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Abstract: Nowadays, traditional power systems are being developed as an emergence for the use
of smart grids that cover the integration of multi-renewable energy sources with power electronics
converters. Efforts were made to design power quality controllers for multi-renewable energy systems
(photovoltaic (PV), Fuel Cell and Battery) to meet huge energy demands. Though there have been
several techniques employed so far, the power quality issue is a major concern. In this paper, a
multi-objective optimal energy management system for electric vehicles (EVs) is proposed using
a reinforcement learning mechanism. Furthermore, the maximum power point tracking (MPPT)-
based Reinforcement Learning-Iterative cuckoo search optimization algorithm (RL-ICSO) along with
the Proportional Integral Derivative (PID) controller is incorporated. For this, a renewable energy
source is considered as input for eliminating voltage and current harmonics. Similarly, a DC to AC
inverter using a Model Predictive Control (MPC) controller-based pulse generation process was
carried out to incorporate the power quality compensation of multi-renewable energy microgrid
harmonics in three-phase systems. The generated energy is checked for any liabilities by adding
a fault in the transmission line and thereby rectifying the fault by means of the Unified Power
Quality Controller (UPQC) device. Thus, the fault-rectified power is stored in the grid, and the
transmitting power can be used for EV charging purposes. Thus, the energy storage system is
effective in charging and storing the needed power for EVs. The performance estimation is carried
out by estimating the simulation outcome on Total Harmonic Distortion (THD) values, parameters,
load current and voltage. In addition, the performance estimation is employed, and the outcomes
attained are represented. The analysis depicts the effectiveness of the power and energy management
ability of the proposed approach.

Keywords: multi-renewable energy sources; multi-objective optimal energy management system;
electric vehicle; MPPT; reinforcement learning; MPC controller

1. Introduction

The worldwide rise in demand for electricity, the consequences of deforestation and
the reserve limitation of fossil fuels induce humanity to look for other alternatives, such
as renewable energy sources. The transition in the distribution system (DS) model from a
traditional to a smart grid considering the integration of renewable energy sources (RESs)
is prominent and appears to be very helpful in the near future despite its limitations [1–5].
The DSs incorporate distributed energy resources (DER) to boost voltage profiles, power
efficiency and device output [6–9]. The conventional DSs are therefore heading into new
networks, including PVs, small hydropower stations (SHP), and energy storage systems
(ESS), combined with intelligent applications. A hybrid green energy system is called
the agglomeration of different, but compatible, technologies for RES. Due to its capacity
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relative to the main grid, its unit is often known as a microgrid (MG) [10]. The generation
of PV is fascinating and common all over the world, but the lack of continuous electricity
sources remains a major issue. The environment relies on technological problems such
as oil volatility and instability. Different methods such as demand response programs
and incentive programs, day-to-day programming, power back-up, and complementary
RESs, lead to the alleviation of special issues [11]. The MPPT method is often used for
monitoring outputs, but some technologies are restricted due to slow monitoring and
lower performance. Dynamic support for the intelligent distribution network (DN) is
also important. The reliability and high inertia of the centralized power generator can be
recreated with a synchronous device configuration. The power-factor and efficiency were
outstanding, and the prices were better than wind and solar variability. A significant aspect
of current DNs is the integration of electric vehicles (EVs). The DNs are characterized by
deficit generation (space time) and surplus generation (off-peak time). The inclusion of EVs
as a load control is nevertheless one of the strategies for stabilizing the system off-peak.
The inclusion of compatible and complementary RESs in a microgrid configuration uses
upgraded smart delivery networks to deliver substantial opportunities. Nevertheless, EVs
are considered a good option to stabilize the generation-to-demand ratio, especially during
peak hours when the power demand is higher than the generation [12].

The electric power system is one of the most vibrant solutions in enlightening the
social and financial living circumstances. This development has created a huge demand
for electric power nowadays. More industrial progressions and service productions have
become reliant on physical labor being exchanged for electric power-driven equipment.
At the moment, the energy system has appeared as the most serious substructure which
permits all other organizations [13]. This is related to power quality complications and is oc-
casionally unpredictable to the customers provided by the conventional grid. Consequently,
the idea of transporting power only over fundamental power systems to inaccessible clients
fails to endure and remain feasible with the chosen dependability in the 21st century. This
results in quickening the alteration of the power delivery substructure into the intellectual
grid [14]. So as to overcome these problems, the idea of dispersed power delivery schemes
has arisen as a novel alternative. The perception of the microgrid was introduced as part
of creating distributed energy. Energy is an essential part of today’s modern lifespan.
However, energy generation requires natural properties which are diminishing day-to-day
life. On the other hand, the usage of energy is growing exponentially. In emergent nations
like India, around 49% of total profitable energy is expended in trades and functions like
the below-mentioned ones which devour an extensive portion of total energy in these
industries such as [15]: air conditioning, compressed air, hot water, steam, water systems,
electrical systems, and fuel. As there is a limited amount of fuel on earth, the demand for
energy is still growing exponentially. If this situation persists, then there is no doubt that
one day entire fuel sources will be exhausted which results in the switching from fuels to
alternative sources of energy. As a substantial share of energy resources is consumed in the
utilization, generation, and distribution of thermal and electrical utilities, the first step in
the energy management system (EMS) is to improve the efficiency of energy in industrial
utilities. This is termed the “Management of energy in industrial utilities”.

