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Abstract: The Ganga-Brahmaputra basin is highly sensitive to the impacts of climate change and
experiences recurrent flooding, which affects large agricultural areas and poses a high risk to the
population. The present study is focused on the recent flood disaster in the Ganga-Brahmaputra
basin, which mainly affected the regions of Bihar, West Bengal, and Assam in India and neighboring
Bangladesh during July, August, and September 2020. Using the Sentinel-1A Synthetic Aperture
Radar (SAR) data, the flood extent was derived in the Google Earth Engine (GEE) platform. The
composite area under flood inundation for July–September was estimated to be 25,889.1 km2 for
Bangladesh, followed by Bihar (20,837 km2), West Bengal (17,307.1 km2), and Assam (13,460.1 km2).
The Copernicus Global Land Cover dataset was used to extract the affected agricultural area and
flood-affected settlement. Floods have caused adverse impacts on agricultural lands and settlements,
affecting 23.68–28.47% and 5.66–9.15% of these areas, respectively. The Gridded Population of the
World (GPW) population density and Global Human Settlement Layer (GHSL) population dataset
were also employed to evaluate flood impacts, which revealed that 23.29 million of the population
was affected by floods in the Ganga-Brahmaputra basin. The highest impacts of floods can be seen
from the Bihar state, as people reside in the lower valley and near to the riverbank due to their
dependency on river water. Similarly, the highest impact was from Bangladesh because of the high
population density as well as the settlement density. The study provided a holistic spatial assessment
of flood inundation in the region due to the combined impact of the Ganga-Brahmaputra River basin.
The identification of highly flood-prone areas with an estimated impact on cropland and build-up
will provide necessary information to decision-makers for flood risk reduction, mitigation activities,
and management.

Keywords: flood inundation; damage assessment; SAR; GHSL; GEE; TerraClimate

1. Introduction

In South Asia, floods have a recurrent occurrence [1], particularly in India where the
floods cause an average economic loss of USD 7.5 billion annually [2]. As the frequency
of flood events and their severity has increased, the global concerns are also increasing
for lessening the fatalities and other economic losses [3]. The flood inundation extent and
frequency information are necessary for evaluating the exposure of society, infrastructure
loss, economic loss, crop damage, urban flooding [4], flood storage volumes, attenuation of
flood waves, and the future flood hazards [5]. In recent times, extreme flood events have
intensified riverbank erosion and siltation that has negative impacts on agriculture as well
as soil fertility [6]. Flood impacts are also adverse particularly in densely populated regions
and compact urban structures. It was estimated that over the last two decades (1995–2015),
around 2274 million people were affected by weather-related disasters (i.e., floods, storms)
in China, followed by India (805 million), Bangladesh (131 million), and the Philippines
(130 million) [7]. Floods alone have affected 2.3 billion people worldwide during 1998–2015
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and the majority of those people live in Asia (95%) [7]. About 21 million people worldwide
were affected by river floods annually, which may increase to 54 million by 2030 due to
climate change and socio-economic growth [8]. The Ganga basin is the most vulnerable
area in terms of climate change due to its high population and its high dependency on
agriculture [9]. The climate and geology of the Brahmaputra basin have caused many
changes to the river channel and bank erosion. The deposition of the sediment load of the
Ganga-Brahmaputra delta is the largest in the world and covers an area of 1.76 million
km2 [10]. Each year, floodings have caused the deposition of the sediment load by 1060 Mt
into the Ganga-Brahmaputra delta and Indian Ocean, signifying one of the largest fluvial
sediment depositions in the world [11]. Moreover, people living in various regions of the
delta often face challenges because of frequent flooding, sea-level rise, cyclone-induced
storm surges, and climate change.

Various climatic factors affect floods, mainly through precipitation and including
its intensity, amount, and duration. Temperature patterns are also responsible for soil
freezing, snow, or ice melt that contributes to a higher amount of runoff [12]. The increasing
temperature and the changes in the precipitation intensity or frequency affect the magnitude
and the intensity of the floods [13]. The annual mean temperature of the upper Brahmaputra
valley region has increased by 0.15◦ per decade from 1971 to 2007, while rainfall in the
summer season has marked a decreasing trend [14]. The study on the seasonal and annual
rainfall extent over the Indus, Ganga, and Brahmaputra River basins using the Tropical
Rainfall Measuring Mission (TRMM) data of 1998 to 2017 indicated a significant decreasing
trend of rainfall in the eastern part of the Indus-Ganga-Brahmaputra (IGB) basins and an
increase towards the western part [15]. Increased rainfall has prolonged inundation over
land, and some case studies over the Brahmaputra basin area demonstrated that previous
floods in 2007 and 2008 have left 1–2 m of the deep sand layer in many villages of Assam
in India [6]. A study conducted on the Ganga-Brahmaputra-Meghna basin [16] indicated
that the increase in the normal monsoon rainfall and synchronization of flood peaks in the
Ganga-Brahmaputra-Meghna basin have caused flooding in Bangladesh in 1988, and such
situations can occur more frequently in the Ganga-Brahmaputra plain [17]. All of these
result in severe flooding and siltation on the densely populated and agricultural plains of
the Ganga and Brahmaputra basin [18].

