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Abstract: With population increases and a vital need for energy, energy systems play an important
and decisive role in all of the sectors of society. To accelerate the process and improve the methods of
responding to this increase in energy demand, the use of models and algorithms based on artificial
intelligence has become common and mandatory. In the present study, a comprehensive and detailed
study has been conducted on the methods and applications of Machine Learning (ML) and Deep
Learning (DL), which are the newest and most practical models based on Artificial Intelligence (AI)
for use in energy systems. It should be noted that due to the development of DL algorithms, which
are usually more accurate and less error, the use of these algorithms increases the ability of the model
to solve complex problems in this field. In this article, we have tried to examine DL algorithms that
are very powerful in problem solving but have received less attention in other studies, such as RNN,
ANFIS, RBN, DBN, WNN, and so on. This research uses knowledge discovery in research databases
to understand ML and DL applications in energy systems’ current status and future. Subsequently,
the critical areas and research gaps are identified. In addition, this study covers the most common
and efficient applications used in this field; optimization, forecasting, fault detection, and other
applications of energy systems are investigated. Attempts have also been made to cover most of the
algorithms and their evaluation metrics, including not only algorithms that are more important, but
also newer ones that have received less attention.

Keywords: Energy system; Artificial Intelligence (AI); Machine Learning (ML); Deep Learning (DL);
Forecasting; Optimization

1. Introduction

Today, with the development of human society and its vital need for energy, energy
systems play a very important and decisive role in all aspects of society, especially the
domestic sector, industry and transportation [1]. In general, among the important and vital
issues related to energy systems, is their ability to respond to supply and demand, having
optimal performance and minimal environmental impact. Due to the increase in population
and the need to supply the demand for energy in order to provide greater welfare and
comfort, and also the increasing use of fossil fuels and their destructive environmental
effects, special attention should be paid to these issues [2,3].

Use of renewable resources and systems for purposes such as reducing destructive
environmental effects, beneficial economic prospects and safe operation, etc. is one of the
ways to deal with the aforementioned problems. For optimal and practical use, accurate
knowledge of the determining parameters in these systems as well as their important
output parameters is required. Because renewable systems are strongly influenced by their
environment and surrounding conditions, it is essential that we use methods and models to
forecast these changes and contribute to system productivity and energy management. In
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other words, the need for a tool to understand the relationship between different parameters
and make full use of this data is important. For example, in order to know the power
generation of a wind system, it is necessary to predict the speed and direction of wind in
an area [4,5]. In relation to photovoltaic systems and solar power plants, it is necessary to
predict the intensity and direction of solar radiation in an area to estimate the production
capacity [6]. Many more are listed in their respective sections. In addition, due to the
exponential growth of data production worldwide in the second half of the twentieth
century, as well as the huge amount of data generated by intelligent sensors as a result
of technological advances, such as the entry of the Internet of Things (IoT) into energy
systems, data-driven models are very efficient. Regarding the growth of data production, it
is worthwhile to mention that in 2013, it was reported that 4.4 ZB of data was produced,
used and exchanged in the world, but this number was about ten times higher in 2019 [7].

In general, based on the study of Zhao et al. [8], models are divided into two categories
based on knowledge driven-based and data driven-based in order to predict and facilitate
energy systems. Knowledge-based methods are generally developed based on a deep
understanding of systems and their mechanisms, so they require a lot of experience and
information, and the possibility of error in them is high [9]. However, data driven-based
methods, especially those based on artificial intelligence, which is a subset, since they do
not require prior knowledge and a detailed analytical model, and can only be used with
appropriate data and general knowledge of the system, can be used very well and have
received a lot of attention. Today, the problem of lack of data is almost solved, which can
lead to more interest and attention in this direction [10]. Therefore, the applications and
algorithms of the newest and most practical models based on data and artificial intelligence,
which are called machine learning and deep learning, have become very popular and
widely used.

In general, in dealing with issues related to artificial intelligence, we encounter two
perspectives. If we are looking for a time factor in the face of the data in the problem,
the problem should also be examined from the perspective of Time Series (TS), whose
application algorithms are known and are given in the relevant section. But if the time
dimension does not matter, we only use the main and conventional machine learning algo-
rithms. Generally, the time dimension is very important in predicting critical parameters,
and therefore the model should include both conventional and basic machine learning
algorithms and time series algorithms to achieve accurate results. Regarding renewable
systems, we can say that with the rise of renewable energy, it is becoming increasingly
important to represent time-varying input data in energy system optimization studies.
Time-series aggregation, which reduces model complexity, has emerged in recent years to
address this challenge [11].