In recent years, the use of renewable energy systems and electric cars has grown
ex-potentially [16]. The Plug-in Electric Vehicle (PEV) is a state-of-the-art technology that
supports efficient energy storage and conversion. In conventional networks, weak grids are
normally available in medium or low-voltage feeders. Weak networks have less inertia and
higher strength in comparison to large networks and traditional low-power ranges. EVs
can not only reduce the peak loads capacity but can also control the distribution system
frequency [17]. The frequency modulation can be accomplished locally, thanks to the
active power transfer between the EV’s battery and the distribution network operated by
bidirectional converters. Clearly, massive loading and unloading are not only the cause of
network shocks but can also have a substantial effect on the efficiency of the grid, network
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failure and equipment use. Several techniques have been presented so far. However, deep
reinforcement learning is a fascinating approach these days [18].

Energy systems inertia can compensate for intermittent renewable energy sources or
load disruptions for imbalances [19]. However, frequency variations under reasonable
limits are also difficult to maintain. It is necessary to minimize frequency fluctuations and
to return back the energy level as early as possible in certain transient situations to the
normal state of the network. In Vehicle-to-Grid (V2G) methodology, the frequency control
of a microgrid (MG)/weak grid was evaluated with various penetrated EVs. The potential
elimination of greenhouse gas emissions (GHG) will be supported by EVs. In 2018, the
sales of EVs were increased by 63 percent relative to the previous year, according to IEA
Global EV Outlook 2019. Thanks to the driving range fear, the public use of EVs is rather
subdued. The lack of adequate charging infrastructures, leading to longer charging periods,
is another obstacle [20].

It is necessary to examine the possible detrimental effects of charging EVs on electrical
power systems, primarily because of unregulated charging and how these impacts can
be minimized, and even beneficial, by supervised charging and dumping. Impacts on
the rise in peak demand from unregulated EVs, voltage deviations from the appropriate
limits, phased imbalance due to single-phase loaders, harmonic distortions, power system
overload and increased energy losses have been recorded [21]. The harmonic levels can be
elevated to excessive levels that maximize grid stress depending on the charging profile
or mode of one or more EV users. EVs charging process can cause inappropriate voltage
deviations, as well as additional real and harmonic power losses and harmonic distortions.

The main intention of this work is to propose a multi-objective approach for optimal
energy management in EVs using a reinforcement learning mechanism.

The remaining portion of the manuscript is structured as follows. Section 2 is the
depiction of various existing methods employed so far. A detailed explanation of the pro-
posed methodology is projected in Section 3. The performance estimation of the proposed
scheme is shown in Section 4. Finally, Section 5 concludes the overall workflow of the
proposed system.

2. Literature Review and Related Works

In reference [22], the authors introduced the implementation and deployment of
a smart, Vehicle-to-Grid, Vehicle-to-Build (VT) charging scheme, sustainable demand
response and power quality potential for grid stability and economic gain for EV fleet
owners in Santa Monica, California. The research team from the “Smart Grid Energy
Research Center”, University of California, has used their wireless connectivity system
and bidirectional EV loading technologies to demonstrate grid needs such as long-range
shaving, load leveling and smoothing for renewable sources. In [23], the authors presented
a thorough report on the effect of grid convergence of PVs and EVs on the grid reliability,
power efficiency and energy economy dimensions on a single basis, accompanied by the
joint impact of PVs and EVs. In the literature review, the transient existence of the PV energy
and the volatility of the EV charges have demonstrated that individual PVs and EVs may
have adverse effects on grid reliability and power efficiency. In [24], as home energy usage
was growing and renewable energy systems were organized, the home energy management
system (HEMS) attempts to deliberate both the generation and consumption of energy
instantaneously to diminish the energy rate. This approach presents a smart construction
that deliberates both energy generation and consumption at the same time. The home-
based attendant collects the generation and energy consumption information, examines
them for energy assessment, and regulates the home energy custom plan to diminish the
cost of energy. The isolated energy managing server collects the energy information from
abundant home servers, associates them, and generates valuable statistical analysis data.
The authors in [25] designed a real-time implementation of the optimum management of
the energy system in the standalone microgrid with the use of multi-layer Ant Colony
Optimization (ACO). This has been made in order to identify the scheduling of energy
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in the microgrid. The intention of this mechanism was to discover the best process of
micro sources for diminishing the power manufacture rate by means of the hourly day-
ahead and actual time development. This procedure was based on the ACO technique and
equipped to examine the practical and financial time-independent constrictions. Moreover,
this approach has some limitations. In [26], the authors presented a centralized Energy
Management System (EMS) for the isolated microgrids. In [27], the authors focused on the
optimum configuration of a renewable energy system (RES) based on the on- and off-grid
mix. Photovoltaic (PV), Wind Turbine (WT) and Fuel Cell (FC) are the components of this
device with a gaseous hydrogen tank for the chemical storage of the electricity. Using a new
meta-heuristic optimization strategy, the optimum size of the proposed hybrid generation
system is obtained. This optimization technique is intended to boost the efficiency of the
traditional Artificial Ecosystem Optimization (AEO) algorithm, called Enhanced Artificial
Ecosystem Optimization (EAEO).

