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Abstract: Ecological land change is an important indicator of eco-environment quality when balancing
urbanization and regional ecological safety. Nantong, located in the Yangtze River’s lower reaches,
has experienced rapid urbanization since the reform and opening-up policy was implemented
in China in 1978. To ensure the regional ecological conservation and restoration of the Yangtze
River and the city’s sustainable development, we used remote sensing technology and statistical
yearbook data as well as land use dynamic degree (LUDD) and Geodetector methods to determine
the spatiotemporal dynamics of ecological land in the Nantong riverine area from 1980 to 2020
and further discussed the potential driving factors. We found that (1) from 1980 to 2020, the major
types of ecological land changed from cropland (82.08%), water (17.19%), and grassland (0.69%) to
cropland (70.11%), water (26.98%), and forestland (2.25%), and the ecological land area decreased
by 4091.36 km2 during the same period with a significantly increased dynamic degree of land use.
(2) Spatial heterogeneity existed in the distribution and variation of ecological land. Water was the
dominant ecological land use in the Yangtze River levee’s inner area, with transitions to cropland
and impervious surfaces as the primary conversion types; cropland was the primary land use in the
levee’s external area, with transitions from cropland and water to impervious surface as the primary
conversion types. In addition, in cities with an early start and a high level of urbanization, most of
the ecological land had been converted to impervious surfaces by urban development, whereas cities
without those characteristics had retained more of their ecological land. (3) Ecological land change
was influenced by a combination of natural and socio-economic factors, and there were enhanced-bi
and enhanced-nonlinear interactions between them. (4) The dominant factors influencing ecological
land changes during the three stages of urbanization (1980–2000, 2000–2010, and 2010–2020) were the
distance to the Yangtze River, the population, and the GDP (Gross Domestic Product) of secondary
industry, respectively. The role of environmental policies has gradually increased in recent years,
which has played a positive role in ecological land use restoration. The findings of this study can
assist policymakers in optimizing land use and restoring ecological space to conserve biodiversity.

Keywords: ecological environment; spatiotemporal distribution; driving force; land-use change;
Geodetector; Nantong

1. Introduction

Since the late 1970s, China’s coastal regions have undergone rapid urbanization
to varying degrees. According to the Seventh National Population Census, 63.89% of
people live in urban areas [1]. The most predictable feature of urbanization is how it
impacts land use zones, with urban expansion taking up a vast portion of ecological land
and significantly contributing to ecological changes [2–5]. Ecological land is the primary
source of regional ecosystem services and functions [6] and also serves to guarantee the
essential ecological services in a complex urban ecosystem [7], which is critical for regional
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ecological conservation. Urban ecological land is key to sustainable land use and, therefore,
has interested numerous scholars who have monitored and reported on the changes in
vegetation coverage [8,9], built-up areas [10], wetlands [11], grasslands [12,13], and other
related ecological indicators.

Changes in urban land use have resulted from a combination of multiple factors, of
which the primary ones vary according to the city’s geographic location, developmental
stage and scale, and economic structure [14]. In Wuhan, the topography has dominated
these changes while urban traffic, population, tertiary industry proportion, and the gross
output value of agriculture have been the primary human factors [15]. In Beijing, the
ecological space was formed in a green belt on the outskirts of the city as the population
density and industrial structures expanded out from the city center [16]. In the Yellow
River basin of Shandong Province, elevation, slope, and soil type have been the key factors
affecting land-use change [17]. As research has broadened, the associated methodologies
have become more diverse as well, with the most common methods being regression analy-
sis models [18,19], geographically weighted regression [20], gray correlation analysis [21],
and Geodetector [22].

Nantong City in Jiangsu Province is representative of China’s rapidly urbanizing
trends. It is located at the intersection of China’s coastal economic belt and the Yangtze
River Economic Belt. Economic development along the Yangtze River has resulted in
negative consequences such as the unreasonable distribution and the inefficient utilization
of a portion of the shoreline, especially the pollution caused by industrial production, which
directly threatens the ecological environment of the Yangtze River [23], making it essential
to improve shoreline protection and promote the construction of ecological security barriers.
In December 2018, the state council of the People’s Republic of China unveiled an action
plan to protect and restore the Yangtze River, emphasizing strict shoreline protection and
restoration and promoting urban ecological buffer zones on both sides of the Yangtze
River mainstream to rehabilitate the shoreline’s ecological functions. Influenced by the
interaction of water and land, the shoreline is fragile, variable, and comprehensive [24,25],
so it is not only the backbone of regional economic development and a critical component of
the Yangtze River protection strategy’s implementation but also an area with outstanding
contradictions between development and protection [26,27]. The ecological protection
of the Nantong section is crucial as the “last baton” in the race to protect this region. In
recent years, environmental protection efforts have led to a significant improvement in the
ecological environment along the river.

