1.19 2.08 0.85 0.33 1.26
All 0.85 0.67 1.44 0.70 0.92 1.92 0.86 0.24 1.25

Note: Pearson’s correlation among the three pairs was statistically significant for all species at p < 0.01.
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Figure 5. Scatter plots of height estimation (m) from LiDAR against field measurements, DAP against
field measurements, and DAP against LiDAR for (a) pine, (b) spruce, and (c) birch.

3.3. Height Differences
3.3.1. Descriptive Results

Height differences between field vs. remote sensing methods are presented in Table 5.
In Measured vs. LiDAR height, the average height difference was 0.69 m. The minimum
and maximum difference observed was in aspen (0.10 m) and pine (5.50 m), respectively.
Similarly, in Measured vs. DAP height, the average height difference was 0.92 m, where
the minimum difference was 0.40 m for aspen and the maximum difference was 9 m for
birch. In LiDAR vs. DAP height, the minimum and maximum height differences were
0.30 m in aspen and 8.40 m in pine, respectively, with an average of 0.24 m. The maximum
height difference of 5.50 m, 5.90 m, 7.30 m, 7.60 m, and 8.40 m was measured and calculated
only from 3 (2 pine and 1 birch) out of 130 trees. The mean and SD values explained those
maximum height differences well.

Table 5. Height differences (m) between field and remote sensing data.

Species
Measured–LiDAR Measured–DAP LiDAR–DAP

Mean (SD) Min Max Mean (SD) Min Max Mean (SD) Min Max

Pine 0.70 (1.28) −1.90 5.50 0.82 (2.00) −7.30 5.90 0.12 (1.69) −8.40 2.40
Spruce 0.30 (1.15) −2.80 2.70 0.44 (1.20) −2.40 2.90 0.15 (0.43) −0.70 1.40
Birch 0.86 (1.31) −2.10 3.80 1.19 (1.71) −2.20 9.00 0.33 (1.23) −2.90 7.60

Aspen 0.30 (0.57) −0.10 0.70 0.55 (0.21) 0.40 0.70 0.25 (0.78) −0.30 0.80
All 0.69 (1.27) −2.80 5.50 0.92 (1.69) −7.30 9.00 0.24 (1.23) −8.40 7.60
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3.3.2. Normality of Residuals

A normality test of the height differences among the methods was performed using the
Shapiro-Wilk test for all species. The test resulted [Pine- (Field measured-LiDAR: W = 0.89,
p = 0.003; Field measured-DAP: W = 0.77, p = 9.8 × 10−6 and LiDAR- DAP: W = 0.51,
p = 3.2 × 10−9)], [Spruce- (Field measured-LiDAR: W = 0.95, p = 0.24; Field measured-DAP:
W = 0.96, p = 0.42 and LiDAR- DAP: W = 0.95, p = 0.19)] and [Birch- (Field measured-LiDAR:
W = 0.99, p = 0.82; Field measured-DAP: W = 0.92, p = 0.0003 and LiDAR- DAP: W = 0.70,
p = 1.7 × 10−10)]. The p > 0.05 for all methods for spruce measurement and measured
vs. LiDAR height for birch shows an indication of assumption of normal random error
in residuals. The rest of the residuals were skewed from normal, as can be seen in the
histogram of individual residuals and the normal curve for all species in Figure 6.
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3.3.3. Comparative Analysis

A paired t-test was used to determine the statistical significance of the results for
height estimation of the three different approaches. We chose a parametric test for all
species because of the central limit theorem (CLT) for pine and birch (N > 30) and the
normality in the residuals in all pairs for spruce (N = 29). The test observation among
three approaches for height observation revealed both significant and insignificant results.
For Pine [Measured-LiDAR: t (32) = 3.09, p ≤ 0.05; Measured-DAP: t (32) = 2.32, p < 0.05;
LiDAR-DAP: t (32) = 0.40, p = 0.69], for Spruce [Measured-LiDAR: t (29) = 1.38, p = 0.18;
Measured-DAP: t (29) = 2.00, p = 0.06; LiDAR-DAP: t (29) = 1.85, p = 0.07] and for Birch
[Measured-LiDAR: t (67) = 5.38, p < 0.05; Measured-DAP: t (67) = 5.68, p ≤ 0.05; LiDAR-
DAP: t (67) = 2.20, p < 0.05]. The paired t-test showed that with the exception of spruce,
the height difference between the measured height and LiDAR/DAP height is statistically
significant for the species studied. The t-test result found non-significance between LiDAR
and DAP in pine and spruce. Overall, the height estimation from remote sensing methods
is not statistically different from field measurements in spruce. In addition, both LiDAR
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and DAP estimated similar heights in pine and spruce. In pine and birch, remote sensing
methods underestimated the height of individual trees relative to field measurements.