In [28], the authors presented a performance optimization associate degree planning of
the distributed generation (DG) square measure relevant to implementing an EMS inside a
Microgrid (MG). Moreover, optimization methods were applied to attain the most potency,
improve economic dispatch and feat the simplest performance. The paper proposed a
methodology of associate degree optimization that supports the attractive force search rule
for resolving such downsides in a MG together with varying kinds of metric weight units
with explicit attention with respect to the technical constraints. Moreover, this rule, which is
possible from a process viewpoint, has several benefits such as peak consumption reduction
and electricity generation price reduction among alternatives. In [29], the authors stated an
EMS that was based on the fuzzy logic for the design of residential grid-related microgrids.
As an alternative to consuming forecasting-dependent approaches, the presented method
uses both the microgrid energy rate-of-change and the battery-operated State of Charge
(SOC) to grow, reduce or keep the power transported/fascinated through the mains. In [30],
the authors suggested a new Smart Charging Planning Algorithm (SCS-Algorithm) for
charging by coordination in a smart grid (SG) scheme of multiple plug-in-hybrid electric
vehicles (PHEVs). The services became concerned about voltage pressures, smart grid
output losses and overloads in delivery networks with abundant PHEV charging cases.
Via the inclusion of Grid-to-Vehicle (G2V), Vehicle-to-Grid (V2G), and RTT technology on
parking, managed by several aggregators, there is therefore a proposed and built intelligent
charging strategy for charge synchronization of PHEVs (e.g., every 30 min). SCSA integrates
the optimization strategy to determine the optimum cost-benefit and the charge schedule.
In [31], the authors described the major grid-connected PV systems challenges exclusive of
galvanic separation. The review on converter topology was mainly focused on the contest
among various converter kinds and several technologies of PV panels. The efficiency
of the conversion process was examined by means of comparing semiconductor power
losses qualitatively. In [32], the authors presented EMSs that are utilized by operators to
monitor, optimize, and regulate the performance of a power system. In microgrids, the EMS
repeatedly manages the energy causes directing to stream the demand. The management
is supported by the functioning charges, the accessible energy, and the generation and
communication capabilities of the grid.

In [33], the authors stated a renewable energy source (RES) that was becoming a signif-
icant portion of energy endurance for the current electrical power network, meanwhile RES
was recurrent and unbalanced. In [34], the authors stated the strategies of configuration,
concept, and scheduling of the smart HEMS. With the advent of the smart grid period and
the arrival of progressive information infrastructures and communication, advanced meter-
ing infrastructure, energy storage systems, bidirectional communication, and home-based
area systems would transfigure the shapes of energy convention and energy preservation at
the premises of consumption. In [35], the authors stated the opportunities and challenges of
the enhancement of smart grids with microgrids. A current system of electrical power was
working over a ground-breaking variation of growing demand for all-inclusive electrical
power, evolving radical compression and public consciousness of incorporating large scale
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renewable power penetration, carbon emission, and a combination of communication
and information skills with power system processes. In [36], the authors deliberated the
realism of a power electronics-dependent energy management scheme. The EMS includes
sequences and a numerically measured single-phase voltage supply electrical converter
(VSI), which might be measured as a recent stream, or a power stream included on the
standing of the AC network and consequently the handler’s partiality. In [37], a scheme
was presented for the energy management of the hybrid electric bus depending on the
deterministic policy gradient approach (DDPG). This approach of DDPG is integrated with
the expert-assisted system for enhancing the cold start performance and thus optimizing
the allocation of power. In [38], a knowledge-dependent, multi-physics constrained fast
charging policy was presented for lithium-ion batteries (LIB), by means of a realization of
the degradation and thermal safety. A framework of universal algorithmic that integrates
the model-based observer state and a deep reinforcement learning (DRL) dependent opti-
mizer was suggested, initially, for offering a solution to LIB fast charging. In [39,40], the
authors presented a new data-dependent, multi-constraint strategy of energy management
for the hybrid electric bus (HEBs) emphasizing the consciousness of degradation and
thermal safety of the onboard lithium-ion battery (LIB) system.

