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Abstract: China’s carbon reductions are of great significance to the realization of global temperature
control targets. Carbon emission intensity (CEI) represents the degree of coordination between
emissions and economic development to some extent. Nevertheless, there is a paucity of research on
its spatial–temporal evolution and regional differences. To fill the gap, this study exploits the Theil
index to shed light on the characteristics of its spatial–temporal distribution and regional disparities
in China during the period of 2000–2019, and constructs a multi-regional spatial index decomposition
model to analyze the differences in its drivers. The results indicate that the decreasing CEI during
the period of 2000–2019 shows a distinctive imbalance in spatial–temporal distribution. The gap
between north and south is greater than that between east and west. The expansion of the Theil
index based on CEI reveals a widening tendency of the mismatch between emissions and economic
development among provinces. CEI disparity is mainly due to growing intraregional differences. For
most provinces, the energy intensity effect is the essential driver of spatial differences regarding CEI,
with the energy structure and the industrial structure effects gradually changing from promoting
to inhibiting effects. The carbon emission factor effect has no significant fluctuation, but regional
differences are distinct.

Keywords: carbon emission intensity; disparity; Theil index; spatial IDA; driving factors

1. Introduction

In recent decades, the high-speed economic development of China has been accompa-
nied by a high-intensity consumption of resources, massive consumption of fossil energy,
and rapid growth of pollutants and carbon dioxide emissions (CO2). As the world’s leading
CO2 emitter [1], the share of China’s carbon emissions in global emissions reached 27.8% in
2018 [2]. The dramatic increase in carbon emissions in China has attracted more attention.
Compared with western countries, China is under tremendous pressure to reduce carbon
emissions and has adopted a series of aggressive carbon reduction plans. In this context, the
Chinese government has committed to reduce the intensity of carbon emissions by 60–65%
in 2030 compared to 2005 [3–5]. In particular, China proclaimed in 2020 that it would
achieve a peak in CO2 emissions by 2030 and strive to move toward carbon neutrality by
2060 [6–8].

To achieve emission reduction targets and commitments, the Chinese government
has been actively taking countermeasures to address the aggravating challenge of carbon
emissions. Through a package of initiatives, including industrial transformation and
upgrading [9], energy restructuring [10], and technological innovation [11], China has
achieved prominent performance in carbon emission control. China’s carbon intensity
decreased by 29.14% in 2007–2012 [12]. By the end of 2019, the goal to reduce carbon
emission intensity (defined as carbon emissions per unit of gross domestic product) by
40–45% in 2020 had been achieved ahead of schedule. Although China has made impressive
gains in reducing carbon emissions, it remains a huge challenge to further push emission
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reductions with the slowdown of carbon emission intensity (CEI) reduction. In particular,
it has escalated the challenges of reducing emissions in light of the dramatic divergences
in resource endowments, economic development, and energy consumption structures
among provinces. In this context, it is necessary to gain an in-depth understanding of the
characteristics and differences in the spatial–temporal distribution of CEI among provinces.

As a synthesis of energy structure, technology level, and industrial structure, carbon
emission intensity represents, to some extent, the relationship between carbon emission and
economic–social development. Hence, CEI is an essential benchmark for the formulation
of emission reduction policies and initiatives, which are also in line with the emission
reduction targets committed by the Chinese government to the international community.
In the new normal stage of development characterized by growth slowdown in China [13],
shedding light on the sources of interprovincial differences in CEI can clarify the geographic
regions with greater potential for emission reduction and guide the design of emission
reduction strategies. It is of utmost significance to investigate the spatial–temporal char-
acteristics and inequality in CEI for the formulation of scientific energy conservation and
emission reduction solutions.

Therefore, this study is dedicated to revealing the evolutionary path, regional dif-
ferences, and driving force changes in carbon intensity in China during the period of
2000–2019 in order to provide support and reference for the achievement of China’s carbon
reduction targets. Given the concerns, this study adopts CEI as an indicator reflecting the
degree of coordination between economic development and emission levels, and attempts
to unveil the disparity in CEI and its spatial–temporal distribution characteristics among
provinces in China, as well as to further reveal the factors influencing CEI.