As can be seen from Figure 1, the number of ML articles in the field of energy systems
has increased significantly in recent years which indicates its importance, high usage, and
considerable ability to analyze related issues to energy systems. It is also clear from Figure 1
that the main upward trend in the number of articles in this field is from 2012, which
can be attributed to the further development of DL and its widespread use in scientific
issues. In addition, in Figure 2, which was obtained with the help of VOSviewer software,
we can see the relationship between different fields in energy systems with ML and DL.
The larger the diameter of the circles associated with each keyword in the output image
from VOSviewer, the more repetitive that keyword is compared to others in the articles. In
energy articles in the field of artificial intelligence, the two keywords ‘machine learning’
and ‘deep learning’ are often used more than ‘artificial intelligence’. Since this analysis is
based on the keywords in the articles and this software, ‘artificial intelligence’ is smaller in
diameter than ‘machine learning’ and ‘deep learning’. VOSviewer is a software tool for
constructing and visualizing bibliometric networks.
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Figure 2. Categorizing different aspects of ML and DL in energy systems.

From reviewing articles and studies in this field, we find that in most cases, the 10 most
well-known ML algorithms have been used in certain applications, and in articles in this
field, although we see less creativity and innovation. There are many uses for a variety of
ML and DL algorithms that need to be addressed. It is suggested that forthcoming studies
of other algorithms, such as the Convolutional Neural Network (CNN), Long-Short Term
Memory (LSTM), etc. should be initiated and the results should be reported. In connection
with the wide applications of DL and ML in this field, more creative studies are expected in
various applications that have a more indirect but equally highly important relationship
with energy. For example, Turetskyy et al. [13] developed a method for designing the
production of a Lithium-ion battery, which is a leading energy storage technology based
on ANN. The purpose is to determine the structure and properties of the intermediate
product required for the process steps to achieve a certain quality in the final product of
the battery cell.
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This paper is a review study on the use and applications of algorithms and models of
ML and DL on energy systems, due to their efficiency and high importance. This article
also tries to cover more methods and models than other review articles in this field. In
a separate section, the various applications of this science in relation to energy systems
are discussed in a way that has not been studied before. This article is divided into seven
sections: Section 2 deals with the main applications and cases in which ML and DL have
been used in energy systems and explanations are given regarding the comparison of
the performance of the algorithms; Section 3 describes ML and its algorithms, and also
their application in the field of energy systems; Section 4 describes DL and its algorithms,
and also their application in the field of energy systems; Section 5 describes TS and its
algorithms, and also their application in the field of energy systems; Section 6 deals with the
parameters and metrics used to evaluate the accuracy and error calculation of algorithms
and models; and Section 7 provides general conclusions from this study.

2. The Main Applications of ML and DL in Energy Systems

ML and DL can be used in many areas related to energy systems. In this section, the
main, most common, and growing applications of this science in the field of energy systems
are pointed out so that those interested in this field can find a better understanding and
view of the use of these models.

2.1. Energy Consumption and Demand Forecast

ML- and DL-based forecasting techniques are widely used in the field of energy
systems. Some of the applications used for forecasting in this field are power and load
demand forecasting, building energy consumption forecasting, electrical load forecasting
and so on [14–16]. Globally, buildings have a large share of total energy consumption
and waste. Therefore, reducing energy consumption in buildings is an effective way to
minimize the negative effects of climate change [17]. This is why most studies and research
are conducted to predict energy consumption and demand for buildings. According to
the forecast time horizon, existing research on building energy forecasting, like other
applications, can be generally classified into three categories: short-term (i.e., up to one
week ahead), medium-term (i.e., from one week to one year ahead), and long-term forecasts
(i.e., more than one year ahead) [18].

Predicting energy demand in buildings is important at many levels, from a single
household unit to the country level. Control and optimization of devices’ performance
not only helps balance supply and demand through on-site renewable energy sources (as
with the case of nearly zero energy buildings) at the household level, but also helps with
installation planning and cost reduction in energy systems [19]. It is very important to
obtain complete information about the electricity consumption of the residents because it is
possible to improve the accuracy of load forecasting and ensure the normal operation of
power systems, energy management, and planning [20].

The summary and results of some interesting and new studies in this field are re-
viewed below.