3. Proposed Work

This section is the illustration of a detailed explanation of the proposed system. In this
portion, a comprehensive explanation of the proposed system is given. The presented sys-
tem flow, on the whole, is depicted in Figure 1. The implementation of a multi-renewable
energy source (battery, fuel cell, and PV panel) based dc bus system along with an optimiza-
tion approach is presented. In the presented technique the power efficacy of the DC system
is further enhanced by introducing an RL-ICSO-based MPPT algorithm. The RL-ICSO
MPPT method incorporated is predictable for the purpose of adjusting the parameters of
MPC controllers. In this approach, compensating voltage harmonics and current harmonics
liability properly is made by connecting series and shunt controllers. Hence, in this ap-
proach, an intelligent power and energy management system is presented with the use of a
reinforcement learning-based optimization strategy that can learn the optimal policy. The
generated energy is checked for any liabilities by adding some fault in the transmission line
and thereby rectifying the fault by means of the UPQC device. The fault-rectified power
is stored in the grid and the transmitting power can be used for electric vehicle charging.
Then, the load is stored in the grid which can be used for further usage. The overall flow of
the proposed system is shown below:
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3.1. Multi-Renewable Source of Energy

The multi-hybrid system consists of two various energy systems that work in a simul-
taneous manner. Hence, a multi-hybrid renewable energy system consists of two different
renewable energy systems that work together. Moreover, the battery bank is employed
for storing excess energy generation. Therefore, it offers power supply to the load in case
of insufficient power generation from the hybrid renewable energy source system. The
modeling of the battery is expressed in Equation (1). Where, SOCmin and SOCmax are the
minimum and maximum state of charge levels of the battery, respectively. DOD refers to
the depth of discharge of the battery.

SOCmin = (1− DOD)× SOCmax (1)

The modeling of the fuel cell is expressed as shown:

Igc = [µsc(Tc − Tr) + Isc]G (2)

The expected output of the fuel cell system is presented in Equation (3). Where, Igc
refers to current light generated, µsc is the co-efficient of the temperature of the cell’s
short-circuit current, Tr is the reference temperature, G is the solar radiation, Isc is the
short-circuit current of the cell, q signifies the electric charge (1.6 × 10−19 C), K refers to the
Boltzmann’s constant, C refers to the fuel cell, F denotes the cell idealizing factor, Tc is the
absolute temperature of the cell, Cd refers to diode voltage, Rs is the series resistance, and
Rskh is the shunt resistance with Boltzmann’s constant.

FCout = IgcCRs − FCd + qCRskh (3)

A PV cell produces energy once illuminated by photons. The P-N junction is a pho-
tovoltaic cell’s core feature, which could consume solar radiation. It rises once a photon
crosses a gap from a substantial part. The protected loads convey over an array unswerv-
ingly since a load of solar cells is associated with them preceding the light stopovers. The
archetypal consists of a diode, some resistance and a current source; the following equation
encompasses that the current offered by a solar cell connected in a series resistance of Rs is
very small relatively and that the shunt one of Rsh is high relatively. These two resistors are
not taken into consideration so as to make the simulation simpler.

I = IRs − Id + IRsh (4)

The power and voltage levels display as follows:

PR =
ptheoritical
pmeasured

(5)

VR =
Vtheoritical
Vmeasured

(6)

where ptheoretical is the PV system output theory, p(measured) is the calculated PV chain output
strength, the PV theoretical output voltage ptheoretical is the DC output voltage of the PV
chain calculated and V(measured) is the calculated output.

For the analyzed PV unit, the controller ratio is estimated at a theoretical 4% output
error tolerance intended for internal MPPT sensors at a conversion error rate of 97%, thereby
offering the maximum error hypothetically.

FDMAX =
ptheoritical
pmeasured

×MPPT tolerance rate (7)

The above calculations specify the MPPT unit’s resistance, and the PV modules amount
in the sequence of PV at a maximum and minimum power/voltage ratio.
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3.2. MPPT-Based RL-ICSO Scheme

The optimization algorithm is employed for monitoring the MPPT of the PV device
that includes the local MPPs number in the characteristics of P-V. If the series connections
were made to the PV modules, the number of modules N in the list of PVs, each module
should also be regulated by the voltage. Then the service cycle is then determined by the
best optimal values.