The main contributions and innovations of this study are as follows: (1) The temporal–
spatial evolution characteristics of the CEI in China during the period of 2000–2019 are
analyzed. Based on the Theil index, the trends of CEI disparities at the provincial level
are dissected, and the mechanism of the role of intraregional and interregional differences
in the total disparities is revealed. (2) By constructing a multi-regional spatial index
decomposition analysis (M-R&S-IDA) model, this study explores the mechanism of factors
influencing CEI, analyzes the differences in influencing factors at different spatial–temporal
scales, and uncovers the underlying mechanism of CEI changes in a more comprehensive
manner. (3) Relevant countermeasures are proposed based on empirical results, which
provide support for the formulation of effective emission reduction in different regions and
provide a basis for policy makers to fulfill emission reduction commitments.

The remainder of this article is organized as follows: Section 2 is the literature review.
Section 3 presents the methodology and data sources. The results, discussion, and policy
recommendations are in Section 4. Section 5 shows the conclusion.

2. Literature Review

CEI is not only a critical indicator in energy saving and emission reduction but also
an effective reference for measuring the degree of low-carbon development. Research
regarding the issue of regional disparities in CEI or carbon emissions is mainly divided
into two categories in terms of research methods: the Gini coefficient [14–16] and the
Theil index [17–20]. Recently, some scholars have applied the above inequality index to
measure regional carbon emission disparity and explore the sources of inequality [21]. More
specifically, Wang and Zhou [22] employed the Theil index and the IDA model to explore
global carbon emission disparity during the period of 1995–2009. The results showed
that the global carbon emissions disparity originates mainly from emerging economies,
especially China and India. Based on the Theil index and Kaya identity, Pakrooh et al. [19]
identified provincial differences in carbon emissions in Iran’s agricultural sector and further
analyzed their drivers. Bianco et al. [23] revealed the inequality in energy and carbon
emissions in the EU during the period of 2008–2016 via the Theil index. The results
indicated that carbon emission disparity remained relatively stable over the study period
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and that the gross domestic product (GDP) was the main driver. Studies exploring spatial
differences and spatial–temporal heterogeneity in carbon emissions also include [24–26].

However, it is not meaningful to solely measure the inequality in CEI or carbon emis-
sions. Both policy makers and academics are actively exploring the causes of inequality
to find an optimal action plan [27]. Consequently, it is more valuable to recognize the
driving forces of carbon emission differences using appropriate methods. Currently, many
scholars are focusing on the dynamic changes and factors that influence carbon emissions,
and research methods include index decomposition methods [27–31], structural decom-
position methods [28,32–35], and econometric regression analysis based on the STIRPAT
model [36–38]. For example, based on multiplicative structural decomposition analysis
(SDA), Su and Ang [12] proposed an aggregated embodied intensity indicator to analyze
CEI from the demand perspective. Wang et al. [39] utilized a multi-regional SDA to discover
the drivers of CEI at the global level, as well as at the national level.

However, the update cycle of the input–output tables on which SDA relies is long, and
it is difficult to obtain data for the most recent year. In contrast to SDA, index decomposi-
tion analysis (IDA) allows for long-term, continuous time-series comparative analysis [40].
Given the flexibility and data requirements of IDA, IDA has been increasingly used in the
field of energy research and carbon emissions. To eliminate the underlying impact of geo-
graphic regions, some scholars employ intensity indicators rather than absolute indicators
to represent specific regional carbon emissions. Subsequently, an increasing number of
studies have applied IDA to explore the drivers of IDA in multiple regions [41–43]. For
example, Xu et al. [44] decomposed the influencing factors of national CEI at the multi-
regional level and found that developed regions in China have a significant inhibitory effect
on national CEI and that energy intensity exerts a noticeable impact on national carbon
intensity. To better understand the CEI of the production-based and consumption-based
sides, Xiao et al. [45] applied IDA to probe the changes in CEI influencing factors at global
and national scales. Pan et al. [46] analyzed the influencing factors of CEI in 29 provinces
of China during the period of 1998–2019, shedding light on the regional differences in
technological progress, industrial structure, and regional scale effects.