Amasyali et al. reviewed recent research into predicting the energy consumption of
buildings using most ML and DL algorithms. In most previous articles, in relation to the
type of buildings studied, the focus has been on commercial and educational buildings;
while also to predict energy consumption in terms of time horizon, more work has been
conducted on short-term forecasts. The results of this study show that ML-based models
show acceptable performance for this purpose, but all models have specific strengths
and weaknesses. They have different functions in different situations and it is not the
case that one model can be used for different conditions and applications; each model
should be used for a specific application that has a better performance. Another result
of this review article is that there exists a gap in the literature for some topics, such as
long-term forecast of building energy consumption, forecast of residential building energy
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consumption, and forecast of lighting energy consumption of the building, all of which
need more attention [21].

Deb et al. conducted a comprehensive review of nine TS forecasting techniques,
including Fuzzy, Case-Based Reasoning (CBR), Support Vector Machine (SVM), Moving
Average (MA) & Exponential Smoothing (ES), Neural Networks (NN), Gray, ANN, Hybrid
Model (HM) and Autoregressive Integrated Moving Average (ARIMA) for building energy
consumption. This paper considers basic qualitative and quantitative comparisons for all
nine techniques mentioned. It should be noted that the HM is considered as a technique
among the nine techniques presented and further explanation of the various combinations
of the HM, while evaluating their performance and novelty, is another goal of this article.
One of the important results of this paper is that a combination of TS prediction techniques,
such as ANN and ARIMA, can be combined well with optimization techniques such as
Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and so on [22].

Walker et al. used some ML algorithms to predict electricity demand on an hourly
basis, including Boosted-Tree (BT), Random Forest (RF), SVM, and ANN using data from
47 commercial buildings collected over two years. The results showed that by examin-
ing the accuracy and prediction error, the RF model showed better performance for this
purpose [23].

Grimaldo et al. combined the k Nearest Neighbor (kNN) algorithm with visual
analytics to predict and analyze energy supply and demand. This provides results with
acceptable accuracy, allowing the user to analyze different forecasting options and relate
them to input parameters to identify consumption and production patterns [24].

Hagh et al. proposed an HM to predict home appliance power consumption and peak
customer demand, which includes SVM faster clustering (faster clustering k-medoids) and
ANN. This model shows a very desirable accuracy of 99.2%, which makes the experimental
results of the proposed model effective using smart meter data [25].

Hafeez et al. proposed an innovative HM for short-term electrical load prediction that
includes an information preparation model called Modified Mutual Information (MMI), a
DL model called Factored Conditional Restricted Boltzmann Machine (FCRBM), and an
optimization model called Genetic Wind-Driven Optimization (GWDO). The results, after
comparing this model with models such as Mutual Information (MI)-based ANN, Accurate
and Fast Converging (AFC)-based ANN, and LSTM. show better performance in terms of
accuracy, average runtime, and convergence rate [26].

Khan et al. proposed a model called Cuckoo Search Neural Network (CSNN) by
combining Cuckoo Search (CS) and ANN to improve the accuracy, convergence time, and
compatibility for Organization of Petroleum Exporting Countries (OPEC) power consump-
tion forecasting. The results of comparing this model with models such as Accelerated
Particle Swarm Optimization Neural Network (APSONN), Genetic Algorithm Neural
Network (GANN), and Artificial Bee Colony Neural Network (ABCNN) clearly show
that this model is more efficient, more powerful, and more compatible with the latest
algorithms [27].

Kazemzadeh et al. suggested an HM for long-term prediction of peak electrical load
and total electrical energy demand using three models: ARIMA, ANN, and PSO-Support
Vector Regression (SVR). According to the results presented in this study, the HM has the
best performance among the four models studied (HM > PSO-SVR > ANN > ARIMA) [28].

Fathi et al. conducted an interesting review study on energy performance prediction
of urban buildings by considering the type of buildings, type of energy, and time horizon,
which examined almost all widely used algorithms in this field. The results show that the
most common algorithms used in published articles for this application are ANN and SVR.
It should also be noted that studies have been conducted to predict the energy performance
of buildings based on electrical energy consumption in buildings [29].

Liu et al. conducted a study evaluating the effectiveness of the SVM algorithm to
predict energy consumption and identify energy consumption patterns in public buildings.



Sustainability 2022, 14, 4832 6 of 49

The results show that this algorithm can achieves this with acceptable accuracy and error
and can determine the normal or abnormal energy consumption [30].