Therefore, a complete understanding of the spatiotemporal patterns of the ecological
land in Nantong and its driving factors are essential for interpreting the interaction between
human activities and the natural environment during urbanization and can optimize
land use and provide a template for the effective implementation of similar conservation
strategies in other regions.

This paper has the following structure: Section 2 provides a detailed spatial description
of the study area; Section 3 describes the data and methods used. Section 4 presents the
results obtained, including the changes in ecological land area and structure as well as
the spatial distribution characteristics in the study area based on factor detection and
intersection detection. Finally, in Section 5, we discuss the reasons for the spatially divergent
characteristics of ecological land change in the study area and the dominant factors affecting
ecological land change at different stages of urbanization.

2. Research Area

Nantong (120◦11′51′′–121◦59′29′′ E, 31◦25′51′′–32◦42′47′′ N) is on the southeast coast
of Jiangsu Province and the northern flank of the Yangtze River estuary, where the river
and the sea meet to form a riverine and marine sedimentary plain with gentle terrain and
elevation between 0–115 m. In this study, the county-level administrative districts along the
Yangtze River in Nantong were selected as the research area, including Rugao, Tongzhou,
Chongchuan, Nantong Economic and Technological Development Area (NETDA), Haimen,
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and Qidong (Figure 1), with a total area of approximately 8975.17 km2, a resident population
of 597.22 million, and a regional gross domestic product (GDP) of CNY 765.92 billion (2020).
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Figure 1. Location and scope of research area. White polygons and Arabic numerals indicate
the boundaries and names of county administrative districts, while yellow polygons and Roman
numerals correspond to township-level. The background image comes from Landsat 8 OLI with
true-color composite (R: band 4, G: band 3, B: band 2).

The Yangtze River levee, spanning 227.60 km, was manually extracted for further
spatial analysis using Google Earth remotely sensed images (Figure 1). The levee divided
the research area into two parts. The inner region was the water–land interface zone, which
is the primary ecological function area and is more sensitive to the environmental changes
caused by human activities, with a total area of approximately 810.64 km2, of which more
than 60% is in Qidong, NETDA, and Chongchuan. In the remaining 40% of this inner
section, we also selected some typical townships to obtain additional detailed information
for analysis, and the total area, including the county- and township-level regions, was
657.83 km2 and accounted for 81% of the total area of the internal region along the levee,
which was reasonably representative. The external region, which extended northward
from the levee to the administrative boundary of the county, is the primary production and
living area with a higher population and traffic density than the internal region and has an
area of approximately 8164.53 km2. More than 70% of this region was in Rugao, Qidong,
and Tongzhou. The levee-based spatial zoning was complemented with administrative
districts to explain the characteristics of ecological land changes in the Nantong riverine
area from an ecologically functional and structural perspective.

Since the administrative divisions of the riverine area have changed several times, all
the names and the boundaries in this article were current as of the end of 2020.

3. Materials and Methods
3.1. Materials
3.1.1. Land Use Products

Four periods of land-use products were used in this study, including those around 1980
were provided by the Resource and Environment Science and Data Center (Available online:
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https://www.resdc.cn/ (accessed on 10 September 2021)) at a spatial resolution of 1 km;
those around 2000 and 2010 were provided by the National Earth System Science Data
Center (Available online: http://nnu.geodata.cn:8008/ (accessed on 10 September 2021))
at a scale of 1:100,000 and a qualitative accuracy of 80–90% or better. The final dataset
was released by ESRI in 2020 (https://livingatlas.arcgis.com/landcover/ (accessed on
10 September 2021)) and employs a novel machine-learning workflow to process a large
number of sentinel-2 images at a spatial resolution of 10 m [28].