The rise in temperatures causes a shift in crop growing seasons, which affects food
security in many states of India. Due to riverbank erosion, the riverine fertile lands are
also reducing, thereby affecting the rural economy of Assam state. The riverbank erosion
hazard of the Brahmaputra River has a significant impact on the livelihood of the people,
agriculture, environment, and other, different sectors. The continuous loss of output from
agriculture and depletion of the ecosystem due to environmental stressors has a major
impact on the socio-economic condition of the population [19]. A recent study [20] revealed
that the flood of July 2020 has severely affected the cropland of 19,391.42 km2 and the
settlement of 1509.91 km2 in the Indus-Ganga-Brahmaputra basin. Rice and tea yields
in the Brahmaputra valley have also been affected by the intra-seasonal variability of
both temperature and rainfall distribution during the vegetative phase of the crop [21].
The increasing rate of deforestation and practices of shifting cultivation (Jhoom) [22] in
the Himalayan region over the Ganga-Brahmaputra basin has led to various problems
including landslides and soil erosion. It subsequently affects the hydrological cycle of the
river, producing more rainfall and runoff that results in flooding on the downstream plain
area [23]. The study conducted on the impact of soil erosion due to the Brahmaputra River
in the Mymensingh district of Bangladesh revealed about 56% of the people lost 0 to 5 acres
and 33% lost 6 to 10 acres of their land [24].

The inundation maps help in preventing or reducing flood hazards and risks by provid-
ing useful and reliable information to the population [25]. In this context, Remote Sensing
(RS)-based data provide multi-resolution satellite data for flood inundation mapping and
flood risk zones identification, which are the first steps for the formulation of any flood
management strategy [4]. There has been an important contribution of space technology in
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the preparedness, prevention, and relief phases of flood disaster management [26]. RS tech-
nologies have made it easier to map large areas under flooding and provide early warnings
of the disaster [27] that helps in providing support in crisis situations and minimizing dam-
age. Space-based sensors are comparatively more effective than ground-based techniques
in providing near-real time data for monitoring the extent of floods [28]. RS analysis can
be routinely used to map the flood extent either in near real-time or retrospectively [29].
For the emergency response, it is highly valuable as it offers continued observation about
the extent over large geographical areas. For the effective production of flood inundation
maps, the selection of suitable sensors is a major challenge [30]. The satellite platforms and
other advances in RS have provided a wide range of applications of satellite data. Several
studies have utilized optical satellite data and related flood products (e.g., MODIS-based
NRT) to monitor and assess flood impacts across several river basins [27,31–33].

Moreover, it is a fact that the optical sensors data has an inherent problem in flood
studies [34]. Therefore, several researchers emphasized the utility of Synthetic Aperture
Radar (SAR) data for flood studies. SAR sensors can easily penetrate clouds and severe rains
conditions during flood and post-flood events. SAR data are therefore preferred in real-time
flood damage assessment as they discriminate land and water precisely [35]. However,
the limitation of the SAR sensor is its revisit period (e.g., 12–24 days), which results in less
availability of SAR images during flood seasons. For instance, in the Ghaghara River, which
is a major left bank tributary of Ganga, high-resolution multi-temporal SAR data was used
to find the flood inundated area due to the rise in the water level of the river. It concluded
that the results obtained by the SAR data can be used effectively for flood mapping and
monitoring [36]. The SAR data was used during August–September 2018 to map severe
flood conditions and explained the impact of flooding over the Ramganga River in the
Ganga basin. It also revealed a severe bank erosion that took place in the channel with an
average increase in the width of the channel from 46 m to 336 m [37]. In the year 2019, the
flood situation in severely affected Bihar was assessed using Sentinel-1 SAR data (C-band)
and ground-based gauge data, along with other variables (i.e., precipitation, soil moisture,
vegetation cover) [6]. It revealed that the Ganga River was flowing above the danger level
for two weeks and prolonged flood inundation led to severe damage to the vegetation
and population [6]. The SAR data and Digital Elevation Model (DEM) have been used
effectively for mapping flood extent and flood depth in the Kosi River basin in the North
Bihar region [38,39]. SAR-based flood prognosis analysis leads to spatial accuracy and can
be even improved when coupled with hydrological models or other hydro-meteorological
parameters [40]. Sentinel-1 SAR-based flood inundation maps have provided an accuracy
of 96.44% in Bangladesh [41]. The open-access Sentinel-1 data with geospatial techniques
have been widely used and provide an immediate assessment for the flood disaster. Google
Earth Engine (GEE) has been widely used for better and faster data processing and analysis
of results. GEE is a cloud-based platform for geospatial analysis. It is an integrated platform
designed to empower a wide audience, including remote sensing scientists lacking the
technical knowledge of supercomputers [42]. The GEE environment makes it easier for
managing data, allocating resources, data distribution, and large computations by utilizing
parallel processing.