Furthermore, Su and Ang [47] defined two types of decomposition analysis: temporal
decomposition analysis and spatial decomposition analysis. With the expansion of regional
differences, some scholars have dedicated themselves to exploring regional heterogene-
ity regarding the factors influencing carbon emissions based on spatial decomposition
analysis [21,23,27,40]. Li et al. [48] explored the evolution of CO2 emission drivers using
improved spatial IDA from national and regional perspectives in China. The results indi-
cated that energy efficiency and economic scale are the leading contributors to the regional
disparity in CO2 emissions. Based on panel data from Chinese provinces from 2000 to
2015, Song et al. [49] uncovered regional differences in CEI and the dynamics of influencing
factors by applying temporal–spatial IDA.

Nowadays, there is still a need to further deepen the research on the evolutionary
path of CEI and regional differences in China. The literature on CO2 emission reduction
in China mostly applies the total carbon emissions as an indicator to measure the level of
CO2 emission; however, another accounting indicator for carbon emission control targets
and 2030 emission reduction commitment is CEI. For this reason, it is more meaningful to
investigate the regional differences in China from the perspective of CEI. Furthermore, the
available studies are mostly conducted from a national or regional perspective, which can
reflect the evolution of the general national CEI, but it is difficult to reveal the disparities in
provinces. For countries such as China, where there are significant regional differences, it
is of more practical value to discover provincial disparity in carbon emissions. Finally, to
accurately grasp the CEI of each province, it is also necessary to analyze the evolutionary
path of province-level CEI with respect to the temporal–spatial dimension. To fill the gap,
this article explores the path of CEI evolution in Chinese provinces and applies the Thiel
index to reveal the main sources of regional disparity. Then, based on the M-R&S-IDA
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model, the influencing factors of CEI in each region and province are identified to disclose
their changing dynamics.

3. Methodology and Data
3.1. Estimation of CO2 Emissions

To calculate CEI, we need to gain access to carbon emissions. According to the
principles outlined by the Intergovernmental Panel on Climate Change (IPCC), carbon
emissions are calculated by the following formula:

C = ∑
k

Ek × NCVk × CEFk × COFk × 44/12 (1)

where C is CO2 emissions; k is the energy type; E is the consumption of the kth energy,
obtained from the “Regional Energy Balance Sheet” in the China Energy Statistical Yearbook;
NCV is the net calorific value of the kth energy, taken from the China Energy Statistical
Yearbook; CEF is the carbon emission coefficient, obtained from IPCC 2006; and COF is the
carbon oxidation factor. In this study, the energy types include raw coal, coke, crude oil,
gasoline, kerosene, diesel, fuel oil, and natural gas.

3.2. Theil Index Decomposition

The Theil index is employed to further analyze the regional disparity and the mag-
nitude of changes in CEI. The advantages of the Theil index, which can be fully group
decomposed, are that it can fully decompose the aggregate regional inequality into internal
and external differences at different spatial scales and accurately measure the contribution
of its components. Therefore, the aggregate disparity index of CEI in China can be divided
into within-group and between-group indexes [23,50]. The basic expression of the Theil
index of CEI is

Theilt = ∑
i

∑
j

[
(

Ct
ij

Ct ) ln(
Ct

ij/GDPt
ij

Ct/GDPt )

]
(2)

where t is the year, and GDPt
ij and Ct

ij are the gross product and carbon emissions of
province j in region i, respectively. GDPt and Ct denote national-level GDP and total
carbon emissions in year t.

Equations (3) and (4) represent the within-group Theilt,within,i and between-group Theil
indexes Theilt,between, respectively, which decompose to evaluate the impacts of regional
variations on the total value in Equation (5) [21].

Theilt,within,i = ∑
j

[
(

Ct
ij

Ct
i
) ln(

Ct
ij/GDPt

ij

Ct
i /GDPt

i
)

]
(3)

Theilt,between = ∑
i

[
(

Ct
i

Ct ) ln(
Ct

i /GDPt
i

Ct/GDPt )

]
(4)

Theilt = Tt,within + Tt,between = ∑
i
(

Ct
i

Ct )Theilt,within,i + Theilt,between (5)

After measuring the disparity, the development trend of regional differences can be
judged based on the time dimension. The smaller the value of the Theil index, the narrower
the regional disparity; the larger the value, the wider the regional disparity.