These land-use products are considered accurate and have frequently been used in
related research [29–31]. However, they were derived from different data sources and
processing algorithms that used different classification systems. To ensure consistency and
comparability of the data across different time periods, this study unified the land-use types
into the following categories based on the latest Chinese current land-use classifications
(GB/T 21010-2017), which included impervious surface, grassland, cropland, forestland,
bare land, and water, all of which were ecological land except impervious surface [32].

3.1.2. Statistical Yearbook

The China statistical yearbooks (county-level) and its township volumes published
by the National Bureau of Statistics were used to obtain relevant social and economic
indicators, respectively, with the China statistical yearbooks (county-level) covering the
period 1983–2020 for county-level administrative areas (Table 1) and the township volumes
covering the period 2014–2020 for township-level administrative areas.

Table 1. Information on indicators in the China Statistical Yearbook.

Type Scope Period Socio-Economic Indicators

County-level
Rugao, Tongzhou,

Chongchuan, NETDA,
Haimen, Qidong

1983–2020

Year-end resident population, Urbanization level,
Number of on-post employees at Year-end, GDP,

Primary Industry as a percentage of GDP, Secondary
Industry as a percentage of GDP, Industry as a

percentage of GDP, Tertiary Industry as a percentage
of GDP, Rural Labor Force, Public Budget Revenue,

Public Budget Expenditure, Industrial Power
Consumption.

Township Volumes Changjiang, Wujie, Pingchao,
Huilong, Huiping, Yinyang 2014–2020

Year-end resident population, Urban resident
population, Urbanization Rate, Industrial GDP,

Number of Enterprises, Employees in the enterprise,
and Employees in secondary and tertiary industries.

3.2. Methods
3.2.1. Land Use Dynamic Degree (LUDD)

Land use dynamic degree is a score that reflects the rate of land change over a cer-
tain period and generally has two forms: single land-use dynamic degree (SLUDD) and
comprehensive land-use dynamic degree (CLUDD). The former indicates the intensity of
change in a specific land type within a certain spatial and temporal context, whereas the
latter is the sum of the intensities of change for all land types in that space [33].

Ds =
Aj − Ai

Ai × t
× 100% (1)

Ds denotes the SLUDD, which contains the transfer of land between land cate-
gories [34], Ai and Aj denote the area (km2) of a specific type of land at the initial and final
time points, respectively. The variable t represents the duration of the study.

Dc =
∑n

k=1 ∆LCk

∑n
k=1 LCkt

× 100% (2)

https://www.resdc.cn/
http://nnu.geodata.cn:8008/
https://livingatlas.arcgis.com/landcover/
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Dc denotes the CLUDD, LCk the area of land type k at the final time points (km2),
∆LCk is the absolute value of the sum of the area transferred from and to land type k during
the study period (km2), and t represents the time interval (years) [35].

3.2.2. Geodetector

To conduct a quantitative analysis of the influence of natural and socio-economic
factors on ecological land change, we adopted the Geodetector method, which measures
the spatially stratified heterogeneity (SSH) between ecological land change and all related
factors and determines the degree to which each factor influenced the land change through
the magnitude of similarity in spatial distribution patterns [36]. The advantage of the
Geodetector method was its applicability to interpret relationships between various types
of influences, including variables, quantities, and other numerical variables, and it has
been widely used in research across many fields, including genetic biology [37], medical
science [38–40], ecological and environmental sciences [41,42], and climate change [43,44].

The Geodetector method includes four different detectors (i.e., risk, factor, ecological,
and interaction) [36]; factor and interaction detection at different scales were performed in
this study.

q = 1− SSW
SST

(3)

SSW =
L

∑
h=1

Nhσ2
h (4)

SST = Nσ2 (5)

where q defines the degree of coupling between two variables X and Y, and its value is
strictly within [0, 1]; q = 1 indicates that X can explain 100% of the spatial divergence
of Y while q = 0 means that Y is completely independent of X. SSW and SST stand for
the summation of the within-strata variance and the pooled variance, respectively; N
and σ2 indicate the number of units and the variance of Y, respectively. The expression
h = 1, 2, 3, . . . , L denotes the strata of variable X or Y.

Based on the q-value of each explanatory variable (q(X1), q(X2)) and the q-value of two
variables interacting (q(X1 ∩ X2)), the interaction detection can be implemented with the
determination formula shown in Table 2.

Table 2. Interaction relationship between explanatory variables (Xs).