The Ganga-Brahmaputra basin is affected by flooding on a recurrent basis and the
pattern of occurrence of flooding has been changing with the increasing impacts on agricul-
ture, settlements, and the population due to climate change. The objective of the study is
(1) to monitor the large-scale flooding in 2020 in the Ganga-Brahmaputra basin using SAR
data in cloud platform GEE, and (2) to estimate the impact of floods on the agriculture and
population in the basin. The analysis of the spatiotemporal distribution of flooding in the
Ganga-Brahmaputra basin will provide useful insights into the formulation of disaster risk
maps, mitigation measures, and emergency management.
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2. Study Area

The study area comprises the Ganga-Brahmaputra basin that lies in the subtropical
regions situated between 10◦ N to 30◦ N latitude and 84◦ E to 95.5◦ E longitude (Figure 1).
The states situated in the basin comprise Assam, Bihar, and West Bengal in India, as well as
Bangladesh. The basin is formed as a result of the many tributaries from the Ganga and
Brahmaputra River. Some of the tributaries of the Ganga joining the basin are the Ghaghra,
the Son, the Gandhak, the Chambal, and the Kosi. The tributaries of the Brahmaputra
joining the basin are Teesta and Meghna. This basin covers a very large area and is spread
over different countries including India, China, Nepal, Bhutan, and Bangladesh. The main
features of the Ganga-Brahmaputra basin are the fertile land, the Himalayas, and the delta
of the Sunderban. The major area of the Ganga basin falls within the 300–500 m elevation
zone, whilst the floodplain of the Brahmaputra basin falls within 100 m. This basin receives
heavy showers in the monsoon season during the period from June to September, which
accounts for about 80% of the annual rainfall. The demography of the entire basin is
affected by various factors with mountain regions exhibiting a lower population compared
to the fertile plain areas. The basin comprises the homes of almost 625 million people,
out of which 80% are farmers and are dependent on the water from the river for carrying
out agriculture activities. Bangladesh gets most of its water (94%) from the river flowing
through the country. In Assam, recurrent floods affected about 1846 villages and 1.6 million
people during the 2014 flood event, whereas in the 2016 floods, nearly 2893 villages and
1.7 million people were displaced [43]. The historical major flood events in Assam, Bihar,
West Bengal, and Bangladesh have been shown in Table 1.
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Table 1. Past flood events in the Ganga-Brahmaputra basin.

States/Country Flood Events Source

Assam
1954, 1962, 1966, 1972, 1974, 1977, 1978, 1983, 1984, 1988,
1998, 2000, 2002, 2004, 2012, 2013, 2015, 2016, 2017, 2018,

2019, 2020, 2021
[44]

Bihar 1987, 1995, 1998, 2000, 2001, 2003, 2004, 2008, 2010, 2013,
2016, 2017, 2018, 2019, 2020, 2021 [31,40]

West Bengal
1913, 1942, 1954, 1965, 1956, 1959, 1978, 1993, 1995, 1999,
2000, 2001, 2002, 2005, 2006, 2010, 2012, 2013, 2014, 2016,

2018, 2019, 2020, 2021
[45]

Bangladesh

1842, 1858, 1871, 1875, 1885, 1892, 1948, 1953, 1954, 1955,
1956, 1962, 1963, 1968, 1970, 1971, 1974, 1984, 1987, 1988,
1993, 1995, 1998, 1999, 2004, 2006, 2007, 2010, 2011, 2014,

2015, 2017, 2019, 2020, 2021

[46]

3. Materials and Methods
Data Used

The present study used primarily Sentinel-1 SAR data for flood inundation mapping in
2020 in the Ganga-Brahmaputra basin. The flood damage assessment has been performed
using land use land cover (LULC) as well as a population dataset. The detailed data used,
as well as the sensor characteristics, have been given in Table 2. The Copernicus Global
land cover dataset was acquired from the European Space Agency (ESA) to extract the
cropland and build-up in the Ganga-Brahmaputra basin for damage assessment, whereas
the population density was used to evaluate the affected population and identify density
areas within closer proximities of the river. The Global Human Settlement Layers (GHSLs)
and Gridded Population of the World (GPW v4) datasets on the population and population
density, respectively, were employed to evaluate flood impacts. The Terra Climate monthly
precipitation data were used to observe the rainfall pattern and rainfall anomaly for the
flood event in 2020. The agricultural area and population density were extracted using
ArcGIS software. Shapefiles of the country, state, district, and the river were used to
separate the entire study area and to get the flood impact area statistics at different levels.
For the validation of flooding extent, the Operational Land Imager (OLI) of Landsat-8
satellite images were used.

