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Abstract: The effects of land use and socioeconomic changes on urban landscape patterns and
functional zones have been increasingly investigated around the world; however, our knowledge on
these effects is still inadequate for sustainably managing urban ecosystems. The urban functional
zone (UFZ) refers to a kind of regional space that provides specific functions for human activities
and reflects the land use type in a city. They are important for urban planning and exploring urban
texture dynamics. UFZs improve understanding of sustainable development for urban ecosystems
with extreme environments and unique social backgrounds. However, the identification methods
for UFZs are incomplete because of a lack of socioeconomic attributes, as well as their hierarchical
relations. Here, we present a hierarchical weighted clustering model to identify UFZs based on the
entropy weight method. The data included points of interest (POIs), land use type data, road network
data, socioeconomic data, and population density. We found that the adjusted cosine metric and the
average criterion were the optimal distance metric and linkage strategy, respectively, to cluster urban
zone data. The performance with weighted data was better than that with raw data, and the level of
the POI classification scheme and landscape pattern affected the accuracy of identification UFZs. The
research indicated that the hierarchical weighted clustering model was a useful method to classify
UFZs in order to improve urban planning and environmental management schemes.

Keywords: urban functional zone; hierarchical clustering; points of interest

1. Introduction

Efforts to make society and its processes more livable necessitate sustainability, which
has long been regarded as one of the most significant policy objectives in the world [1]. The
spatial patterns of buildings or functional zones affect the urban heat island (UHI) and the
sustainability of a city [2]. Traditional techniques for urban functional zone identification,
however, are unable to meet the objectives of sustainable urban development because of
a lack of hierarchical relations [3]. The “functional zone” is a concept that describes the
social and economic properties that satisfy various needs and accommodate diverse human
activities in a certain area [4,5]. Urban functional zones share common social and economic
activities and are spatially aggregated by diverse geographic objects and semantically
abstracted from land uses [3,6]. Urban populations are increasing, with the number of
mega-sized cities expected to increase from 10 in 1990 to 41 in 2030 [7]. According to the
reports of United Nations, urbanization has been rapid in recent decades, and 68% of the
world population are projected to live in urban areas by 2050 [8]. Population density is
growing, and the urban area is expanding along with the intensive urban growth [9]. Urban
areas directly consume land as their physical footprints expand, resulting in landscape
and urban function transformation [10–13]. Strong spatial clustering patterns can also be
seen in urban socioeconomic activity [14]. These clustering patterns lead to the generation
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of various functional zones to accommodate people’s diverse needs for living, working,
education, recreation, and public service. UFZs, or basic units for quantitative assessments
in urban planning, urban environmental pollution, and other fields, are in great demand.
UFZs have an important impact on a city’s economy, society, and ecology, and have
been increasingly investigated in interdisciplinary studies around the world in relation to
factors such as the heat island effect [15–18], runoff characteristics [9,19], urban landscape
patterns [20,21], and ecosystem services [22,23].

The UFZ is one of the most effective methods for analyzing urban fabric, conducting
urban planning [24,25], and determining the consequences of the urban landscape pattern
on various ecological processes [26–28]. However, because making them would require
multisource heterogeneous processes and data, urban functional-zone maps are hardly
available. Most early studies, on the other hand, were concerned primarily with the
identification of pixel-based or object-based image analysis rather than analysis based on
urban functions [29–31]. To classify the UFZs, these studies often segmented the study area
into regular grids [32,33], administrative divisions [34], or irregular polygons or disjointed
blocks by road networks [35,36]. More and more researchers have realized that functional
zoning is completely different from land use and land cover classification; thus, functional
zones cannot be classified by traditional methods [36–38]. However, fine function zoning
is hard work because of the complexity of urban structure and dynamic changes of the
function in different periods [39–41]. In recent years, advancements in web mapping, very-
high-resolution (VHR) remote sensing, and location-based services (LBS) have provided a
more ideal alternative for generating the spatial units of UFZs by recognizing the urban
texture and physical properties. Many research studies on mapping UFZs have been
conducted by integrating data from multiple sources, such as VHR satellite images and
social and human mobility data. Taxi GPS trajectory datasets [36]; cell tower traces [42];
points of interest (POIs) [37,43]; and geotweets, geotagged photos, or check-in data [35,44]
are the most commonly used social and human mobility data. Although there have been
many improvements due to integrating multisource heterogeneous data, to date, it has
still not been possible to characterize functional zones comprehensively and maintain
urban sustainable planning, as the hierarchical relations among functional zones have been
ignored, which has harmed the representative abilities of UFZ classification methods to
date [3,37].