Description Interaction

q(X1 ∩ X2) < Min(q(X1), q(X2)) Weaken, nonlinear
Min(q(X1), q(X2)) < q(X1 ∩ X2) < Max(q(X1), q(X2)) Weaken, uni-

Max(q(X1), q(X2)) < q(X1 ∩ X2) Enhance, bi-
q(X1) + q(X2) = q(X1 ∩ X2) Independent
q(X1) + q(X2) < q(X1 ∩ X2) Enhance, nonlinear

In this study, the land-use change matrix was Y, and the explanatory variables (Xs)
are shown in Table 3, where X1 represented the natural factor including the distance to
the Yangtze River, and the others were socio-economic factors, all of which were sourced
from statistical yearbooks. At the county scale, X2, X3, X4, and X10 were social factors;
X5, X6, X7, X8, X9, and X13 were economic factors; and X11 and X12 were policy factors.
On the township scale, X2, X3, and X4 were social factors while X5, X6, X7, and X8 were
economic factors.
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Table 3. Explanatory Variables (Xs) at the county and township scales.

County-Administrative Districts Township-Administrative Districts

Explanatory
Variables Indicators Explanatory

Variables Indicators

X1 Distance to Yangtze River X1 Distance to Yangtze River
X2 Year-end resident population X2 Year-end resident population
X3 Urbanization level X3 Urban resident population
X4 Number of on-post employees at Year-end X4 Urbanization Rate
X5 GDP X5 Industrial GDP
X6 Primary Industry as a percentage of GDP X6 Number of Enterprises
X7 Secondary Industry as a percentage of GDP X7 Employees in the enterprise
X8 Industry as a percentage of GDP X8 Employees in secondary and tertiary industries
X9 Tertiary Industry as a percentage of GDP

X10 Rural Labor Force
X11 Public Budget Revenue
X12 Public Budget Expenditure
X13 Industrial Power Consumption

4. Results and Interpretation
4.1. Ecological Land Shrinking in the Riverine Area of Nantong during 1980–2020

A comparison of land use products from different periods revealed a decline in the
area of ecological land along the river, which was 8516.53 km2, 8390.67 km2, 7904 km2,
and 4425.17 km2 in 1980, 2000, 2010, and 2020, respectively, accounting for 94.88%, 93.48%,
88.06%, and 49.31% of the total riverine area, respectively. A total of 4091.36 km2 was
reduced from 1980 to 2020 (Table 4), with 98% occurring outside the levee and the remainder
accounting for 9.62% of the total area inside the levee.

Table 4. Structure and change of land use types in the riverine area of Nantong.

Land Use Type
1980 2000 2010 2020

Area/km2 Proportion Area/km2 Proportion Area/km2 Proportion Area/km2 Proportion

Impervious
surface 458.66 5.11 584.51 6.51 1071.08 11.93 4550.00 50.709

Grassland 58.76 0.65 65.81 0.73 38.75 0.43 19.53 0.221
Cropland 6989.94 77.88 6930.54 77.22 6514.50 72.58 3102.34 34.57
Forestland 3.61 0.04 3.89 0.04 3.02 0.03 99.75 1.11
Bareland 1.67 0.02 9.50 0.11

Water 1464.22 16.31 1390.43 15.49 1346.15 15.00 1194.05 13.30
Ecological land 8516.53 94.88 8390.67 93.48 7904.09 88.06 4425.17 49.31

4.2. Structure and Dynamic of Ecological Land

Before 2010, the ecological land structure of the entire riverine area was cropland,
water, grassland, forestland, and bare land, in descending order. By 2020, forestland had
overtaken grassland as the third-ranked ecological land type. In contrast to the subtle
structure changes, the structural differences between the two sides of the Yangtze River
levee were more noticeable (Figure 2). In the inner region, water had an absolute area
advantage, accounting for 85.73% of the ecological land area on a multi-year average,
followed by cropland (11.13%) and grassland (2.59%), while in the external region, the
primary ecological land type was cropland (87.72%), followed by water (11.21%) and
forestland (0.62%).
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Table 5 shows that (1) the absolute value of CULDD had increased, indicating that
land change was accelerating in both regions of the Yangtze River levee. However, the
CULDD in the inner area was greater than that of the external area until 2000, and then it
reverted, and the CULDD of the external area was more than double that of the inner area
after 2010, indicating that the focus on land-use change had shifted between the two sides
of the levee from 1980 to 2020. (2) In terms of single land-use dynamic degree (SLUDD),
water had a negative and increasing absolute value, indicating its accelerated shrinkage.
Prior to 2010, the absolute value of the SLUDD of impervious surfaces was greater than that
of all ecological lands, indicating that non-ecological land dominated the land-use change.
However, after 2010, ecological land change became dominant, especially for forestland
and bare land. The former was the most dynamic type of ecological land in the inner region,
and the latter was in the external region. Cropland and grassland exhibited more complex
dynamic changes as they had both decreased across the riverine area but had a marked
difference on both sides of the levee: in the inner area, cropland had increased in recent
years while grassland had accelerated its reduction, whereas the reverse was true for the
external region.