We used a one-way ANOVA test to find out if the average height estimated from
the three methods is significantly different for the studied species. The results for pine:
[F (2,93) = 0.52, p = 0.60)], spruce: [F (2,84) = 0.19, p = 0.83)], birch: [F (2,198) = 2.91, p = 0.06)]
and all combined (+Aspen): [F (2,387) = 2.92, p = 0.06)] suggested that there was no sig-
nificant difference in mean height estimated for all three methods. However, the p values
around the edge (0.05) suggest some differences which we assume are because of the
temporal variation of one year between the remote sensing and field measurement.

Figure 7 shows the residuals of height differences from the three methods. The
residuals related to DAP revealed few higher values in Pine and Birch. Moreover, there is a
weak positive relationship of measured-LiDAR against measured tree height and measured-
DAP against measured height in Birch and Pine. There is no correlation in Spruce. In
addition, no relationship in residuals was found between LiDAR–DAP and LiDAR height
in all species (Figure 7, last row).
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4. Discussion

In this study, we examined the ability of modern remote sensing approaches, i.e., UAV
LiDAR and DAP, to provide accurate estimations of individual tree height in a young forest
in Finland. Manual selection of the individual trees in the LiDAR and DAP approaches
and their identification in the field for reference measurements was possible due to the
low density of the forest, the availability of DAP and LiDAR images, and the use of 3D
point clouds. Moreover, manual matching of trees was also possible due to the selection of
trees along the harvester trails. The manual location of individual trees has been carried
out in previous studies [70,71]. In [70], up to 75 % of the trees were located correctly with
an accuracy of 60 cm in a similar but denser pine–spruce–birch forest in Finland. In [71],
individual trees detected using LiDAR were manually matched with field-measured trees
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by digitally delineated tree crowns using GIS and the 3D LiDAR data viewer. High-density
(>10 pulses/m2) LiDAR 3D point clouds were used as a reference to locate individual
trees [71], which is also the case in our study.

We found that height estimated from DAP and LiDAR had a good correlation with
field measured height. As shown in Table 4, a correlation coefficient (r) of 0.92 and 0.84 and
RMSE of 1.44 and 1.92 were found, on average, between field measurements and LiDAR,
and field measurements and DAP, respectively, for all species together. These correlation
results are better than those of a previous study in Eucalyptus spp. plantations comparing
LiDAR/DAP height with field measured height [53], where the correlation coefficient and
RMSE between the field measurement and LiDAR were 0.69 and 2.84, respectively, and
between the field measurement and DAP 0.66 and 2.80. Guerra-Hernández et al. [53] argued
that the type of forest, more spherical shape of the crown than conifers, and topographically
complex terrain causes inaccuracy in the formation of DEMs and estimation of tree height.
Whereas, in our case, the better correlation in individual tree height between remote sensing
and field measurement was mainly due to different tree densities and morphology and flat
terrain of the area. The correlation coefficient between field measurements and LiDAR-
detected individual tree height was close to 1 in [34], which was a study carried out in a
pine-, spruce- and birch-dominated forest in Finland. However, the study was carried out
in a sparsely populated mature forest. The paper noted that “the taller the tree, the more
reliable was the ALS-based tree height” [34]. In our study, the correlation is a bit poorer,
possibly due to a dominance of shorter and young trees. In addition, the tree heights in [34]
were measured manually from ALS and TLS point clouds with the help of available tree
maps, which differs from the data processing approach in this work. The differences in
the comparison statistics could also be related to the nature of the forest stands, the tree
density, and the crown cover.