Table 2. Data used and their specifications.

Dataset Used Spatial/Temporal
Resolution Acquisition Date Purpose Source

Sentinel-1A (SAR) 10 m,
12 days

July–September (2020)
March 2020

Flood extent mapping
Pre-flood images ESA

Landsat-8 (OLI) 30 m,
16 days

March 2020
July–September (2020)

Pre-flood images
during-flood images

for validation
Earth Explorer

TerraClimate: Rainfall 4 km,
monthly

July–September
(1990–2020)

Rainfall distribution
Rainfall anomaly [47]

GHSLs: population 9 arcsec 2015 Affected population [48]

GPW v4: population density 1 km 2020 Population density [49]

Copernicus global
Land Cover 100 m 2019 Affected LULC

extraction [50]
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The constellation of Sentinel-1A and Sentinel-1B are on a sun-synchronous, near-polar
orbit. The Ground Range Detected (GRD) product of the Sentinel-1A satellite provided
data in the C-band dual-polarization channels (VH and VV) with a repeat cycle of 12 days
and was used to extract the flood inundated area. The pixel spacing resolution of the
Sentinel-1A data is 10 m. The SAR images were processed directly in GEE from July to
September in 2020 and, furthermore, used for identifying flood pixels. TerraClimate data
provide many climatic variables at ~4 km spatial resolution at monthly time scales. In the
present study, the spatial pattern of the rainfall for July to September 2020 was derived
from this dataset, whilst the rainfall anomaly for 2020 was computed using the long-term
mean over 1990 to 2019.

The global human settlement and population product were available at 9 arcsec and
30 arcsec, respectively. Then, rasterization in the final grids was performed by adding
point values per pixel. This raster product depicts the distribution of the population and
its density expressed as the number of people per cell. The GPW (v4) was adjusted to
the 2015 revision of UN World Population Prospects (WPP) country totals [51]. It consists
of the estimates of the population density (i.e., expressed as number of persons per km2)
based on the counts, which are consistent with censuses and population registers. Nearly
13.5 million administrative units of national and sub-national are utilized and were used to
assign adjusted population counts to 30 arc-second grid cells. The density raster data is
calculated by dividing the UN WPP adjusted population count data for any given year by
the land area raster.

The Copernicus 100 m Global Land Cover data are yearly moderate resolution
maps that are updated annually and are freely available [50]. The Copernicus LULC
data were mapped with high temporal stability across time and have an overall accuracy
of over 80%.

4. Methodology

Sentinel-1A SAR data was used to generate the flood extent map based on a change
detection approach (CD) where a before-flood image and a during-flood image were com-
pared. The pre-processing techniques used before the generation of the map were thermal
noise removal, radiometric calibration, speckle filter, and terrain correction (Figure 2). The
GEE platform is used for performing all pre-processing steps (Figure A1). A speckle filter
with a smoothing radius of 50 m was applied during the processing to reduce the effect
of the granular noise. The terrain correction is applied to rectify the geometric distortions
inherent in SAR images. To estimate the changes due to flooding, the during-flood mosaics
were divided by the before-flood mosaics using a threshold of 1.25. In the resultant image,
the brighter pixels with higher values exhibit large changes as compared to the darker
pixels (low values). Then, the binary raster layer is created with the threshold value of 1.25,
assigning 1 to all the values greater than 1.25 (flood pixels) and 0 to all values less than
1.25 (non-flood pixels). The ‘VH’ polarization was preferred for flood mapping because
of the overestimation of results obtained through ‘VV’ polarization. VV polarization is
susceptible to vertical structures, whereas VH polarization is more sensitive to the changes
on the land surface. VH polarization is more suitable for determining the flood-affected
areas as it manifests higher dark and black tones as compared to VV polarization [51,52].
After the flood inundation extent was derived, the permanent water bodies (PWB) were
removed from the result using the Copernicus 100 m LULC product and the clipping tool
in ArcGIS. The rainfall anomaly was created for monsoon season 2020 (July to September)
by taking the average rainfall over the months with respect to the long-term 30-year mean
rainfall (1990–2019) from July to September. The rainfall distribution and rainfall anomaly
were shown to link with the flooding extent in the study area as higher intensity rainfall in
upstream areas caused heavy riverine flooding in the downstream areas.
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For agriculture area extraction for the entire study area, the Copernicus Global Land
Cover product was used. To extract the cropland, the LULC raster data was firstly converted
to a vector format and classes containing the same values for the cropland were merged
together. Furthermore, the pixels of the cropland overlapping with the flood inundation
extent were extracted using the clipping tool to estimate the percentage of the cropland
area affected from the total inundated area. The same process was used to extract the
built-up area affected due to flooding. The population density was calculated for the entire
region using the GPW v4 population density data. To identify the population affected by
the flood in the areas nearby the rivers, the GHSLs population data were used with the
inundated extent. The assessment of the damage from the floods over the agriculture area
and the population was carried out using flood inundation during August, September,
and October 2020. The detailed methodology has been shown in Figure 2. The LULC
raster data collected from Copernicus was resampled to a 10 m spatial resolution using the
nearest neighborhood method for comparison and overlaying with the flood map. Similarly,
the GHSLs and GPW data were resampled to a 10 m spatial resolution for deriving the
population affected by the flooding and population density.