Table 5. Land use dynamic degree on both sides of Yangtze River levee in Nantong (1980–2020).

Land Use Type Whole Riverine Area External Area Inner Area

P1 * P2 P3 P1 P2 P3 P1 P2 P3

impervious
surface 1.37 8.32 32.48 1.37 7.94 33.72 1.55 22.12 7.62

grassland 0.60 −4.11 −4.96 0.2 −6.2 3.25 1.16 −1.62 −9.39
cropland −0.04 −0.60 −5.24 −0.06 −0.59 −5.33 1.34 −1.57 2.24

forestland 0.40 −2.25 320.57 0.4 −2.27 2.77 13,707.38
bareland 46.78 61.45 21.61

water −0.25 −0.32 −1.13 −0.29 −0.39 −1.52 −0.21 −0.24 −0.73
CLUDD 0.57 0.58 4.66 0.56 0.29 2.46 0.71 0.28 1.03

* P is short for Period, P1(1980–2000), P2(2000–2010), P3(2010–2020).
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4.3. Spatial Patterns and Transformation Matrix of Ecological Land

Between 1980 and 2020, land use in the Nantong riverine area changed dramatically.
The expansion of impervious surfaces had reduced the extent of ecological land as well as
the fragmentation of its spatial pattern, especially for cropland (Figure 3).

Sustainability 2022, 14, 4256  8  of  15 
 

4.3. Spatial Patterns and Transformation Matrix of Ecological Land 

Between 1980 and 2020, land use in the Nantong riverine area changed dramatically. 

The expansion of impervious surfaces had reduced the extent of ecological land as well as 

the fragmentation of its spatial pattern, especially for cropland (Figure 3). 

In 1980, most of the land along the river had been cropland surrounded by water, 

with some grassland distributed along the Yangtze River, some impervious surfaces in a 

dotted pattern in Chongchuan, and the remainder of the ecological land largely invisible. 

By 2000,  the expansion of  impervious surfaces had  formed a clear polygon with more 

grassland along the Yangtze River due to artificial engineering. The expansion of imper‐

vious surfaces continued until 2020, forming a broad contiguous distribution and occupy‐

ing a large area in the central region, while some forestlands were formed along the north‐

eastern coastline. 

The confusion matrix, also known as the Markov matrix, is a general technique for 

analyzing the characteristics of transfer between different  land‐use types over a period 

and is easy to implement using ArcGIS 10.7. 

According to Tables 6–8, (1) the total land‐conversion areas in the riverine regions 

during the three studied periods (1980–2000, 2000–2010, 2010–2020) were 1024 km2, 524 

km2, and 4184 km2, respectively, among which  the conversion between ecological  land 

and non‐ecological land (impervious surfaces) accounted for 69.92%, 95.01%, and 91.30%, 

respectively. Cropland and water continued to be the primary sources of new impervious 

surfaces, with increasing contributions year over year. (2) In the external region, the con‐

version from ecological land to non‐ecological land was the main trend and accounted for 

a greater proportion than the riverine area; cropland had the largest decrease among eco‐

logical lands. (3) In the inner region, the land conversion process was more complex: from 

1980 to 2000, the conversion within the ecological lands had been more frequent (account‐

ing for 86%), mainly between water, grassland, and cropland; from 2000 to 2010, the con‐

version between ecological  land and non‐ecological  land had been dominant  (78.86%), 

primarily as the conversion of cropland and water to impervious surfaces; during 2010–

2020, the conversion within ecological lands had been dominant (53.74%), followed by the 

conversion between ecological  land and non‐ecological  land  (46.26%), with  the  former 

mainly from the conversion of water to cropland and forestland and the latter from the 

conversion of cropland and water to impervious surfaces. 