To resolve the issue of accuracy of segmented map and UFZ identification, object-
oriented image recognition and topic models were introduced. Object-oriented image recog-
nition takes advantage of the spectral and spatial patterns of geographic objects, and takes
spectra, textures, shapes, and the spatial configuration of the landscape into account [3]
by using support vector machines (SVM) and artificial neural networks (ANN) [15]. Topic
models include k-means clustering [45]; probabilistic latent semantic analysis (PLSA),
which was developed by Thomas Hofmann in 1999 [46]; and latent Dirichlet allocation
(LDA), which is likely the most widely used topic model today [3]. Nevertheless, one of
the critical challenges in this topic is the weighted and hierarchical relations.

Hierarchical clustering is a method of cluster analysis aimed at building a hierarchy
of clusters [47]. It gives a nested clustering result in the form of a dendrogram or cluster
tree, from which different levels of partitions can be obtained [48]. Because of the rich
information produced by applying various strategies and metrics, it has been widely used
in many industries. So far, hierarchical agglomerative clustering (HAC) has been the most
widely used hierarchical method. HAC is a “bottom-up” approach; each observation starts
in its own cluster, and pairs of clusters are merged by moving up the hierarchy. In other
words, it starts with clusters each consisting of a single data point and then successively
merges the two most similar clusters based on certain similarity metrics [47,48].

In this paper, we propose a general framework integrating land use, POIs, and GDP
data to analyze UFZs comprehensively. Comparisons of data combinations, data weighted
methods, cluster strategies, and metrics indicators were performed based on HAC. The
HAC presented in this study integrated three semantic layers together, i.e., land use
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type, population density, and composition of POIs (i.e., human activities), as well as their
hierarchical relations. An experiment within the Fifth Ring Road, Beijing, China, was
conducted to validate the proposed framework. We aimed to: (1) map UFZs using the
presented framework; (2) test the performance of the data combination, data weighted
methods, cluster strategies, and metrics indicators; and (3) analyze the spatial pattern of
functional zones by using an example in Beijing, China.

2. Materials
2.1. Study Area

Beijing is the capital of China, the world’s most populous country. Beijing has become
one of the world’s fastest expanding cities in recent decades as a result of rapid industrial-
ization and urbanization. The central Beijing area, which is surrounded by multiple ring
roads, is made up of several concentric belts of infrastructure and functional zones. The
Fifth Ring Road area is the core of the downtown Beijing district, covering 667 km2. It is
affected by intensified human activities and has a variety of functional zones, such as the
educational zones, public zones, recreation areas, and business districts, etc. The study
area offers a significant diversity of human activities with distinct urban functional zones.
The study area was divided into 336 sub-regions (Figure 1), each with a minimum area
of 150,000 m2. Segmented zones can be represented by eigenvector consist of amounts or
relative amounts of characteristics. Each segmented region is relatively homogeneous in
terms of socio-economic function [43].

Figure 1. The study area within the fifth-ring Road of Beijing.

2.2. Data Sources

Multi-source data were used in this study, such as POIs, land use type data, road
network data, socioeconomic data, and population density. The POIs were obtained
through AMap™ (https://www.amap.com. accessed 1 September 2018), a web-mapping,
navigation, and LBS provider. A total of 572,169 POIs were retrieved in September 2018.
Recreation, Catering, Automotive Services, Financial, Education, Public, Health Care
Services, Hospitality, Residence, Organizations, and Travel are among the 23 categories of
POI data. Furthermore, while 20 of these types are stable categories, the other 3 categories
are real-time incidents, such as traffic accidents and road maintenance incidents. For each
POI, there are six column properties for each POI: Name, Coordinates, and Categories in
three hierarchy levels (composed of primary, secondary, and third-level classes, otherwise
called level 1 (L1), level 2 (L2), and level 3 (L3), respectively) (Figure 2). For example,
level 1—Education Service, including college, middle school, elementary school, and