5. Results
5.1. Rainfall Distribution and Anomaly during 2020 Flood Event (July to September)

The rainfall pattern and rainfall anomaly from July to September (monsoon season)
for the year 2020 have been shown in Figure 3. The rainfall pattern showed that the
higher rainfall intensity was confined to the parts of Meghalaya, which were observed as
more than 800 mm. The intensity of 600–800 mm was observed in parts of Sikkim and
the upper reaches of West Bengal. The overall intensity of the study area was observed
between 200–400 mm. Whereas the upstream areas of the Ganga-Brahmaputra basin, like
parts of Nepal, Arunachal Pradesh, and Nagaland, have contributed a higher rainfall than
the downstream areas (Figure 3a), which have resulted in excessive flooding conditions
in the lower Ganga-Brahmaputra valley. Similarly, the highest rainfall anomaly during
July to September 2020 exhibited that the maximum anomaly (200–400 mm) was noticed
in the upstream areas of the Ganga-Brahmaputra basin. Moreover, several parts of the
Ganga-Brahmaputra basin also exhibited positive rainfall anomalies between 50–200 mm
(Figure 3b), albeit some parts of the study regions in the downstream area (i.e., Assam and
Bangladesh) have shown negative rainfall anomalies (50–100 mm).
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5.2. Flood Extent in 2020 as Derived from SAR Data

The inundation extent acquired from the Sentinel-1A data showed a continuous
regression of flooding from July to September 2020 (Figure 4). The flood inundation
affected a large extent of area with a significant impact in Assam, Bihar, West Bengal,
and Bangladesh in July (Figure 4a). However, the flood inundation extent reduced in
subsequent months, like August and September, indicating flood regression (Figure 4b,c).
The excessive flooding area was the result of excessive rainfall in the upstream areas of the
Ganga-Brahmaputra basin with rainfall more than 600 mm. In Assam, the flood extent was
largely confined to the proximity areas of the Brahmaputra River, whereas for Bihar, the
tributaries of the Ganga constitute the major zones of flood inundation due to breaching
along the banks of the tributary rivers owning to the excessive rainfall throughout the
monsoon season. The accumulated river flows from the Ganga and Brahmaputra rivers
lead to excessive floods in Bangladesh along the river Meghna. A major zone of flood
inundation was also noticed in the downslope areas just south of the Meghalaya Plateau
region where flows from the plateau region get accumulated in the plain region resulting
in severe flood damage in two different zones in Bangladesh. The region-wise affected
areas were shown in Table 3 for July, August, and September 2020. The flood extent was
highest in July in all four regions, whereas lowest in September. As per the composite
flood inundation, it was found that 17.16%, 22.11%, and 20.31% of the area was affected in
Assam, Bihar, and West Bengal, respectively. In the case of Bangladesh, 18.51% of the area
was inundated during the monsoon season in 2020. Overall, floods have inundated 19.48%
(77,493.1 km2) of the areas in the Ganga-Brahmaputra basin.
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respectively.

Table 3. Flood inundation extent (km2) in Assam, Bihar, West Bengal, and Bangladesh. The % area in
the last column was calculated with respect to irrespective total area of the states.

Study Area Total Area
(km2)

Inundated Area (km2) Composite Area
(km2) (%)July August September

Assam 78,431.2 12,173.5 4215.54 3007.10 13,460.1 (17.16%)

Bihar 94,234.6 18,424.8 8679.91 5025.71 20,837 (22.11%)

West Bengal 85,194.9 12,917.5 9368.75 1439.34 17,307 (20.31%)

Bangladesh 139,846 30,734.47 21,569.4 15,615.42 25,889 (18.51%)

Total 397,706.7 74,250.27
(18.67%)

43,833.6
(11%)

25,087.57
(6.3%)

77,493.1
(19.48%)

5.3. Flood Inundation Impact on Cropland and Settlement

The flood impact on LULC was analyzed using the Copernicus Global Land Cover
data with a 100 m spatial resolution. The spatial pattern showed that the croplands
and build-up were adversely affected by the floods (Figure 5). The area statistics of the
croplands and build-up affected by the floods were presented in Table 4. In Assam, 28.47%
and 9.15% of the croplands and built-up areas, respectively, were affected by 2020 flood
events, whereas in Bihar 24.54% and 7.29% of the areas of croplands and build-up were
affected. In West Bengal, 24.63% of the cropland and 5.66% of the built-up areas were
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affected, whereas in Bangladesh, 23.68% and 5.8% of the areas of cropland and build-up
were affected, respectively.
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Table 4. Flood impacts on croplands and build-up as derived based on the composite flood map.
Others indicate the LULC classes other than croplands and built-up.