 

Figure 3. Land use maps in riverine area of Nantong during 1980–2020. Figure 3. Land use maps in riverine area of Nantong during 1980–2020.

In 1980, most of the land along the river had been cropland surrounded by water, with
some grassland distributed along the Yangtze River, some impervious surfaces in a dotted
pattern in Chongchuan, and the remainder of the ecological land largely invisible. By 2000,
the expansion of impervious surfaces had formed a clear polygon with more grassland
along the Yangtze River due to artificial engineering. The expansion of impervious surfaces
continued until 2020, forming a broad contiguous distribution and occupying a large area
in the central region, while some forestlands were formed along the northeastern coastline.

The confusion matrix, also known as the Markov matrix, is a general technique for
analyzing the characteristics of transfer between different land-use types over a period and
is easy to implement using ArcGIS 10.7.

According to Tables 6–8, (1) the total land-conversion areas in the riverine regions dur-
ing the three studied periods (1980–2000, 2000–2010, 2010–2020) were 1024 km2, 524 km2,
and 4184 km2, respectively, among which the conversion between ecological land and
non-ecological land (impervious surfaces) accounted for 69.92%, 95.01%, and 91.30%, re-
spectively. Cropland and water continued to be the primary sources of new impervious
surfaces, with increasing contributions year over year. (2) In the external region, the con-
version from ecological land to non-ecological land was the main trend and accounted for
a greater proportion than the riverine area; cropland had the largest decrease among eco-
logical lands. (3) In the inner region, the land conversion process was more complex: from
1980 to 2000, the conversion within the ecological lands had been more frequent (accounting
for 86%), mainly between water, grassland, and cropland; from 2000 to 2010, the conversion
between ecological land and non-ecological land had been dominant (78.86%), primarily as
the conversion of cropland and water to impervious surfaces; during 2010–2020, the con-
version within ecological lands had been dominant (53.74%), followed by the conversion
between ecological land and non-ecological land (46.26%), with the former mainly from
the conversion of water to cropland and forestland and the latter from the conversion of
cropland and water to impervious surfaces.



Sustainability 2022, 14, 4256 9 of 15

Table 6. Matrix of land-use change during 1980–2000 (km2).

1980

2000

Whole Riverine Area External Area Inner Area

a b c d e f a b c d e f a b c d e f

a * 164 0 282 1 11 158 0 279 1 8 5 0 3 3
b 0 25 11 22 0 20 7 8 0 5 5 14
c 400 8 6492 2 87 398 4 6444 2 68 3 4 48 18
d 0 3 0 0 3 0
e
f 20 32 142 1270 12 12 105 634 8 20 36 636

* a, b, c, d, e, and f represent impervious surface, grassland, cropland, forestland, bareland, and water, respectively.

Table 7. Matrix of land-use change during 2000–2010 (km2).

2000

2010

Whole Riverine Area External Area Inner Area

a b c d e f a b c d e f a b c d e f

a * 579 0 6 0 0 0 563 0 6 0 0 0 16 0 0 0 0
b 20 38 7 1 17 14 5 0 3 25 1 1
c 425 0 6494 1 2 8 408 0 6422 1 1 6 17 0 72 0 1 2
d 2 0 2 0 2 0 2 0
e 0 0 0 0 0 0
f 46 0 8 0 1337 31 0 3 0 684 14 0 4 0 653

* a, b, c, d, e, and f represent impervious surface, grassland, cropland, forestland, bareland, and water, respectively.

Table 8. Matrix of land-use change during 2010–2020 (km2).

2010

2020

Whole Riverine Area External Area Inner Area

a b c d e f a b c d e f a b c d e f

a * 901 5 115 8 1 41 869 5 111 7 0 28 32 0 4 1 1 13
b 11 0 18 3 0 6 7 0 3 2 0 2 5 0 15 1 0 4
c 3511 11 2857 21 1 114 3484 10 2822 19 1 100 27 0 35 2 0 14
d 2 0 0 1 0 2 0 0 1 0 0 0 0 0
e 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
f 125 4 111 66 8 1032 98 3 69 58 7 456 27 1 42 8 1 577

* a, b, c, d, e, and f represent impervious surface, grassland, cropland, forestland, bareland, and water, respectively.