https://www.amap.com
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kindergarten, can distinguish between the functional properties of the sub-regions. As
a result, a data processing framework must be created in order to compute the weight
of the comprehensive evaluation of categories at 3 levels, respectively. POIs were used
to present the human activities and hierarchical relations. The POIs were divided into
20 primary classes (Table 1), 264 secondary classes, and 868 three-level classes. The land
use data [49] with a spatial resolution of 10 m were obtained from Department of Earth
System Science/Institute for Global Change Studies Tsinghua University (http://data.
ess.tsinghua.edu.cn/ accessed 1 January 2020). The land-use composition was described
by the proportions of urban areas, urban green land, farmland, and woodland. The
proportion of various land uses was used to describe land-use heterogeneity. The urban
road network data comes from the Open Street Map (OSM) geographic data platform
(https://www.openstreetmap.org/ accessed 1 January 2020). Redundant paths and broken
paths were weeded out to represent the functional unites of the study area. The population
from WorldPop products of 2017 had a spatial resolution of 1 km × 1km (https://www.
worldpop.org/ accessed 1 January 2020). Statistical socioeconomic data (i.e., population,
GDP) in 2017 were obtained from the National Bureau of Statistics.

Figure 2. Hierarchical structure of POI properties.

Table 1. Counts and proportion of points of interest types.

ID Primary Classification Counts Proportion

1 Accommodation Service 10,731 1.9%
2 Auto Dealers 780 0.1%
3 Auto Repair 2040 0.4%
4 Auto Service 7293 1.3%
5 Commercial House 21,483 3.7%
6 Daily Life Service 70,141 12.2%
7 Enterprises 66,689 11.6%
8 Finance and Insurance Service 13,965 2.4%
9 Food and Beverages 52,961 9.2%
10 Governmental Organization and Social Group 24,429 4.2%
11 Medical Service 12,574 2.2%
12 Motorcycle Service 321 0.1%
13 Place Name and Address 86,802 15.1%
14 Public Facility 11,331 2.0%
15 Road Furniture 1894 0.3%
16 Science/Culture and Education Service 34,578 6.0%
17 Shopping 95,629 16.6%
18 Sports and Recreation 12,518 2.2%
19 Tourist Attraction 3475 0.6%
20 Transportation Service 46,135 8.0%

Total 575,769 100.0%

http://data.ess.tsinghua.edu.cn/
http://data.ess.tsinghua.edu.cn/
https://www.openstreetmap.org/
https://www.worldpop.org/
https://www.worldpop.org/
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3. Methodology
3.1. The Framework for Identifying UFZs

The segmented regions within the same cluster have similarity characteristic vectors
that include the proportion of POIs, land use type, and socio-economic data. The similarity
can be gauged by the distance between the two segmented regions. The regions have a
high degree of resemblance if the similarity distance is small, and we can expect them to
act similarly in terms of urban functions. The larger the distance, the smaller the similarity,
indicating that the regions diverge significantly. The characteristic vector of each segmented
region can be defined as:

Ri =
[
Ci,1, Ci,2, . . . , Ci,n, Lu1, . . . , Luj, Pop, GDP

]
(1)

Here, Ri is the segmented patch i, and Ci,n is the amount of one type in a POI classifica-
tion scheme at the same level within Ri. n = 20, n = 264, and n = 868 represents cluster POIs
at L1, L2, and L3, respectively. Luj is the proportion of land use type, Pop is the population
density, and GDP is the per capital GDP.

As illustrated in Figure 3, the study area was initially segmented into research units
by the road network data. The eigenvectors of each segmented research units are then
composed of various data combinations based on independence or combination of POIs
data at various levels, land use type data, population density, and GDP data. Finally, the
Shannon entropy was used to calculate the weight of POI classes at various levels. The
results of cluster results by various similarity metric indicators and cluster strategies. Two
data processing datasets, three levels of POI classification schemes, six clustering merging
strategies with a vector matrix of hierarchical weighted count of POIs within the region,
and four similarity distance measure methods are all included in the data.