States Total Cropland
(km2)

Affected Cropland
(km2) (%)

Total Built-Up
(km2)

Affected Built-Up
(km2) (%)

Affected under
Others (km2)

Assam 43,678.78 12,439.56 (28.47%) 8213.44 751.86 (9.15%) 268.68

Bihar 81,112.49 19,911.18 (24.54%) 10,908.93 796.01 (7.29%) 129.81

West Bengal 64,823.88 15,969.33 (24.63%) 15,049.51 852.1 (5.66%) 485.57

Bangladesh 95,468.85 22,614 (23.68%) 27,734.92 1610.75 (5.80%) 1664.25

5.4. Flood Inundation Impact on Population

The mean population of the study area represents a high density of the population that
is mainly in the flood plain areas along the major rivers (Figure 6). The mean population val-
ues are highest for Bangladesh, ranging from 0 to 1249.37 per km2; followed by West Bengal
with the mean population value of 1216.55 per km2; Bihar with 1357.65 per km2; and Assam
with 455.80 per km2. The population of Bangladesh is at higher risk as compared to other
states of India given that it comprises the confluence zone for the Ganga-Brahmaputra River
and is a low-lying area with the highest density in the world, which makes its population
more prone to flood risk. After applying the zonal statistics on the GHSL population data
of the year 2015, the total population was extracted and was estimated as 33.50 million
in Assam, 115.92 million in Bihar, 97.13 million in West Bengal and 160.10 million in
Bangladesh. As per the GPW dataset, a population density of 110,425 persons per
grid was found in Bangladesh, which co-located with the inundated area during the
peak flood period and was followed by Bihar and Assam in India with 48,409 and



Sustainability 2022, 14, 4210 11 of 22

46,943 persons per grid, respectively, whereas the least was in West Bengal with only
3092 persons per grid.
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The estimation of the population is necessary for the analysis of the severity of the
flood hazard. There is a higher concentration of the population in the lower valley regions
in Assam due to the population’s dependency on the river water, but the density of the
population is still very low as compared to other states included in the study area. A
large population was flood-affected in Bihar due to the presence of a number of tributary
streams in the higher population density region. The population affected by the floods was
higher in the month of July and urban areas experienced the most impacts and damage
due to the extensive rainfall that led to the floods. The affected population due to flooding
impacts was shown in Table 5. Bihar was the most affected among others with an affected
population of 11.79 million, followed by Bangladesh (6.9 million), Assam (3.2 million),
and West Bengal (1.4 million). In August, the highest impact was found in Bihar with
7.6 million persons affected, followed by Bangladesh (5.6 million), West Bengal (1.9 million),
and Assam (1 million).

Table 5. Flood impacts on population as derived based on the composite flood map.

Study Area Total Population Affected Population

Assam 33.50 million 3.2 million

Bihar 115.92 million 11.79 million

West Bengal 97.13 million 1.4 million

Bangladesh 160.10 million 6.9 million
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6. Discussion

The Ganga-Brahmaputra basin is highly prone to flooding because of extensive rainfall
events that occur over a shorter time span, which is influenced by climate change. Among
hydrometeorological hazards, flood occurrences and magnitude are increasing in recent
decades because of global climate change [53,54]. Studies have found that temperature
trends have been increasing in South Asia [55]. Similarly, monsoon precipitation patterns
have been altered especially in the Ganga-Brahmaputra delta, with an indication of in-
creased risk of flooding in the monsoon season as suggested by Regional Climate Model
(RCM) simulations [55,56]. The impact of climate change on the water resources of the
snow and glacier-dominated river basins is also important for water resource management.
The river discharge in the Brahmaputra river is highly influenced by the snowmelt at the
upper part of the catchment due to global warming [57]. The snow cover area changes
under the recent climatic conditions are expected to have a larger effect on the hydrological
cycle [58]. Satellite gravimetry was used to understand the contribution of substantial melt-
water to the Brahmaputra river and found that summer meltwater contributed 43 ± 8 Gt
to the Brahmaputra. There is a high sensitivity between glacier and snow melting with
temperature on annual, as well as monthly scales, suggesting changes in the total annual
discharge as well as an earlier peak of runoff due to global warming [59]. Furthermore,
the Ganges-Brahmaputra delta is known to be the most vulnerable to the effects of climate
change, mainly due to anthropogenic stressors as well as the larger population.