The procedure for RL-based optimization is as follows:

(i) The procedure starts at a random objective function point having N variable V = f (p1,
p2, . . . , pN). This will make a series of moves for getting closer to the global optimum
point value.

(ii) For changing the current location, step size dpi (i = 1, 2, . . . , N) and a standard
deviation σpi (i = 1, 2, . . . , N) were intended for each coordinate that was generated
from a uniform distribution probability.

(iii) The dpi (i = 1, 2, . . . , N) step size in turn estimates the search area center. All coordinate
deviations in turn determine the searching area size. Various points Ps at this range
were chosen in a random manner from the Gaussian distribution by means of dpi as
the mean value and the standard deviation as σpi.

(iv) The values of the objective function were estimated at those points. The values of the
objective function were compared on the random points having current locations.

(v) In the case of the new points generated in step (iii) having no better values on com-
paring current positions, step (iii) is repeated till M trials until the points with a better
value of function is found.

(vi) In case the search fails after the M trials, the searching area size, in turn, enlarges and
reduces the size of the step.

(vii) In case the search with the updated size of the searching area and the step sizes
from step (vi) was not successful, the step size and range might keep adjusting till
either some points with better values are found, the present step sizes are smaller
on comparing previous step sizes or the values of function changes by lesser than
the pre-specified threshold. If any of these conditions happen, the algorithm in turn
terminates. It also indicates the optimum point value that has been reached.

(viii) The search particle to the point was moved with the best functional value vb a local
maximum and minimum based optimization objective. The distance among prior
best point pprev (p1 prev, p2 prev) and the current best point p p1, p2) offers the definite
step size dpi (i = 1, 2, . . . , N). The information was collected during the search process

The results obtained are optimized again for enhancing the process further. In this, the
optimization process is carried out with the use of a reinforcement learning-based iterative
cuckoo search optimization scheme. Let us review the frameworks of the cuckoo search
first before expanding the cuckoo search optimization into multi-target problems. The new
bioinspired algorithm for single goal optimization is iterative cuckoo search optimization
(ICSO). ICSO simulates the hierarchical order and actions of cuckoo agents in the food
quest, where any cuckoo receives an optimization problem as a possible solution.

While a population-dependent RL-ICSO technique, n cuckoos are employed as the
agent of search in a question field. This algorithm implementation thus identifies the
solutions that are optimal in an appropriate means to elevate them. Agents having the
highest fitness value might find food in a broader location number on comparing agents
having the worst fitness function value. They are defined in Equation (8):

N(Ri , Pj ) = Ni ebt· F Cos (2πt) + Pj (8)

Here Ni denotes the Gaussian distribution function, P refers to an index of cuckoo
that is selected randomly from the group of cuckoos and fi refers to the fitness value of the
cuckoo P.
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A hen’s action opposes its partner’s nurturing. In contrast, the best food which other
cuckoos determine, though suppressed by other cuckoos, they might often rob irregularly.
Statistically, the search agent’s movement is formulated as:

σ =
Gp

Gp(max1)
=

√(
Gp − Gmx

)2
+ (Gly − Gmy)

2

|Gl | ∗ |Gm|
(9)

where σkm is the search agent’s movement. Gp is the movement of cukoo search agents,
k is the cuckoo index, the health values are denoted as m, x, y, and l. The upgrade of
hierarchical relationships offers search agents an ability to turn out to be search agents for a
correct solution (that is, it offers more insistence to discover the best solutions for the search
agents). The appropriate values at every iteration after altering the list of parameters are
then classified consistently with health values. The optimum use will be identified upon
the completion of optimization. The calculation of fitness value of the optimal paths is
given in Equation (10).

M f itness =

(
(M− 1)×

(
M− 1

T

))
(10)

where 1 is the iteration number, M is the number of optimal paths, and T is the maximum
of iterations.

After that, the best fitness value can be calculated using optimization, finding the
maximum fitness concentration value and its corresponding position. For each optimization
algorithm, the fitness value can be calculated.

Best = minM
i=1OSi (11)

where OS is the optimal solution having an ith iteration number.