3.3. The Multi-Regional Spatial IDA Model

Spatial decomposition analysis is applied to investigate the explanation for disparities
in carbon emissions among different regions at a specific time. Generally, the spatial
decomposition analysis model is categorized into the bilateral-regional (B-R) model, the
radial-regional (R-R) model, and the multi-regional (M-R) model, and the advantages of
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M-R spatial index decomposition analysis (M-R&S-IDA) models have been discussed in
the related literature [47,50]. Therefore, this study adopts the M-R spatial IDA, as shown in
Figure 1, to research the spatial disparity in factors influencing CEI. Ri denotes any region,
and a is the reference region whose attribute is provided by the average of regions. Given
the lack of energy data for Ningxia in 2000–2002, in this work, the average CEI of China in
2005 is regarded as the reference region.

Figure 1. Multi-regional spatial decomposition model.

Based on the Kaya identity [10,46], the carbon intensity of each province or region is
decomposed into the following factors:

CEI = ∑
k

∑
p

Ckp
GDPkp

= ∑
k

∑
p

Ckp
Ekp
× Ekp

Ep
× Ep

GDPp
× GDPp

GDP

= ∑
k

∑
p

CFkp × ESkp × EIkp × ISp
(6)

where P is the industry (i.e., the primary, secondary, and tertiary industries), CF is the
carbon emission factor, ES is the energy structure, EI indicates the energy intensity, and IS
represents the industrial structure.

The disparity in CEI between the target region or province and the benchmark region
in a given year is calculated in the following equations [45]:

∆CEIt,Total
Ri−Ru

=
CEIt

Ri
CEIt

Rµ

= (∑
k

∑
p

CEt
i,kp × CSt

i,kp × EIt
i,kp × ISt

i,kp)

/(∑
k

∑
p

CEt
µ,kp × CSt

µ,kp × EIt
µ,kp × ISt

µ,kp)

= ∆CEt
Ri−Rµ

× ∆CSt
Ri−Rµ

× ∆EIt
Ri−Rµ

× ∆ISt
Ri−Rµ

(7)

∆CFt
Ri−Rµ

= exp[∑
k

L(CEIt
ik, CEIt

µk)

L(CEIt
i , CEIt

µ)
× ln(

CEt
ik

CEt
µk
)] (8)

∆ESt
Ri−Rµ

= exp[∑
k

L(CEIt
ik, CEIt

µk)

L(CEIt
i , CEIt

µ)
× ln(

ESt
ik

ESt
µk
)] (9)

∆EIt
Ri−Rµ

= exp[∑
p

L(CEIt
ip, CEIt

µp)

L(CEIt
i , CEIt

µ)
× ln(

EIt
ip

EIt
µp

)] (10)

∆ISt
Ri−Rµ

= exp[∑
p

L(CEIt
ip, CEIt

µp)

L(CEIt
i , CEIt

µ)
× ln(

ISt
ip

ISt
µp

)] (11)
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L(a, b) =
{ a−b

ln a−ln b , a 6= b
a or b , a = b

(12)

The disparity between two regions (R1 and R2) in year t0 in the influencing factor I
(i.e., CF, ES, EI, IS) is given as [47]

It0
R1

It0
R2

=
It0
R1

/IRµ

It0
R2

/IRµ

(13)

Regarding the temporal change in a region R1 in the factors influencing I between year
t0 and year t1, the difference can be shown as [47]

It1
R1

It0
R1

=
It1
R1

/IRµ

It0
R1

/IRµ

(14)

The same procedure can be applied to all other regions/provinces and periods.