Figure 3. Flowchart of the framework for mapping the UFZs.

3.2. Hierarchical Weighted Clustering Model

Hierarchical agglomerative clustering algorithms represent a popular unsupervised
learning technique that seeks to build a hierarchy of clusters and to discover the natural
groups of a set of observations. Clustering is the process of grouping samples so that
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samples in the same group are as similar as possible, while samples in other groups are as
distinct as possible.

For the actual functional label of sub-regions is unknown, we tested different distance
measurement methods (Euclidean distance, cosine distance, adjusted cosine distance, and
Pearson correlation distance) to categorize functional zones. The Euclidean distance method
computes the Euclidean distance between two attribute vectors, which is sensitive to the
magnitude of the count of POIs, but not sensitive to the percentage of different features.
The cosine distance method computes the cosine distance between two attribute vectors,
which is sensitive to the percentage of different features, but not the magnitude of the
count of POIs. The adjusted cosine distance computes the cosine distance between two
preprocessing attribute vectors by subtracting the mean value. The Pearson by correlation
distance method computes the Pearson correlation distance between two attribute vectors.

3.3. Weighting Coefficients and Construct Eigenmatrix

The urban functional zone is influenced by the amount or the weight amount of POIs
at each level which characterize the intensity of human activity. We propose the entropy
weight method, based on the Shannon entropy theory, integrated with the hierarchical
agglomerative clustering method, to balance discrepancy between different subregions,
which could contribute to the identification of UFZs as a comparison to compare the
clustering results.

The weighting coefficients for different POI types were calculated using the Shannon
entropy approach. Shannon entropy is a probability theory-based notion that was devel-
oped as a measure of information uncertainty. Since the concept of entropy is well adapted
to measuring the relative intensities of contrast criteria [50], it can be used to represent the
average intrinsic information transmitted for decision-making. It is a good and practical
alternative for us to calculate the weight of POIs type at different levels. On each subtree of
the POI classification scheme, we apply the entropy weight method:

Step 1: Standardization of data
Because the data of the metric are not uniform, it is necessary for us to standardize the

data. The data were standardized according to the following methods.

x′Lij =
xLij −min

(
xLij
)

max
(
xLij
)
−min

(
xLij
) (2)

where xLij is the standardized count of POIs type j within region i on specific scale L, and
min

(
xLij
)

and max
(

xLij
)

are the minimum and maximum values on a particular POI type j
in respective level, respectively. Through the operation, the value are in the range of 0~1.

Step 2: Calculating entropy of information
The entropy of information is a crucial factor to measure the weight of evaluation

metric. The high entropy of information indicates that the weight is larger. The following
equation shows how to calculate entropy of information:

ELj = − ln (n)−1
n

∑
i=1

PLij ln PLij (3)

PLij =
x′Lij

∑n
i=1 x′Lij

(4)

where ELj is entropy of information of each POIs type j a specific scale L, PLij is the count
variance of each POIs type j within region i on a specific scale L, n is the amount of the data
on a specific scale L, and x′Lij is the standardized data.

Step 3: Calculation of weight
After calculating the entropy of information, the weight of each metric is determined using

the theory of entropy, which indicates the importance of the metric in the evaluation system.
In terms of the weight, the following formula can be used to obtain the weighted value:
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WLj =
1− ELj

1−∑ ELj
, j = (1, 2, . . . , i) (5)

Step 4: Calculation of the weighted value
Following these steps, it is reasonable for us to obtain a comprehensive score of type j

of region i on a specific scale L. Therefore, we can evaluate the weighed count of the region
i at level L.

ZLi =
i

∑
j=1

x′ijWLj (6)

Step 5: The above steps are repeated with data on other POI classification scheme
subtrees and the next top level. The weighted eigenvector matrix on a specific scale can
then be obtained.

Step 6: The pairwise similarity distances are calculated for a given pair of nodes,
which reflects their distinct degrees.

The HAC algorithm repeatedly identifies the minimal similarity coefficient in the
distance matrix to assign the nodes into a linkage tree after constructing the pairwise
distances matrix. Updating the pairwise distance matrix is a crucial step, and hierarchical
agglomerative clustering can be accomplished using various algorithm [51]. For measuring
the distance between the newly formed cluster and original objects, we used five different
HAC algorithm methods: single, average, ward, centroid, and complete linkage strategy.