4.4. Analysis of Drivers of Ecological Land Change

According to the single-factor detection results, for the county administrative districts,
the explanatory variable with the greatest explanatory power for land-use change from
1980 to 2000 was X1, and it was significantly higher than all other factors (Figure 4a, yellow
bar), indicating that the natural environment had the greatest influence on land-use change.

From 2000 to 2010, the explanatory variables in descending order of q-values were X2,
X4, X9, X7, X10, X5, X3, X8, X13, X6, X1, X11, and X12, with population-related indicators
(X2 and X4) and GDP-related indicators (X7 and X5) as the main factors affecting land
change. This indicated that the increase in the residential population increased the demand
for land and led to changes in land-use types.

From 2010 to 2020, the explanatory variables in descending order of q-values were
X7, X10, X5, X8, X13, X6, X12, X3, X2, X4, X9, X11, and X1. GDP-related indicators were
the main factors influencing these land-use changes, especially the industry-related GDP
(X7) and electricity consumption (X13), followed by population-related indicators (X2 and
X4). X1 had the weakest influence on land changes, indicating that the demand for land
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as a result of the increasing population size had stabilized during this period; however,
the demand for land for industrial production was the main cause of changes in ecological
land use.
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In the township-level administrative regions, the explanatory variables in descending
order of q-values were X3, X8, X4, X7, X2, X5, X1, and X6 (Figure 4b), with population-
related indicators overtaking the number of enterprises and output value indicators as the
main factors influencing land-use changes in the townships along the river.

The results of the interaction detection showed that interactions existed among all
explanatory variables, both at the city or township level and for different developmental
periods (Figure 5), including both bi- and nonlinear enhanced. The bi-enhanced performed
well for any pair of socio-economic factors, which meant the influence of any two-factor
interactions was greater than that of any single factor. The distance to the Yangtze River
(X1) and all other remaining factors were nonlinear enhanced, that is, the combination of
any one socio-economic factor and the distance to the Yangtze River enhanced the original
interpretation of the land-use changes but not more than the sum of the two alone, and these
characteristics were verified at different stages of urbanization, including up to the present.

In 1980–2000, the distance to the Yangtze River (X1) and the number of on-post
employees at year-end (X4) and tertiary industry as a percentage of GDP (X9) had the
greatest explanatory power on land change when they acted together; in 2010–2020, it
was the combination of any of the socio-economic factors with X1 that had a strong and
equal effect on land change. It showed that even though the natural environment was no
longer a directly dominant factor, it still acted indirectly on land-use changes through its
influence on socio-economic activities. For example, in the townships, the two factors X1
and urban resident population (X3) had the greatest explanatory power for land change
when acting together.
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5. Discussion
5.1. Spatial Heterogeneity of Ecological Land Change

Based on the results, the area of ecological land had decreased at an accelerated rate
during urbanization and its spatial distribution was relatively complex, with significant
variability among different administrative regions. Furthermore, the experimental design
of this study also yielded the expected results: the percentage and the dynamic features of
ecological land varied on both sides of the Yangtze River levee.

Nantong was developed on an alluvial plain; the highly dense water system provided
freshwater resources for agricultural production and formed a natural transportation
network, so the ecological land at the confluence of the rivers was significantly reduced at
the beginning of urbanization, especially as the built-up area expanded to occupy a large
amount of cropland [45]. This was the main reason for the spatial differences in ecological
land use between the two sides of the levee during the period 1980–2000. As the urban
transportation network was extended further, the vast area outside the levee provided
sufficient space for urban development, and more ecological land was occupied for urban
production and living, so there was little difference in the change in ecological land on both
sides of the levee between 2000 and 2010. As the urban development gradually shifted to
the outer side of the levee, the production, living, and ecological spaces formed by urban
planning led to the preservation and restoration of some ecological land (e.g., woodland
and water) in the inner region of the levee. These caused the largest historical differences
in ecological land changes on both sides of the levees during 2010–2020.

Among the several administrative districts in the riverine area, the variability of social
attributes transcended geospatial correlations. For areas such as Chongchuan and NETDA,
where urbanization started early and reached a high level, a large amount of land was
required to support the population, so the ecological land was developed and utilized early.
Rugao and Haimen, which had a later start for their urban development, had lower levels of
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urbanization and smaller cities [46], which preserved more of their agricultural production
and ecological functions; therefore, a large amount of ecological land was preserved.