During and after the disaster, remotely available data is beneficial for rescue work and
restoration. For the purpose of disaster risk management, satellite data can play a powerful
role by helping to identify the major extent of flooding and its impacts on croplands, build-
up, and the urban population, and, based on this information, relief work can be started
on an emergency basis. Satellite data also provides instant flood situations with greater
accuracy. Unfortunately, optical satellite data are not available during the time of disaster
(especially floods) for analysis due to the excessive cloud cover. Whereas Sentinel-1A (SAR)
data is beneficial for flood monitoring during and after any flood event because of the
availability of its data during day and night with no impact on cloud cover.

The pattern of rainfall intensity and rainfall anomaly during July to September 2020
was analyzed using the TerraClimate data. The rainfall anomaly has shown a positive
pattern (200–400 mm) in the central parts of Bihar, Assam, West Bengal, and Bangladesh—
except for certain parts of Assam in the northeastern states of India. It was observed that
the upper reaches of the Ganga-Brahmaputra basin led to the excessive flow of floodwater
in the lower elevation areas of Bihar, Assam, West Bengal, and Bangladesh. Especially
for Bangladesh, the upper parts of excess rainfall states like Meghalaya, Arunachal, and
Assam altogether contribute to huge damage to the country and its economy, which is
due to recurring floods. The areas surrounding the river body of either the Ganga or
Brahmaputra are highly populated because the Basin region is an important agricultural
belt of the country. Bihar is highly influenced by the various stream systems and the
flow of river water from the Himalayan region [60], thereby creating havoc for the state
during every monsoon season [61]. Most of the inundated area was confined to the North
Bihar region. Based on the Sentinel-1A (SAR) data, the present study estimated that
the total inundation during July was about 74,250.27 km2 (18.66%) with a regression in
August resulting in 43,833.6 km2 (11%) and in September, which resulted in 25,087.57 km2

(6.3%). As per the composite flood maps during the 2020 flood events, it inundated 19.48%
(77,493.1 km2) of the areas in the Ganga-Brahmaputra basin with a maximum inundation
in Bihar (22.11%), followed by West Bengal (20.31%), Bangladesh (18.51%), and Assam
(17.16%). The SAR-derived flood map was validated against the false color composite (FCC)
images of the optical data (Landsat-8) acquired during the same time period as the SAR
data (Figures A2 and A3), albeit some of them are cloudy images. These results show that
the flood extent map was accurate to that seen in the optical FCC images as well as the grey-
color images of the SAR data (Figures A2 and A3). Moreover, these results are consistent
with the latest study, which has reported based on the MODIS NRT flood product that about
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17.7% of the geographical area of North Bihar was inundated during 2020 flood events
and the adversely affected districts were Muzzafarpur, Darbhanga, Saharsa, Khagaria,
Madhepura, Bhagalpur, Katihar, and Purnea [62]. Previously, during the flood event of
August–September 2017, 12% to 17% of the geographical area of North Bihar was inundated
during the peak flood period [57]. The composite floods maps over 2000–2020 indicated
that about 34% of the area was affected by floods, as derived from the MODIS-based NRT
flood product [57]. In Assam, our estimates on the flood inundation area and the spatial
pattern were very consistent with Devrani et al. [63], who have reported an inundation
of 14,445.28 km2 (18.42%) based on the Sentinel-1 SAR data. During the floods of 2017
in Bangladesh, the maximum damage was observed in August with an inundated area
of about 7.01% of the total geographical area of Bangladesh [41], and the flood-related
inundation mostly varied from 20–25% [12]. The different hydrological models were used
mainly to derive the peak discharge changes, volume of the flood, and the annual water
yield [64]. The extent of the floods from these flood inundation models was validated with
the help of ground truth surveys, which were not a very reliable source [65] on account of
the limited field observations. Hence, by utilizing the SAR-based data and processing these
data in a cloud platform like GEE, it proved to be an efficient technology to provide near
real-time monitoring and management of flooding situations on any geographical setup.

Several tributaries and distributaries of the Ganga affect a vast area of Bihar, damaging
the cropland and build-up. The major built-up areas of the study are mostly confined
to the river channel due to the availability of freshwater, resulting in higher damage to
the infrastructure. Major damage to the croplands was found in the Ganga-Brahmaputra
basin as most of its area was under cultivation during the monsoon season. The present
study showed that the floods in 2020 have affected the croplands area between 23.68%
(Bangladesh) to 28.47% (Assam) and the built-up area between 5.66% (West Bengal) to
9.15% (Assam). Most of these results are in line with previous studies that have reported the
impact of floodwater on agricultural land and urban areas, especially in Bihar [34,62]. The
flood impacts in North Bihar during the 2017 flood events were the highest in agriculture
(19%), followed by the forest (0.58%) and built-up classes (0.4%) [42]. The flood impacts
on croplands in Bangladesh during the 2017 flood event were 1.51% in April, 3.46% in
June, and 5.30% in August [63], which was much lower than the impacts observed in the
2020 flood event. The maximum damage to the build-up was found in Assam (9.15%) and
Bihar (7.29%) in comparison to West Bengal and Bangladesh, since most of its population
resides in the lower valley near the river that affected 11.79 million of the population in
Bihar and 3.2 million of the population in Assam. In Assam, the population residing in the
valley region is adversely affected by the high flow of the Brahmaputra River. The upper
part of West Bengal and Bangladesh also receives higher flows from the Himalayan region,
which affected a population of 6.9 million and 1.4 million, respectively—although it was
comparatively lower than Bihar.