3.3. MPC Controller and PWM Generation

The Pulse Width Modulation (PWM) pulses converters can be produced with a topol-
ogy of two levels by the PWM generator block. The pulses are formed by contrasting a
triangular waveform with a modulating signal of comparison. The secondary switches are
driven by a PWM signal in the grid-connected operating mode, determined by the PWM
generator of the gridline frequency. It is possible to produce modulation signals by the
PWM generator itself, or they can be related by a vector of external signals at the block
input. To produce the pulses, one reference signal is required. The phase, frequency, and
amplitude (modulation) of the reference signals are controlled by output voltage on the AC
terminals of the inverter associated with the block of the PWM Generator. Figures 2 and 3
depicts the Shunt and Series APF Controller.
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Model Predictive Control (MPC) is a controller design approach that also includes
optimization. The optimization takes the system dynamics into account, as well as control
objectives and constraints. The foremost objectives of employing MPC are as follows: It
is capable of utilizing the state-space model entirely that is being developed. Moreover,
this state-space representation is time-invariant, linear with low order that is suitable
particularly for the optimization needed by MPC. Furthermore, the MPC controller is
capable of handling hard constriction of the process variables in an explicit manner. In
this, the manipulated variable is employed with the technique of Pulse Width Modulation
(PWM), which was to be restricted to ±1, as a result, active filters will function in the
region of linear modulation. Traditional linear controllers must evade such restrictions,
or else there will be the occurrence of instability. This results in a more conservative plan
accordingly limiting the compensation ability.

3.4. Battery Charging Condition for Electric Vehicle and Three Phase Grid System
3.4.1. Battery Charging Condition for Electric Vehicle

The total loads are 3.72 MW and 2.3 MVAr. PV stores electricity throughout the day, as
well as at night, and functions as an energy source back-up at peak periods of the day. The
PV provides the PEV energy storage charge device with charging capacity. The demand
for electricity from different vehicle types, the number of vehicles and batteries are often
measured and evaluated in real-time. The findings are analyzed using the PV smart DN
and PEV charging system disconnected from the grid.

When the PV plant cannot satisfy load demand at any time of the day, the microgrid
backs and protects the main grid. The present is higher at the hour of loading. The Inet
turned positive at 05.00 h; the PV re-injects power, and the EV is loaded. Around 21:00
h a day, another battery is being discharged. The battery is held at an optimum level at
all times of day and the microgrid experiences continuous positive Inet. For storage in
the PEV loading system, the excess loading current is redirected at full battery. The EV
battery charging device and EV charging link are concurrently set up to begin with the
minimum initial battery state of charge (SOC) for PEV battery storage. The regular loading
of batteries is tracked to verify the storage levels of each hour and how many car forms
can be charged comfortably. This process is replicated when the initial SOC battery is 80%
charged The EVs for charging are presented in three cases for the type of car depending
upon the charging period and kilometers.

Case A: The original SOC battery is at least 100 kVA in this situation and the charging cycle
starts at 16.00 h. The customers were believed to be closed down and ready for
charging in their respective workplaces. A total of thirty EVs were attached to a
small passenger car and a low battery system at 16.00 to 21.00 h. The machine has a
poor battery at 17–20 h where the power link is limited to 20. It means that up to 20
EVs cannot be used with the recharge scheme. The PEV-charging device, however,
could handle 19 EVs in one hour without a low battery indication.

Case B: The SOC battery is, in this case, full and is charged 24.00 h a day. Pick and mix
different charging times, classes and miles per day. An evaluation of the number
of connections was performed.
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Case C: The original battery condition is completely charged in this situation and the
charging takes the whole hour of the day. However, it was chosen arbitrarily
and measured electronically for assessment on the device charging system for the
vehicle class, charge times and miles a day.

Equation (12) indicates that the current supplied by the solar cell inside the resistance
Rs series is relatively low, and the Rsh shunt was relatively strong. The model consists of
a diode, a certain resistance, and a current supply. The entire resistor is not taken into
consideration so as to enhance the simulation. The circuit in turn includes a diode, current
source, and the PV cells in series and parallel corresponding modes. The output current
(out) depends on the mathematical equations with abbreviations employed. The following
equation model the current of the PV cell:

vout = vPhoton −
(

vRS
[

e−tiθQ(Iout+Rsr ·Iout) − 1
Rpr

]
σqc− 1

)
− 1

Rpr

(
Iout + Rsr

(
Iout + Rpr ·vRS

))
(12)

The voltage vRS and current Iout obtained are described mathematically:

vRS =
3
5

πvstator (13)

vRS =
π√

1
π vstator

(14)

The expected output of the PV system:

Iout =
(

IgcCRs − FCd + qCRskh
)

(15)

where Igc is the light generated current, q is the electric charge (1.6 × 10−19 C), Rsh is
strong relatively, K is the Boltzmann’s constant, F is the cell idealizing factor, Tc is the cell’s
absolute temperature, the Cd is the diode voltage.