Kaytez et al., using two models, ARIMA and Least Square SVM (LSSVM), have
proposed an HM to predict the long-term power consumption of the Turkish grid. This
study compares the proposed HM with the Multiple Linear Regression (MLR) and single
ARIMA models in terms of performance. The results show better performance of the HM
in terms of accuracy and prediction error (HM > ARIMA > MLR) [31].

Fan et al. proposed a new HM called Empirical Mode Decomposition (EMD)-SVR-
PSO-Autoregressive (AR)—Generalized Autoregressive Conditional Heteroscedasticity
(GARCH) for power consumption forecasting. This model uses power consumption
data from an Australian city with models; Autoregressive Moving Average (ARMA), AR-
GARCH, EMD-SVR-AR, and SVR-GA are compared. The results show better performance
of the proposed HM compared to the other four models in terms of accuracy and prediction
error. It should be noted that the proposed model did not show good performance in terms
of runtime [32].

Jamil et al. proposed an ARIMA model to predict power consumption generated by
Pakistani hydropower plants to analyze future energy supply and demand, management,
and planning for energy resources. The results of comparing this model with real data
show the strong performance of the algorithm proposed for this application, and this article
uses it to predict hydropower consumption until 2030 [33].

Beyca et al. conducted an analysis to forecast natural gas consumption in one of
the provinces of Turkey by using three algorithms, including MLR, SVR, and ANN. The
comparison results of these three models show the superiority of the SVR model over the
other two models in terms of accuracy and predictive error. This study can provide a useful
criterion for many developing countries due to the data-driven structure, frequency of
consumption, and consumer behavior in different periods [34].

Wen et al. proposed an HM based on DL algorithms called Deep Recurrent Neural
Network-Gated Recurrent Unit (DRNN-GRU) for short-term forecast of residential building
load demand using hourly measured residential load data from an American city. The
results showed that the proposed model can predict the aggregated and disaggregated
load demand of residential buildings with higher accuracy than the usual, and previously
proposed, methods such as Multilayer Perceptron Network (MLP), DRNN-LSTM, DRNN,
ARIMA, SVM, and MLR (DRNN-GRU > DRNN-LSTM > DRNN > MLP > ARIMA > SVM
> MLR). In addition, the proposed DL model is an effective way to make up for the lost
data by learning from historical data [35].

2.2. Predicting the Output Power of Solar Systems

Integrating renewable energy sources with traditional electricity grids, especially solar
sources, is currently one of the most important challenges [36]. To show the growth trend of
the PV solar energy market, it is enough to take a look at the increase in installed capacity
of more than 586 GW worldwide by 2019 (with a 20% increase compared to 2018) [37]. This
incremental approach to solar energy is due to the abundance and reliability of this energy
and can be used to change the structure of global energy, although owing to the the source
of this energy not being fixed, it is necessary to make predictions to estimate the output
power of these systems [6,38]. In addition, because traditional and experimental models,
which are widely used to estimate solar radiation, need to manage complex and nonlinear
relationships between independent and dependent variables, with the advancement of
computer technology, many ML models with this kind of prediction as their goal have
been replaced [39]. Almost all studies and articles have shown that ML-based models
perform better than other traditional models and methods. The output power of a PV
module depends on factors such as the position of the cells, the type of solar cells, the
electrical circuit of the module, the angle of incident, the weather conditions, and other
parameters; however, because solar radiation has a direct and extremely important effect
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on the output power of solar systems, ML models and algorithms are mostly written based
on solar radiation data and information [40].

The summary and results of some interesting and new studies for such application are
reviewed below.

Voyant et al. evaluated and compared different methods available for predicting solar
radiation based on ML methods, and because most of the articles have worked on NN and
SVR methods, this article also examined other methods such as kNN, RF, etc. for this field.
The results that can be drawn from this study, in general, are the better use of methods;
ANN, ARIMA, SVM, and SVR are for predicting solar radiation. This paper also proposes
the use of HMs to improve prediction performance [6].

The four models of Huertas et al. include a Smart Persistence (SP) model, a Satellite
imagery model, a Numerical Weather Prediction (NWP) (Weather Research and Forecasting
(WRF)-Solar) model, and a hybrid satellite-NWP model (Cloud Index Advection and
Diffusion (CIADCast)), combined with an SVM algorithm to improve solar radiation
predictions, including Direct Normal Irradiance (DNI) and Global Horizontal Irradiance
(GHI). Overall, the results showed that the HM with SVM performed much better than the
single predictor models with less error [41].