In terms of population, the region is highly vulnerable as the study area incorporates
the highest density regions of the world. Most of the affected population constitutes the
lower-income groups of the states that are forced to stay in spite of the disastrous impact of
floods. The GPW v4 is a good source that provides high resolution population densities
of the world. The population density is highest in Bangladesh, including Bihar and West
Bengal, as compared to the world and, therefore, the highest densities make these countries
the most vulnerable population to frequent occurring disasters. As derived from this
dataset, it can be concluded that the study area is under a high disaster risk zone and
major and early steps are required to control the impacts of floods on the livelihood and
economic condition of people. This paper will help identify the flood-affected zones and
the areas that should be taken into consideration to minimize the impact of naturally
occurring disasters. Natural disasters cannot be controlled and, therefore, their impact on
croplands and build-up can be minimized. GHSLs provide population density and count
data that can be used for the estimation of the flood-affected population. Global population
grids are used for various applications for analysis, modelling, and policymaking [66].
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The estimation of the population is necessary for defining the severity of flood exposure.
Resources are the root cause that limits the locational choices of the vulnerable groups in
avoiding hazardous areas [67]. The higher exposure of socially vulnerable groups can lead
to a greater susceptibility to impacts during flood disasters [68].

Notably, it is worth mentioning that accurate and high resolution LULC datasets are
important for damage assessment. However, there are some inconsistencies in the LULC
classes in different products, which makes it difficult to perform damage assessment of
LULC classes due to flooding. For instance, the built-up class in the MODIS-based LULC
dataset is underestimated, whereas the ESRI LULC dataset, as prepared from Sentinel-2
(10 m resolution), has been overestimated. In this context, we find that the Copernicus
LULC dataset of ESA was beneficial for deriving the damage to both the cropland and
build-up, albeit the latter one is still overestimated. Though the ESRI LULC dataset is
available at high resolution, the only setback of this dataset over the Ganga-Brahmaputra
basin dataset was the inclusion of the riverbed area into the built-up area, which leads to
less accuracy in the damage assessment.

In the present study, the flooding vulnerability analysis is performed by identifying
some of the elements at risk, which are defined by their level of exposure to the flood
hazard. The elements at risk, such as the population, agricultural land, and urban areas,
are identified with the help of the population datasets and LULC map. Future aspects of
this research should consider flood hazards and risk through SAR-based data with the
inclusion of the other characteristic features of the study area, such as elevation, slope,
aspect, buildings, and infrastructure, which will help in disaster management. Hydrological
models and DEM can be incorporated to determine the floodwater depth of the disaster.
The available information about the depth of the floodwater and its hazardous impact
on any area would be essential for disaster risk management. The SAR-derived flood
inundation mapping together with the possible impact over the cropland and settlements
and population would provide relevant information to the disaster management authority
for a quick damage assessment and effective relief operations during flood impacts.

7. Conclusions

The present comprehensive study provides an insight into the utility of cloud plat-
forms like GEE to process SAR data for mapping inundation over the Ganga-Brahmaputra
basin. Without the cloud platform, it could have been impossible to map the flood char-
acteristics over such a large area. The key findings can be summarized as floods have
mostly occurred during July–September and, according to the composite flood maps over
the Ganga-Brahmaputra basin, the maximum inundation extent was found in Bangladesh
(25,889 km2) (18.5%), followed by Bihar (20,837 km2) (22.1%), West Bengal (17,307.1 km2)
(20.3%), and Assam (13,460.1 km2) (17.1%), which are mainly driven by the high intensity
rainfall in the upstream areas of the Ganga-Brahmaputra basin (i.e., Nepal, Arunachal
Pradesh, and Nagaland), thereby causing riverine floods in the downstream areas that
are mostly flat. The floods have caused inundation of up to 19.48% (77,493.1 km2) in
the areas in the Ganga-Brahmaputra basin, which caused adverse impacts on agriculture
(i.e., 23.68–28.47% of cropland area) as well as build-up (i.e., 5.66–9.15% of built-up area).
Consequently, millions of the population were affected by the floods and the highest impact
was seen in the Bihar state, as they reside in the lower valley and near the river. Similarly,
the highest impacts were seen from Bangladesh because of the high population density as
well as the settlement density.

The SAR data processing in the GEE platform and the derived flood extent map were
very useful for large-scale flood mapping. The approaches of flood impact analysis and
the information on the affected croplands and population can help disaster managers and
policymakers to take flood mitigation measures and make a flood risk assessment in the
susceptible zones of densely populated areas.
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