3.4.2. Liability Detection and Storage in Three-Phase Grid Storage

The types of errors that can be observed are connected to the density of distribution
and the precision of the monitoring systems deployed. The levels of penetration in various
areas of the monitoring systems vary. For example, in a rural delivery system, the density of
tracking devices is typically lower than in an urban distribution system. Furthermore, high-
strength grounding failures can only be detected by detectors which are usually mounted
on the urban delivery grid, but not on the rural system, with high precision sensors. Here,
it is possible to approximate primary (αs) fault areas and to recognize bogus warnings.
Consequently, the objective function is to minimize the amount of fault zones (α) suspected,
as well as the number of false alarms (s).

→
αs = 2

→
α ×

( →
s − →α

)
(16)

The UPQC utility is based predominantly on the APF series controller and shunt.
The key goal of series compensators is the reduction in harmonic distortion in a supply
voltage. The harmonics should then be extracted to achieve the system’s full power. Power
is passed to the grid and the load on the transmission line. Consequently, using this
approximate process, effective power compensation was carried out. The key goal of series
compensators is the reduction of harmonic distortion in a supply voltage. The three-stage
electric power is considered a characteristic method for the electrical power ac (alternating
current) generation, distribution, and transmission. Just the PQ was improved, afterward,
the loss was remunerated and power was stored in the grid in support of supplementary
handling. The power was being transmitted in the transmission line course, for the grid
and three-phase load. Therefore, the compensation of effectual power was carried out with
the projected method utilization. The validation condition or testing of the given source
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is performed based on the controller and switching pulses. By using this, harmonics are
reduced, which enhances the performance. Between the source and grid transmission,
the generated pulse from the controller while stored in the grid also offers a reduction in
harmonics or THD value. The testing or validation of this is performed based on THD by
varying the time interval and attaining THD values.

4. Performance Analysis

This section is an illustration of the performance analysis of the proposed system. The
performance estimation attained is projected to prove the effectiveness of the proposed
scheme.

4.1. Battery Voltage

The battery voltage analysis is denoted in a graphical form in Figure 4. In this, the
fluctuation of power is eliminated, and the power of voltage is maintained. The given input
voltage is represented by the top yellow line and for the given input voltage there is the
occurrence of some fluctuations which should be eradicated. In this system, the power
voltage is maintained without fluctuation on the output side and is represented by the
bottom yellow line. The input voltage of the battery provided is boosted and the voltage is
enhanced on the output side.
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4.2. PV Voltage and Current

The analysis of PV current and voltage is signified in a graphical in Figure 5. In
this, the fluctuation of power is eliminated, and the voltage influence is maintained. The
voltage and current flow in the PV source in the transmission line is represented. The
attained output shows that there is no fluctuation in the voltage and current flow of PV.
The input voltage and current of the PV provided are boosted and the voltage and current
are enhanced at the output side.
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4.3. Fuel Cell Voltage

The fuel cell voltage analysis is represented in Figure 6. In this, voltage power is
maintained by the elimination of power fluctuation. The voltage flow in the fuel cell source
is represented. The voltage flow of the fuel cell in the transmission line has no fluctuation.
The input voltage and current of the fuel cell provided are boosted and the voltage and
current are thus enhanced at the output side.
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4.4. Three-Phase Voltage

The three-phase voltage analysis is represented in a graphical form provided below
in Figure 7. The three-phase voltage flow in the transmission line is signified and the
occurrence of distortion in the voltage flow is indicated. The analysis shows the voltage of
three-phase variation and distortion in the transmission line.
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4.5. MPC Controller Switching Pulses

The inverter switching pulses are shown in a graphical form in Figure 8. In this, the
switching pulse given to the inverter is represented. The switching pulses are indicated in
yellow and black colors so as to differentiate the 0′s and 1′s pulses.
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4.6. Shunt Three-Phase Voltage

Figure 9 is the performance estimation depiction of shunt voltage: sag/swell. Here,
this is an occurrence of a number of fluctuations all through the transmission process. The
fluctuation variation is represented in different colors and the fault variation range could
easily be identified from this variation.
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4.7. Series Three-Phase Voltage

Figure 10 is the performance estimation depiction of series voltage: sag/swell. Here,
there is an occurrence of some oscillation all through the transmission process. The oscilla-
tion is represented in a varied range of colors such that the oscillations and deviations of
voltage flow could easily be identified from this variation.
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4.8. Grid Current

The grid current analysis is shown in the form of a graphical in Figure 11. The current
fluctuation is represented in a varied range of colors such that the deviations of current
flow could easily be identified from this variation. This result illustrates the presence or
occurrence of errors in the grid current.
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4.9. Grid Voltage

The grid voltage analysis is denoted in Figure 12. The oscillation is represented in a
varied range of colors such that the oscillations and deviations of voltage flow could easily
be identified from this variation. However, in this, the fluctuation is eradicated and the grid
voltage is maintained without any oscillations during transmission. In this, the fluctuation
of power is eliminated by maintaining the voltage power.
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Figure 12. Grid Voltage.