3.4. Data Sources

This work is conducted in 30 provinces of China (excluding Tibet, Taiwan, Hong Kong,
and Macau for reasons of data availability). The time span is 2000–2019. The data involved
in the model include CO2 emissions, GDP, energy consumption, energy structure, and
the industrial structure of 30 provinces. Among them, the data of energy consumption
associated with the calculation of carbon emissions and energy structure are obtained from
the China Energy Statistical Yearbook (2001–2020), and all kinds of energy consumption
data are converted into standard coal. The GDP of each province is collected from the
China Statistical Yearbook (2000–2019) and converted into constant prices in 2000. The
industrial structure of each province is the share of the three industries in GDP (i.e., primary
industry, secondary industry, and tertiary industry), and the data are taken from the China
Statistical Yearbook.

In light of the comprehensive factors concerning economic and social development
and geographical location, the 30 provinces are divided into six regions (see Figure 2),
namely, northeast, north, east, central-south, southwest, and northwest.

Figure 2. The regional division of 30 provinces in China.
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4. Results and Discussions
4.1. Analysis of the Spatial–Temporal Disparity in CEI

Figures 3 and 4 present the spatial–temporal evolutionary paths of CEI for each
province from 2000 to 2019. Generally, China’s CEI showed a pronounced downward
trend from 2000 to 2019, with distinct differences among provinces. From a dynamic
perspective, CEI showed an upward trend during the period of 2000–2005, peaking at
approximately 4 t/104 CNY. During the period of 2005–2019, the CEI in China experienced
a rapid decline, especially from 2005 to 2010, and, thereafter, the decline began to slow
down. The phenomenon above is attributed to the fact that during the 10th Five-Year
Plan (2000–2005), China was in the rapid industrial development stage. Therefore, the
growth of the economy was heavily dependent on large-scale resource consumption,
coupled with inefficient technology management and a sloppy development pattern, which
generated substantial carbon emissions. Afterward, the Chinese government began to
emphasize energy conservation and emission reduction, and China’s CEI presented a
significant reduction. Up to 2019, China’s CEI dropped by more than 45% from 2005
(from 3.926 t/104 CNY to 1.938 t/104 CNY), reaching the 2020 reduction target earlier
than expected.

Figure 3. The evolution of carbon intensity in 30 provinces.

Concerning regional differences, CEI showed a reduction from the west to east and
from the north to south in general. CEI stabilized in the east (except Shandong), central-
south (except Guangxi), and Beijing–Tianjin regions. CEI in the north and northeast
dropped unremarkably from 2015 to 2019 after a dramatic decline during the period of
2000–2015. However, the CEI of most provinces in the northwest and southwest is continu-
ously decreasing, which is related to the gradual optimization of the regional industrial
structure and the increasingly scientific pattern of economic development. Interestingly, CEI
in the northwest and north increased and then decreased during the period of 2000–2005.
This phenomenon is attributed to the fact that the regions mentioned above gave insuf-
ficient priority to the industrial structure and scientific development. Consequently, the
growth of carbon emissions exceeded that of the national economy, which led to an upward
trend of carbon intensity. Since 2005, the industrial structure of northern and northwest-
ern provinces has been gradually considered, and an increasingly scientific development
strategy has been accepted and applied, resulting in a slight decrease in carbon intensity.
However, there are still a few provinces, such as Ningxia, Shanxi, and Inner Mongolia,
whose CEI remains high. Uniquely, Hainan showed an upward trend in its CEI during the
period of 2000–2019.
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Figure 4. The spatial evolution of carbon intensity in 30 provinces: (a) carbon intensity in 2000;
(b) carbon intensity in 2005; (c) carbon intensity in 2010; (d) carbon intensity in 2015; (e) carbon
intensity in 2019.