In our study, the strongest correlation coefficients were between LiDAR and DAP tree
height for spruce and birch. For pine, however, the correlation was strongest between the
field measurement and LiDAR. It should be noted that the LiDAR estimated tree height
showed a better correlation with field measurements than the DAP-based estimations,
which is consistent with previous studies [23,32,33,38,45,52]. The overall performance and
correlation accuracy (R2, RMSE, and bias) of the results in our study are better than the
results from [45,52] and poorer than those presented in [23,32,33,38]. For example, in [38],
a very significant statistical correlation with r values of 0.90–0.95 was found between
LiDAR and DAP measurement when comparing height in different percentile height
metrics. These values indicate a better correlation between the remote sensing methods and
are in line with our study results. Conversely, the study by Sankey et al. [51] found DAP
measurement (fixed-wing UAV multispectral image-based SfM point cloud data) had a
better correlation (r = 0.96) with the field measurements than LiDAR (r = 0.94) in a sparsely
populated ecotone.

The results from the paired t-test (Section 3.3.2) for field-LiDAR and field-DAP mea-
surement for mean height estimation of pine and birch showed discrepancies between the
field measurements and the remote sensing methods. Many factors may have affected the
measurement performance of the studied methods. First, there was a temporal variation
between the field measurement and remote sensing campaign. The difference of one year’s
growing season between the observed and estimated height could have affected the result.
The statistically insignificant paired t-test result for LiDAR and DAP for pine and spruce
supports this supposition. However, the statistically insignificant result for every pair in
spruce could be related to slow growth in the tree height in the year between the measure-
ments. Second, it is unclear how accurately the trees were measured with the available
field instruments. In a previous study of pine and spruce, ALS height estimation was
found to be highly correlated with direct measurement (DIR) when compared to indirect
measurements (IND), where the DIR was a measurement carried out on felled trees and
IND (as in this study) was a measurement using field instruments on naturally existing
trees [10]. However, all the estimation methods (three ALSs, DIR, and IND, five in total)
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were not statistically different (Kruskal-Wallis test, p = 0.92). The authors of [10] raised the
issue of selection of the true measurement and mentioned direct measurements on felled
trees (DIR) as being an important factor affecting the accuracy of field and remote sensing
surveys. This gives a valid reason to think about the importance of LiDAR implications in
tree height measurements in comparison to traditional field measurements.

A case somewhat similar to our work is a study that compared DAP and ALS on
similar species (Scots Pine, Norway Spruce, and Silver Birch) [32]. The paired t-test results
in [32] presented strong evidence that the differences between the combinations of field,
LiDAR, and DAP height measurement are statistically significant and that LiDAR/DAP
height measurement tends to underestimate height compared to field data. It should be
noted that the field and remote sensing data in [32] were collected during the same period.
The authors further emphasized the role of the biophysical characteristics of each tree
species and the complex and dense forest stands studied, which prevented the treetops
from being clearly visible during field measurements. Moreover, the LiDAR and DAP
data in [32] were processed differently because of slightly different outputs obtained for
DAP-CHM. Hence, in some cases, it might be hardly fair to blame temporal difference
alone for the significant t-test in comparison between the methods.

5. Conclusions

Utilization of LiDAR and DAP for height estimation is possible in sparsely populated
stands of young trees. Moreover, there is no need for high-precision GNSS to locate an
individual tree if high-resolution tree maps and 3D information of the plot are available for
the given area. In this study, both the LiDAR- and DAP-derived tree heights were strongly
correlated with the field height measurements in all species. However, LiDAR showed
a greater correlation with field measurements than the DAP approach. The correlation
between LiDAR and DAP is very strong for all species. All methods produced similar
values for the height of spruce at the individual tree level. For pine and birch, however,
there was a significant difference between field measurements and remote sensing methods.
Both LiDAR and DAP displayed a tendency to underestimate tree heights compared to
the field measurements. The presence of a few outliers estimated from DAP, specifically
for pine and birch, resulted in abnormality in the residuals. However, overall average
tree heights were not statistically different for the methods studied, which was seen in the
ANOVA results for each species individually and combined.

Cost-effective 3D DAP methods may be the future of forest inventory at the individual
tree level but, due to some inherent limitations, DAP cannot completely replace LiDAR
technology. Nevertheless, DAP can be a reliable and economically viable method for
collecting and updating information from young forests. Combining LiDAR and DAP
measurement could be more effective for accurate estimation of height, diameter, and
above-ground biomass of energy wood trees. The work in this paper considered spruce,
birch, and pine in one Finnish forest stand; further study could examine larger areas with
different ecological profiles to provide more information on the effectiveness of the methods
and combinations of methods. Additionally, we suggest further study at an individual tree
and stand level, specifically in young forests so that accurate information on biomass can be
retrieved and the forest industry can contribute fully to the forthcoming energy transition.
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