3.4. Evaluation of Clustering Performance

The most common approaches for assessing the quality of clustering results are cophe-
netic correlation and some internal indices [52]. The cophenetic correlation coefficient
compares (correlates) the actual pairwise distances of all samples to those implied by the
hierarchical clustering. When the value is closer to 1, the clustering can better preserve the
original distances. Suppose that the original dataset xi is modeled using a cluster method to
produce a dendrogram set ti, the cophenetic correlation coefficient can be denoted as [53]:

c =
∑i<j (x(i, j)− x)

(
t(i, j)− t

)√∣∣∣∑i<j (x(i, j)− x)2
∣∣∣·[∑i<j (t(i, j)− t)2

] (7)

where x(i, j) = | xi − xj |, i.e., the ordinary Euclidean distance between the ith and jth
observations. t(i, j) is the dendrogrammatic distance between the model points ti and tj.
This distance is the height of the node at which these two points are first joined together.
We used the cophenetic correlation coefficient to evaluate the performance of all distance
metric. Then, we evaluated the performance of cluster results quality of clustering by the
Silhouette coefficient, the Calinski–Harabasz index, and the Davies–Bouldin index [54].

4. Results
4.1. The Best Cluster Model Parameters and Strategies

The cophenetic correlation for a cluster tree is defined as the linear correlation coeffi-
cient between the cophenetic distances obtained from the tree and the original distances
(or dissimilarities) used to construct the tree [55]. As a result, it is a method for detecting
the differences among observations in the cluster tree. Table 2 shows HAC with a sample
size (n = 5, n = 20, n = 30) at different levels. From the cophenetic correlation results,
we found that (1) the weighted data processing method performed better than raw data
across all distance metrics; (2) the performance of the adjusted cosine distance metric is
similar, regardless of whether the weighted or raw data are used; and (3) the optimal
clustering merge strategies differs depending on the number and levels of clusters. When
cluster number n = 5, the cophenetic correlation result was better than other levels using
the adjusted cosine distance metric at level 2. When n = 20, the cophenetic correlation
coefficient result at level 1 was better than other levels, and the adjusted cosine distance
metric, synonymous with the “Ward” clustering merge strategies, achieved the max value
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of cophenetic correlation coefficient, i.e., 0.909. When n = 30, the result at level 1 was
better than other levels, and the adjusted cosine distance metric, synonymous with the
centroid of clustering merge strategies, achieved the max value of cophenetic correlation
coefficient, i.e., 0.929. Overall, the adjusted cosine was the best distance metric, and the
performance with weighted data was better than raw data, according to the cophenetic
correlation coefficient results.

The dendrogram achieved as a result of clustering process illustrates the number of
clusters obtained and their linkage. According to the dendrogram results in Figure 4 and
quality curve, as shown in Figure 5, we found that (1) the clustering results with weighted
POI and land use data performed better, which indicates that the identification of UFZs
should take into account landscape patterns; (2) the optimal combination methods for
clustering the UFZs were used for the adjusted cosine distance metrics and the average of
the clustering strategy; and (3) the silhouette coefficient was used for the optimal clustering
quality metrics, and the optimal number of clusters was 10.

Figure 4. Dendrogram with weighted land use and POIs at level 1. (A) Cosine distance. (B) The
adjusted cosine distance. (C) Euclidean distance. (D) Pearson distance.

Figure 5. The curve of quality by various distance metrics.
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Table 2. The cophenetic correlation coefficient in different method and data set without LULC data.