5.2. Impact of Natural and Socio-Economic Factors on Ecological Land Change

The results of the Geodetector method revealed that there were different dominant
factors influencing the changes in ecological land at different stages of urbanization, and
there were interactive enhancements among them, which was in agreement with previous
studies [47,48]. According to past studies carried out in Nantong, transportation, popula-
tion, industrial structure, urbanization level, and economic development level were once
the main drivers of land-use change in Nantong [49,50], but it was not sufficient to answer
the question of the drivers of ecological land-use change in the riverine areas of Nantong.

The Yangtze River has been a natural factor influencing the urbanization of Nan-
tong as well as many other cities along the river [44]. The land has frequently changed
along the riversides, and a large area of water provides opportunities for urban expansion,
such as remodeling the riverside to form new land and ports and further expanding the
economic radiation range by building bridges across the Yangtze River. This was also
confirmed in Section 4.4, where the distance to Yangtze River was the absolute dominant
factor influencing land-use changes during the early stages of urbanization and formed
a non-linear enhanced effect with other factors during all three periods. As opposed to
other cities along the Yangtze River, Nantong has a particular location advantage as the
integrated gateway city to the northern wing of the Shanghai metropolitan region, which
has directed Nantong’s urban development towards the larger city and thus influencing the
spatial patterns of its land use, including the spatial distribution of the industrial structure.

If natural factors are the basis of ecological land use, then socio-economic factors are
the reflection of human activities, as the latter have impacted the natural environment and
intensified ecological land-use changes, especially urbanization, which has been the main
cause of the decline in cropland [51].

According to the q-value of each explanatory variable, the explanatory power of
socio-economic factors began to increase in 2000 in the form of population-related factors
and followed by GDP-related indicators. However, after 2010, the reverse was true, es-
pecially due to industry-related GDP (X7) and electricity consumption (X13), which had
the strongest explanatory power. This was in line with a series of measures taken by the
Nantong government: in 1995, the riverine zone had been planned as a priority zone for
industrial land use, and by 2004, urban master planning had reemphasized the use of the
Yangtze River levee and accelerated the urbanization process. In 2009, the establishment
of Tongzhou prompted the outward migration of the population from Chongchuan and
NETDA [21], and around 2010, the implementation of the “Yangtze River–Yellow Sea
Linkage” policy in Jiangsu Province further expanded the development of industrial parks
and the construction of ports along the river, resulting in significant land-use changes in the
coastal areas [20]. Another noteworthy detail was that the X12 factor increased rapidly after
2010 (i.e., the explanatory power of government financial expenditure on land change had
risen), which may have been related to an ecological civilization construction initiative in
Nantong. In 2016, Nantong proposed to build an “urban living room” along the river, and
in 2017, the ecological restoration and protection projects began to be implemented, heavy
polluting enterprises were repaired, ports were relocated, and largescale afforestation was
conducted to improve the environmental carrying capacity. These policies and related
initiatives were also associated with the increase in the forestland along the Yangtze River
in Nantong in the past ten years, instead of the typical decrease that occurs during similar
periods of rapid economic development.

6. Conclusions

(1) The ecological land area along the river decreased by 4091.36 km2 from 1980 to 2020,
with 98% of change occurring in the outer region of the Yangtze River levee (i.e., the
Nantong section)
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(2) From 1980 to 2020, the main ecological land types in riverine areas were cropland and
water, and forestland overtook grassland as the third-ranked ecological land type in
2020. The main ecological land type in the inner and outer regions of the levee were
water and cropland, and they were also the ecological lands with the largest land-use
dynamic degree in their respective areas. Until 2000, the outer region of the levee
surpassed the inner region as the area with the highest degree of land change.

(3) The distribution pattern of water and land as well as the level of urban develop-
ment were the driving factors behind the spatial heterogeneity of the ecological land
distribution in the riverine areas.

(4) Land-use changes in the riverine area were influenced by both natural and socio-
economic factors, but with the urbanization process, socio-economic factors gradually
overtook natural factors as the main drivers of land-use change, which included the
distance to the Yangtze River, the population, and the industrial GDP.
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