With respect to provincial perspectives, most provinces show a considerable down-
ward trend, yet there are tremendous spatial disparities. In 2000, there were eight provinces
with a CEI greater than 6 t/104 CNY, namely, Shanxi, Gansu, Inner Mongolia, Ningxia,
Xinjiang, Guizhou, Heilongjiang, and Liaoning, most of which are located in the northern
region (northwest, north China, and northeast). Only Fujian and Hainan were the provinces
with a CEI below 2 t/104 CNY. In this sense, the CEI of Shanxi, which is the highest, is
7.6 times higher than that of Fujian, which has the lowest intensity. In 2010, there were three
provinces with a CEI of about 6 t/104 CNY, namely, Ningxia, Shanxi, and Inner Mongolia.
During this period, Beijing, the most impressive performer, experienced a sharp decline.
By 2019, the CEI of all provinces in the eastern and central-south regions had fallen below
2 t/104 CNY, with the exception of Shandong. The highest CEI is in Ningxia and the lowest
is in Beijing, with the former being 20.7 times higher than the latter. It is clear that the CEI
in China shows a pronounced difference of “high in the west and low in the east” and
“high in the north and low in the south”, and the difference between the north and south is
even wider than that between the east and west.
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The differences in the spatial–temporal distribution of CEI are intimately associ-
ated with economic development, technological constraints, and resource endowment.
Provinces with a low CEI, such as Beijing, Tianjin, Shanghai, and Chongqing, boast highly
developed economies (shown in Figure 5) and are typical energy-importing provinces.
The provinces of Shandong, Guangdong, and Zhejiang, in contrast, generate a lower CEI
despite their massive carbon emissions, primarily owing to their vast economic scale. The
provinces with a high CEI are mostly located in the west and north (e.g., Liaoning, Shanxi,
and Hebei), which are the main coal bases of China and are typically energy-exporting
provinces. Provinces such as Shanxi, Inner Mongolia, Ningxia, Jilin, and Hebei, where
the proportion of coal exceeds 70%, are excessively dependent on resources and heavy
industry for their economic development, and they suffer from low energy efficiency and
high carbon emissions.

Figure 5. Distribution of GDP and carbon emissions in 30 provinces (in 2000, 2010, and 2019). Note:
The size of the circle represents CEI. The higher the CEI, the larger the circle.

Given the disparity in CEI across provinces, applying the Theil index to measure the
gap allows for an understanding of the dynamic relationship between economic growth
and carbon emissions in different regions. Figure 6 presents the disparity in CEI across
Chinese provinces over the period of 2000–2019. In general, the disparity in CEI across
China’s provinces showed an upward trend, especially after 2010, when the gap widened
significantly. The Theil index increased from 0.1143 in 2000 to 0.1999 in 2020. As seen in
Figure 6, the expansion of such inequality is predominantly triggered by the increasing
within-group disparity. In 2019, within-group differences contributed more than 55% to
aggregate inequality. Furthermore, the between-group Theil index showed a decreasing
trend, indicating that within-group CEI diverged heavily.

Figure 6. The evolution of CEI disparity among provinces in China (2000–2019).
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Figure 7 presents the trend regarding the contribution of regional CEI disparities to
aggregate disparity. The Theil index exhibits distinct features in each region. The contri-
bution of regional disparities concerning CEI to aggregate disparity varies dramatically.
The northern region consistently contributes the most, with a solid share of some 35%.
The contribution of the northwest region has been increasing since 2005, while that of the
northeast and east has been decreasing year by year. Throughout the study period, the
Theil index in the southwest remained fairly flat, and the contribution rate was rather
moderate, indicating that the CEI in this region was rather balanced.

Figure 7. Contribution of regional differences to aggregate disparity.

4.2. Analysis of the Decomposition of the Regional Carbon Intensity Dynamics

The specific spatial decomposition results for each region are shown in Figure 8. The
influencing factors of CEI in each region are compared with the reference region. Regarding
the decomposition results, if the decomposition value of the influencing factor is less than
1, it implies that the factor-induced reduction in CEI and the region performs better than
the reference region; if the decomposition value is greater than 1, it denotes that the effect
leads to an increase in CEI and that the region performs worse than the reference region.

Figure 8. Results of the spatial decomposition of the factors influencing regional CEI.

Regarding energy intensity, the effect of energy intensity is greater than 1 for all
regions (except for certain years), with the exception of the eastern and central-south
regions, indicating that such regions are lagging behind the performance of the reference
regions. This phenomenon is particularly apparent in the northwest. It is primarily ascribed
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to the relatively underdeveloped economy of the northwest, the high proportion of resource-
intensive enterprises, and the heavy dependence of the economy on energy. Consequently,
energy intensity plays a catalytic role in carbon emission intensity. In contrast, the value of
the energy intensity effect in the northeast was greater than 1 before 2015, but this effect
declined annually and dropped to 0.9959 in 2015. This change reveals that the performance
of energy intensity in the northeast has exceeded that of the reference region in recent years.