Distance
Metric

Clustering
Merge

Strategies

The Cophenetic Correlation Coefficient

Weighted POI Data Raw POI Data

n = 5 n = 20 n = 30 n = 5 n = 20 n =30

Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3 Level 1 Level 2 Level 3

Cosine

Single 0.747 0.924 * −0.52 0.301 0.919 0.357 0.535 0.764 * 0.367 0.9307 * 0.556 −0.52 0.8218 * 0.708 * 0.357 0.367 0.61 0.367
Complete −0.73 0.86 * 0.831 * −0.11 0.641 0.368 0.57 0.595 0.445 -0.0946 0.806 0.831 0.33202 0.616 0.368 0.445 0.656 0.445
Average 0.699 * 0.913 * −0.36 0.364 0.773 * 0.549 * 0.679 * 0.705 * 0.536 0.33557 −0.2 −0.36 0.57631 0.55 0.549 0.536 0.658 0.536
Centroid 0.757 * 0.913 * 0.831 * 0.364 0.944 * 0.883 * 0.676 * 0.837 * 0.818 * 0.8371 * 0.87 * 0.831 * 0.80752 0.7 0.883 0.818 0.723 0.818
Weighted 0.53 0.913 * 0.831 * 0.426 0.96 0.712 0.421 0.718 0.637 0.35358 0.074 0.831 0.53215 0.37 0.712 0.637 0.253 0.637

Ward 0.304 0.913 * −0.54 0.642 0.67 0.308 0.549 0.451 0.322 0.27489 0.855 * −0.54 0.542 0.716 0.308 0.322 0.634 0.322

The
adjusted

cosine

Single 0.99 * 0.372 −0.11 0.408 0.251 −0.19 0.567 0.619 0.25 0.45064 0.468 −0.11 −0.047 −0.23 −0.19 0.25 0.354 0.25
Complete 0.167 0.931 * 0.891 * 0.655 0.636 0.579 0.7 * 0.858 * 0.799 * 0.8870 * 0.923 * 0.891 * 0.39934 0.514 0.579 0.799 * 0.597 0.799 *
Average 0.464 0.941 * 0.858 * 0.888 * 0.852 * 0.418 0.878 * 0.929 * 0.758 * 0.9219 * 0.689 0.858 * 0.61531 0.326 0.418 0.758 * 0.714 * 0.758 *
Centroid 0.988 * 0.912 * 0.86 * 0.536 0.801 * 0.492 0.647 0.923 * 0.763 * 0.8988 * 0.656 0.86 0.62657 0.408 0.492 0.763 * 0.733 * 0.763 *
Weighted 0.686 0.942 * 0.56 0.194 0.529 0.121 0.527 0.788 * 0.677 0.8746 * 0.893 * 0.56 0.7766 * 0.414 0.121 0.677 0.69 0.677

Ward 0.167 0.816 * 0.891 * 0.909 * 0.747 * 0.673 * 0.912 * 0.894 * 0.775 * 0.9213 * 0.672 0.891 * 0.8195 * 0.055 0.673 0.775 * 0.479 0.775 *

Euclidean

Single 0.35 0.788 * −0.37 0.933 0.626 0.013 0.93 * 0.77 * 0.341 0.03316 −0.08 −0.37 0.28802 0.127 0.013 0.341 0.433 0.341
Complete −0.73 0.694 * 0.767 * 0.893 0.641 * 0.459 0.87 * 0.737 * 0.641 0.07976 0.13 0.767 0.54407 0.576 0.459 0.641 0.594 0.641
Average 0.44 0.721 * 0.747 * 0.945 * 0.646 * 0.402 0.926 * 0.758 * 0.663 0.26314 0.557 0.747 0.39126 0.381 0.402 0.663 0.492 0.663
Centroid −0.03 0.933 * 0.767 * 0.952 * 0.608 * 0.363 0.901 * 0.767 * 0.661 0.4001 0.557 0.767 0.26312 0.371 0.363 0.661 0.478 0.661
Weighted 0.395 −0.06 0.767 * 0.395 0.478 0.346 0.459 0.206 0.537 0.30413 −0.44 0.767 0.30992 0.127 0.346 0.537 0.358 0.537

Ward 0.503 0.906 * 0.767 * 0.929 * 0.493 0.45 0.882 * 0.688 0.63 0.53289 0.738 0.767 0.4283 0.38 0.45 0.63 0.571 0.63