Govindasamy et al. investigated an interesting case study in South Africa using the
ANN, SVR, General Regression Neural Network (GRNN), and RF algorithms to measure
the effect of PM10 air pollution concentrations on solar radiation to measure the output
power of solar systems. The result of this study is that the ANN algorithm performs better
than the other three algorithms and has higher prediction accuracy, less computational
time, and less error. This paper proposes the use of HMs including ANN in this regard [42].

Gürel et al. compared four models that include an experimental model, ANN model,
TS model, and mathematical model by using data and information: pressure, relative
humidity, wind speed, ambient temperature, and radiation duration. It also considers
the ANN algorithm as the best model for evaluating solar radiation among other studied
models, in terms of prediction accuracy and minimum error [43].

Alizamir et al. compared six ML-based models, including Gradient Boosting Tree
(GBT), Multi-Layer Perceptron Neural Network (MLPNN), Adaptive Neuro-Fuzzy Infer-
ence Systems (ANFIS) based on Fuzzy C-means Clustering (ANFIS-FCM), ANFIS based on
Subtractive Clustering (ANFIS-SC), Multivariate Adaptive Regression Spline (MARS), and
Classification and Regression Tree (CART) in the United States and Turkey, in terms of solar
radiation prediction. The overall results showed that the GBT model can be successfully
implemented by using climatic parameters as input in predicting solar radiation and has a
better performance in terms of error and accuracy compared to the other five models [44].

Srivastava et al. reviewed and compared four ML algorithms including MARS, CART,
M5, and RF, and finally concluded that all four models could be used to predict hourly solar
radiation for one to six days ahead of study. The RF model has the best performance and
the CART model has the weakest performance for this purpose among the four algorithms
(RF > M5 > MARS > CART) [45].

Benali et al. compared three models, including ANN, RF, and SP, to predict hourly
solar radiation with a time horizon of one to six hours. The results of this comparison
show that RF had the best performance and SP had the weakest performance in terms
of error rate (RF > ANN > SP). The seasonal study also showed that prediction in spring
and autumn is more difficult than winter and summer due to the higher diversity of solar
radiation in these seasons [46].

Ağbulut et al. used four models of ML algorithms, including SVM, ANN, kNN, and
DL for evaluation and comparison, to predict daily solar radiation using data from the last
two years, such as minimum and maximum daily ambient temperature, cloud cover, day
length, and extraterrestrial solar radiation, examined daily. The results showed that all the
ML algorithms tested in this study can be used to predict daily global solar radiation data
with high accuracy. However, the ANN algorithm has the best performance and kNN has
the worst performance among these four algorithms (ANN > DL > SVM > kNN) [47].
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2.3. Predicting the Output Power of Wind Systems

In recent years, the wind energy industry has been developing rapidly because wind
resources are clean, cheap, and endless, and it is a promising form of renewable energy.
However, predicting wind energy is still a challenging task due to the inherent properties
of nonlinearity and randomness, as fluctuations and uncontrollable wind energy make it
difficult to generate constant power from wind. Therefore, it is important to provide an
efficient model for predicting wind energy [48,49]. Wind energy is also considered a great
alternative to fossil fuels, which are running out due to population growth and, of course,
increasing demand. For example, in European countries, for the reasons mentioned, we are
witnessing a significant increase in offshore wind farms. Compared with onshore wind
farms, offshore wind farms have the advantage of containing plenty of wind sources, lavish
construction sites and a larger capacity of wind generation [50].

Due to the relationship between wind speed and direction with the output power of
wind systems, ML and DL models and algorithms are mostly developed based on wind
speed data and information.

The summary and results of some interesting and new studies in this field are re-
viewed below.

Zendehboud et al. considered the use of the SVM model better than other models
such as ANN because of its speed, ease of use, reliability, and high accuracy of results for
predicting wind power, and have proposed hybrid SVM models to increase prediction
accuracy [51].

Wang et al. focused on developing new approaches and combining methods because
it is difficult to predict wind speed using a single model and it is largely impossible to
make accurate predictions in different areas and an HM that includes a combination of
models; Empirical Wavelet Transform (EWT), Gaussian Process Regression (GPR), ARIMA,
Extreme Learning Machine (ELM), SVM and LSSVM have been proposed to predict short-
term wind speeds. The proposed method, in addition to improving the forecast accuracy
for single-value predictions, also provides more probable information for wind speed
forecasting [52].