Concerning the energy structure, the effect of the energy structure exceeds that of
the reference in all regions apart from the northwest, southwest, and northeast. Despite
the effects’ values being greater than 1 in the northwest and northeast from 2000 to 2015,
fortunately, they began to be less than 1 in 2019 for both of these regions, implying that
through continuous countermeasures and technologies regarding energy conservation and
emission reduction, the performance of the above regions began to surpass that of the
reference regions. In particular, the value of the energy structure effect in the southwest
region increased from 0.9749 in 2000 to 1.0773 in 2019, indicating that the energy mix
effect in the region promoted the growth of carbon intensity. Accordingly, provinces in
the southwest, such as Yunnan and Guizhou, should pay more attention to optimizing
the energy structure along with economic development. The northern, eastern, and south-
central regions generally perform better than the reference region with respect to the
energy structure.

For carbon emission factors, the decomposition values of the north, northeast, and
northwest are consistently greater than 1, which denotes that the regions perform behind
the reference. Their counterparts in the central-south and southwest regions are in the
opposite direction. Although the values for the eastern region are greater than 1, the effect
is rather weak (from 1.0022 to 1.0071), indicating that the effect of carbon emission factors
in the east is almost close to the reference region.

As for the industrial structure, the north, northeast, and east regions outperformed the
reference regions, with the exception of the northeast in 2019. The opposite is true for the
central-south, southwest, and northwest. It should be noted that the effect in the central and
southwest regions shows a downward trend, while its counterparts in the northwest are
increasing annually. This reflects that the industrial structure of the northwest is critically
hindering the reduction in its carbon intensity.

4.3. Decomposition Analysis of Provincial Carbon Intensity Dynamics

Figure 9 presents the spatial decomposition results of the carbon intensity for 30 provinces
within the six regions in China in 2005, 2010, 2015, and 2019. Most provinces, in general,
experienced a decreasing trend in carbon intensity. This indicates that the provinces
perform better than the reference region in terms of carbon intensity, except for only a few
provinces such as Ningxia, Xinjiang, Shanxi, Gansu, Inner Mongolia, Hebei, and Liaoning.

Regarding the factors influencing carbon intensity, energy intensity plays a positive
part in promoting the reduction in aggregate carbon intensity, excluding in Hebei, Inner
Mongolia, Heilongjiang, Hainan, and Xinjiang. Similarly, the energy mix effect suppresses
the growth of carbon intensity in most provinces (especially in Beijing and Tianjin), with
the exception of Hebei, Shanxi, Inner Mongolia, Guizhou, Qinghai, Ningxia, and Xinjiang.
The effect of the industrial structure is an essential engine to boost the growth of carbon
intensity in provinces such as Shanxi, Hebei, Chongqing, Sichuan, Shanxi, and Qinghai in
2019. Despite curbing the carbon intensity growth in many provinces other than Liaoning,
Shanxi, Shandong, and Ningxia, the carbon emission factor effect is quite limited.



Sustainability 2022, 14, 4052 12 of 15

Figure 9. Results of the spatial decomposition of the factors influencing provincial CEI: (a) decompo-
sition results of CEI in the northeast; (b) decomposition results of CEI in the northwest; (c) decom-
position results of CEI in the east; (d) decomposition results of CEI in the south; (e) decomposition
results of CEI in the southwest; (f) decomposition results of CEI in the northwest.

4.4. Policy Implementation

Policy recommendations include (1) the optimization of the energy structure and
upgrade the efficiency and performance of energy utilization, and the further promotion of
the development of clean energy to reduce the proportion of coal and other high-carbon
sources in energy consumption and to achieve a cleaner energy supply. Specifically, this
involves developing hydropower and nuclear energy in the southwest, photovoltaic and
wind power in the northwest, north, northeast, etc. However, emission reduction technolo-
gies should be innovated and clean and sustainable development mechanisms should be
conducted. Aggressive actions should be adopted to accelerate the development of renew-
able energy technologies and the efficient utilization of coal technologies. It is imperative
to accelerate the development and innovation of carbon capture and storage technologies.