Pearson
correla-

tion

Single 0.803 * 0.921 * −0.51 −0.01 0.918 * 0.351 0.164 0.763 0.358 0.9455 * 0.482 −0.51 0.8374 * 0.68 0.351 0.358 0.597 0.358
Complete −0.69 0.91 * 0.839 * 0.198 0.74 0.629 0.194 0.636 0.549 0.6664 −0.2 0.839 0.16877 0.186 0.629 0.534 0.239 0.549
Average 0.703 0.91 * −0.36 0.117 0.932 0.546 0.363 0.811 * 0.534 0.5964 * −0.2 −0.36 0.71877 0.556 0.546 0.534 0.677 0.534
Centroid 0.177 0.91 * 0.839 * 0.064 0.928 * 0.886 * 0.435 0.82 * 0.822 * 0.8546 * 0.878 * 0.839 0.66499 0.737 0.886 * 0.822 * 0.709 0.822
Weighted 0.023 0.91 * 0.839 * 0.03 0.936 * 0.717 * 0.179 0.789 * 0.602 0.79478 0.749 0.839 0.47338 0.164 0.717 0.602 0.319 0.602

Ward −0.18 −0.39 −0.55 0.37 0.673 0.289 0.502 0.488 0.329 0.3717 0.749 −0.55 0.58837 0.317 0.289 0.329 0.217 0.329

* Correlation is relatively large.
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4.2. Spatial Patterns of UFZs

According to the results of the hierarchical weighted agglomerative clustering (Figure 6),
we found that the hierarchical weighted agglomerative clustering model identified the
clusters in an unambiguous way. POI data can be used to identify UFZs to some extent,
and the POI data can represent the intensity of human activity. Furthermore, by combining
POI and land use type, UFZs can be identified more precisely. Land use type, for example,
can be used to identify cultural tourism zones and natural landscape districts. The accuracy
and fineness of clustering results were both affected by the number of clusters and segment
patches, as shown in Figure 6. Furthermore, the finer the segmentation of the study area,
the better the clustering results. To express the spatial autocorrelation of clusters, we used
Moran’s I index to measure the spatial distribution pattern of the two clustering results.
The Moran’s I index analysis revealed that the clustering results based on POI and land
use type data had a substantial and positive autocorrelation at the 0.05 significance level.
The spatial distribution of the clustering results matched that of the actual UFZs (Figure 7).
Clustering the segmented sub-regions requires a weighted raw data technique, according to
the results. Combining the adjusted cosine distance metric and average clustering linkage
strategies can be a suitable method if there is no prior knowledge.

UFZs were identified based on the composition of POI class and land use type data
among clusters. Because the region is tiny, some clusters were merged into other clusters.
There are seven types of functional zones in downtown Beijing, as shown in Figure 7,
including four types of single functional areas and three types of mixed functional zones.
The education zone, the recreation green zone, the residence zone, and the social and
community zone are single functional zones with areas of 87.4 km2, 145.4 km2, 153.7 km2,
and 42.3 km2, respectively. With areas of 47.5 km2, 73.1 km2, and 117.2 km2, respectively, the
mixed functional areas contain a combination of residence and recreation zones, commercial
and industrial zones, and commercial residence zones. The residential zone occupied the
most space of all, and it was widely spread out across the study area with significant
disparities. On the perimeter, the proportion of the residential zone was higher than in the
center. Recreation green zones area denser in the north, but the residential area is relatively
far away. Recreation green zones are more dispersed in the south, and they all surround
the residential area. As a result, the recreation equity in the south is better. Education zones
are concentrated in the Haidian District, i.e., northwest of the study area. Commercial
zones are always found in conjunction with other functional zones, such as residence zones,
recreation zones, and industrial zones. It also demonstrated that Beijing, as a metropolis,
has a relatively effective functional zone plan.

Figure 6. The clustering results when clusters = 10 (left) and clusters = 20 (right) at different segment fineness.
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Figure 7. The actual UFZs map from web map (left) and UFZs map from clustering (right).

5. Discussion
5.1. Methodological Advantages and Limitations

The hierarchical weighted clustering model is a popular unsupervised learning tech-
nique for discovering the natural groupings of a set of observations, which we used to
identify the UFZs. In this study, we proposed a hierarchical weighted clustering model that
uses the weighted POI, land use, and socio-economic data to cluster segmented sub-regions
divided by road networks. For identifying the urban functional zones, the weights of POI
categories scheme, the POI level, distance metrics, and clustering merge strategies were in-
tegrated into the clustering model. This study could expand the traditional understanding
of clustering based on the individual densities of POIs.