The source supplied more current to sustain the dc connection tension at a constant
pace. This raises the current size of the source. UPQC retains the load bus voltage efficiently
at the optimal constant level in the swell state. The UPQC controller works so that the source
supplies the low power. The current extent of the source is diminished here. Figure 13
represents the EV voltage and its deviation over a period of time.
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Figure 13. EV Voltage.

Initially, the SOC battery was set at 95%, and the voltage was high at this time. The
voltage decreased at the end of the simulation. The automobile was accelerating or at
a steady speed while the current is positive. The car was braking regeneratively and
the battery pack was charged while the current was negative. The dynamic theory of
electrical systems is consistent with the patterns of the whole voltage and current. As seen
in Figure 14, after simulation the battery SOC decreases.
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Figure 14. EV SOC.

Figure 15 shows this polynomial curve that shows the tensile time relationship. Fig-
ure 15 illustrates the discharge curve and the voltage curve of a battery during charg-
ing/discharging. It involves two primary phases that take place. The first is an exponential
reduction from maximum charge as a battery starts discharging. Then, the component is a
linear portion of the rated voltage at which the battery is usually operated.
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Figure 16 depicts the analysis of grid current total harmonic distortion performance in
the projected system. In this, THD is 1.38% at the initial time of 0.2 s, when the RL-ICSO-
based PID controller is in the starting condition. Figure 17 depicts the analysis of grid
voltage total harmonic distortion performance in the projected system. In this, THD is 1.08%
at the initial time of 0.5 s, when the RL-ICSO-based PI controller is in starting condition.
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4.10. Comparative Estimation of Existing and Proposed Mechanism

The comparative estimation of the existing and proposed mechanism is shown below
in the table: Table 1 is the representation of the THD of the proposed system. The grid
current THD and grid voltage THD is estimated for the proposed RL-ICSO and is compared
with existing controllers [26] without optimization. Likewise, in Table 2 the THD of various
controllers, such as proposed and existing controllers, is estimated and the outcomes are
projected.

Table 1. Comparative analysis of THD.

Parameters Grid Current THD Grid Voltage THD

PI (Existing) 6.8970% 4.8970%
F-PI (Existing) 2.1940% 2.6230%
F-SMC(Existing) 1.5560% 3.0980%
MPC With RL-ICSO
optimization (proposed) 1.38% 1.08%

Table 2. THD of various controller.

S.No Controllers THD (%)

1 PI 2.49
2 Fuzzy Logic Controller 2.13
3 FBFC Controller 1.54
4 Proposed (RL-ICSO with MPC) 1.38

From the analysis, it was apparent that the proposed system is capable of reducing the
total harmonic distortion level, which signifies that the proposed method is better.
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5. Conclusions

The proposed technique investigated the impact of the EV charging station loads
on the voltage stability and power losses of the distribution network using the RL-ICSO
optimization algorithm. Initially, from the input bus system, dataset optimal power flow
was optimized to obtain an improved real and reactive current level. The model EV charger
load was connected with the input line, bus and outage data to analyze the impact of
the EV charging station. In this article, a design of the power quality control of smart
hybrid multi renewable energy with microgrids was presented. MPPT-based RL-ICSO was
employed so as to boost the DC converter performance. The generated energy was checked
for any liabilities by adding some fault in the transmission line and thereby rectifying the
fault by means of the UPQC device. Thus, the fault-rectified power was stored in the grid
and the transmitting power could be used for electric vehicle charging. This approach
mainly aimed at decreasing the errors caused at the power transmission time, hence, it
was essential to compensate for the power supply quality just before a three-phase grid.
The MPC controller together with RL-ICSO was introduced. This was then integrated into
the multi-renewable sources of energy like battery, fuel cells, and PV panels, meaning the
correct eradication of harmonics in terms of voltage and current liability. The performance
was estimated in terms of power and current measurement, THD estimation, EV charging
and discharging state. The outcome attained for the proposed MPC with the RL-ICSO
optimization scheme in terms of grid current THD is about 1.38% with grid voltage THD
at 1.08%. The THD attained for the proposed (RL-ICSO with MPC) controller is 1.38%.
The analysis attained shows that the system is said to be effective in handling the power
and energy factor. Authors should discuss the results and how they can be interpreted
from the perspective of previous studies and the working hypotheses. The findings and
their implications should be discussed in the broadest context possible. Future research
directions may also be highlighted.
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