They also include (2) the promotion of the upgrading of industrial structure and the
enacting of location-based countermeasures to control carbon intensity. For provinces with
high carbon intensity (e.g., Ningxia, Shanxi, and Hainan), it is urgent to optimize and
upgrade the industrial structure, change the trade pattern of resource-intensive products,
and break the “spatial lock” of high carbon intensity. Simultaneously, this should enhance
the transformation of traditional heavy industries to low-pollution industries, eliminate
backward production capacity, and suppress the convergence effect of carbon intensity on
the share of carbon emissions. Moreover, the exchange and cooperation between developed
regions (e.g., Beijing and Zhejiang) and undeveloped regions (e.g., Xinjiang and Ningxia)
should be strengthened.
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They also include (3) the strengthening of the coordination of regional development
and the constructing of a cross-regional mechanism for carbon reduction to narrow the gap
among regions. Regarding regions with notable spatial aggregation of carbon emissions,
such as the five northwestern provinces, Hebei, and Shanxi, a sound cross-regional func-
tional layout and collaborative governance should be conducted. By creating an efficiently
coordinated development mechanism to control the carbon intensity of the aggregation
area, the division of labor and optimal combination of resources among different functional
districts will be attained. Furthermore, by facilitating the integration of regional develop-
ment, the dispersion effect of regional carbon intensity on carbon emission share will be
further reinforced. Additionally, the establishment of a carbon trading market mechanism
should be hastened by making the most of market-based instruments.

5. Conclusions

As the main driver of global warming, carbon emissions have been a focus of high
concern in economic, social, and environmental areas. China has actively taken countermea-
sures to address the aggravating challenge of carbon emissions and has made a significant
contribution to the achievement of global carbon reduction targets. This study measured
the spatial–temporal evolution characteristics of energy-related CEI for 30 provinces in
China during the period of 2000–2019. In addition, the Theil index was applied to portray
the disparities in CEI among the possible provinces. Furthermore, a multi-regional spatial
IDA model was constructed to unveil the factors influencing CEI in each province. Based
on the results, the main conclusions obtained are as follows:

(1) The majority of provinces, excluding Hainan, Ningxia, Shanxi, and Xinjiang, expe-
rienced a significant downtrend in CEI during the period of 2000–2019. Nevertheless, the
spatial–temporal distribution of CEI features a dramatic unevenness, which is characterized
by the coexistence of “high in the west and low in the east” and “high in the north and
low in the south”, and the gap between the north and the south appears to be substantially
greater than that between the east and the west.

(2) The expansion of the Theil index based on the CEI of 30 provinces has been
pronounced since 2010, indicating that the inconsistency between carbon emissions and
economic development has strengthened. Therefore, there is still substantial potential
to boost the coordination of regional economic and environmental protection in China.
Disparities in CEI primarily originate from within-group differences, and their contribution
to the aggregate disparity tends to ascend annually. Meanwhile, the contribution rates of
the northeast and east keep decreasing and, in contrast, that of the west has been expanding
in recent years.

(3) Regarding the factors influencing CEI, for the majority of provinces/regions, the
energy intensity effect is the most essential driver for the spatial disparity in carbon intensity,
especially in the northwest. Generally, the energy structure effect and the industrial
structure effect have changed gradually from facilitating effects to suppressing effects
accordingly. Remarkably, the energy structure effect in the southwest has converted to
promote CEI growth from 2000 to 2019. Consequently, Yunnan, Guizhou, and other
southwestern provinces should pay more attention to optimizing the energy structure with
their economic development. Although there is no considerable fluctuation in the carbon
emission factor effect in all regions/provinces, the east and central-south perform better
than the three northern regions.

Despite the regional disparity in CEI and the driving factors that were discussed in
depth in this study, certain issues still need to be further explored. First, given the data
limitations, the geographical units selected for the study lie in the provinces only. It is
necessary to conduct research on the scale of cities or smaller. Second, considering the
great differences in the influencing factors of CEI in different industries, it will be better to
conduct research in different industries, which can enhance the accuracy of energy saving
and emission reduction solutions for the industries.
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