Previous approaches are required to either reduce the raw data into new categories [4,51],
which results in the loss of feature information, or simply classify the regions using the
raw POI densities [4]. The most significant benefits of our study our that it provides a
general paradigm for identifying UFZs and helps to quickly analyze the impact of different
characteristic vectors on classification results. Furthermore, we can identify the segmented
zones without having any prior knowledge of the label data. Additionally, unlike the
K-means algorithm, which has inconsistencies in the results, the hierarchical weighted
clustering model could obtain consistent clustering results.

The other advantage is that the entropy weight method was integrated into the evalu-
ation system, making it possible to automatically calculate the weights of hierarchical POI
categories. In order to identify UFZs, previous studies usually fail to consider the effects of
POI classification level and the weight of POI categories [56]. It has the potential to increase
efficiency, unlike the Delphi consensus technique method which requires too much time
and money to obtain valuable response through questionnaires. Furthermore, rather than
relying on a particular region, it is important to obtain objective and convenient scores in
each study area.

There are some limitations to this framework. For example, it is an unsupervised
framework, and uncertainty analysis can be problematic due to the lack of prior knowledge
in this method. Because the identification of UFZs is based on the feature vectors generated
by POIs, some inconsistencies may exist when compared to actual urban functional property.
Although this approach has simplified the data processing procedure to consider the
weighted and hierarchical relations of POIs, it has yet to establish a uniform mechanism for
evaluating the performance of UFZ classification, and all of the processes in this study may
need to be repeated in other areas of research.

5.2. Application for Sustainable Urban Planning

The hierarchical weighted clustering model, as opposed to the previous method based
on POI density, is clearly more conducive to the analysis and less prone to misinterpretation
regarding the weighted and hierarchical relations of POIs. The hierarchical weighted
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clustering model is a social-based, planning-oriented, and data-driven classification system
linked with the urban function, and it may also be used to connect human activity intensity
and UFZ identification. UFZs could identify the heterogeneity of the urban internal thermal
environment and quantify the basic units of the effect of anthropogenic heat, as reiterated in
a published article on the effects of UHI [15]. The usage of UFZs can provide more precise
information than the use of land use and cover data, synonymous with the basic planning
unit based on a city’s UFZs’ pattern. Therefore, the HAC model and the results of UFZs can
provide a consistent mapping to urban planning and energy saving inside a city, allowing
the UFZs to be applied to city management practices. In general, it is difficult to quantify
the impact of human activities on urban heat island effects in an ecological environment
because we cannot scientifically partition the intensity of human activities.

This method also has practical significance, and our methodology can advance the
understanding of local contexts. For example, the results of the functional zones can be
used for identifying the factors of traffic congestion caused by urban planning, analyze the
relationship between rainfall water capacity and wettability of small-leaved lime and poplar
in different city zones [57], plan a fresh food distribution center based on functional zones
for fresh product logistics [58], and provide a means of calibration and reference for urban
planning by monitoring the temporal and spatial variability of UFZs [6,59]. Overall, the
hierarchical weighted clustering model provides new insights into the methodology of UFZ
identification and quantitative assessment of the weight of POI categories, as well as wider
application of the impacts of human activities or UFZs on the natural ecological landscape.

6. Conclusions

This study proposed an identification model of UFZs, annotated the social property
using POIs and land use data, and provided some potential solutions for the sustainable
development of a city on urban functional zones pattern. We found availability and
feasibility of hierarchical weighted clustering model. The combination of the adjusted
cosine metric and the average criterion revealed the optimal distance metric and linkage
strategy, respectively, which has the best performance and quality of clustering results
within the Fifth Ring Road, Beijing, China. Compared with the remote sensing images,
which primarily depict the physical properties, the results of the clustering model based
on POIs data can be viewed as a complementary social sensing view of urban planning
and human activities. Despite the fact that semantically meaningful UFZs were identified,
the hierarchical weighted clustering model is an unsupervised approach with limits in
identifying the actual urban functions. In addition, more research is needed to recognize
the social functions accurately while taking into account building height and building
density in the study area. This study also provides a valuable method for correlating the
natural characteristics and social activities in a densely populated region.
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