Demolli et al. predicted long-term wind power using five ML algorithms, includ-
ing Least Absolute Shrinkage Selector Operator (LASSO), kNN, eXtreme Gradient Boost
(XGBoost), RF, and SVR, using daily wind speed data. This study shows the results that
algorithms XGBoost, SVR, and RF are powerful in predicting long-term wind power, with
RF the best and LASSO the worst algorithm for this purpose. Of course, the SVR algorithm
works best if the standard deviation is excluded from the dataset. Another result is the
possibility of using models based on ML in a place different from the trained places of
the model; using these models the rationale for construction can be measured before the
establishment of wind farms in an unknown geographical location in that place [53].

Xiao et al. proposed a self-adaptive kernel extreme learning machine (KELM). Because
the only way to ensure prediction for ANN models is to retrain from scratch with an
up-to-date training dataset, this will lead to the resumption of new training databases
and model retraining. Self-compatible KELM can simultaneously make obsolete old data
and learn from new data by storing overlapping information between updated and old
training datasets. This model increases training efficiency, reduces retraining costs, increases
computational speed, and improves forecasting accuracy [54].

Cadenas et al. compared the ARIMA and Nonlinear Autoregressive Exogenous
(NARX) models in terms of quantity and quality in predicting wind speed. The result of
this comparison was less error in the NARX model compared to the ARIMA model [55].

The following is a summary of algorithms based on ML and DL that have been used
in some other studies to predict wind power:

Li et al. used the Improved Dragonfly Algorithm (IDA) base on an SVM (IDA-SVM)
model in a hybrid forecasting model to forecast short-term wind power production [56].
Tian et al. used the Local Mean Decomposition (LMD), LSSVM, and Firefly Algorithm (FA)
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models for short-term wind speed forecasting [57]. Hong et al. used the CNN model to
predict wind speed for the next day [58].

2.4. Optimization

Optimization is an important tool in the design, analysis, control, and operation of
real-world systems [59]. Optimization also involves the process of identifying the most
appropriate goal, variables, and constraints. The goal is to select a model that has useful
insight into the existing practical problems and designs a scalable algorithm that finds
a provable optimal (or near-desirable) solution in a reasonable amount of time. Recent
advances in modern optimization have also led to changes in ML [60].

A review of articles published over the past 20 years on the broad field of Energy
Management (EM) shows that almost all, without exception, describes the urgent need
for more efficient ways to produce and use existing energy [61]. Thus, there is a growing
interest in research developing new approaches to solving complex optimization problems
which can address approaches and methods such as machine learning-based optimiza-
tion (which is mainly used for this purpose), real-time optimization algorithms, heuristic
approaches, hyper-heuristic approaches, and metaheuristic. In energy systems, EM and
optimization are directly related to each other. Communication and development of a new
generation of energy optimization and management strategies are important and necessary
in all areas. The previous articles on this issue that have been investigated regarding energy
systems include general topics such as energy consumption management, optimization
to increase the useful life of equipment, optimization of the performance of elements, and
equipment of systems related to the production of renewable energy, such as wind, solar,
hydropower, etc., and optimization of energy production [62–64]. In some studies, such as
Teng et al. [65], issues were addressed that are more indirectly related to energy systems,
such as EM in electric vehicles and fuel cells to improve energy efficiency.

The following is a summary of the most recent and up-to-date studies in this area,
using ML and DL approaches:

Perera et al. studied the potential of using Supervised Learning (SL) and Transfer
Learning (TL) techniques to help optimize the energy system. They propose a Hybrid
Optimization Algorithm (HOA), called Surrogate Model Trained, using the ANN-Actual
Engineering Model (SMANN-AEM), which involves the combination of the Surrogate
Model (SM) with support for an SL method called ANN and AEM to speed up the opti-
mization process maintaining accuracy. SM is built with support for the ANN algorithm to
adapt to different scenarios to replace the AEM model, which involves intensive computing.
The results have shown that HOA can reach multi-objective optimization solutions about
17 times faster than AEM. Models such as the SM trained using TL (SMTL), which were
built earlier, also show similar capabilities. Therefore, SMTL can be used with HOA, which
reduces the computational time required to optimize the power system by as much as 84%.
Such a significant reduction in computational time makes it possible to use this approach
to optimize the energy system on a regional or national scale [66].

Ikeda et al. proposed a new hybrid optimization method for optimal day-to-day
activities in building energy and storage systems using the Deep Neural Network (DNN)
model, which uses the DNN method to predict the optimal performance of integrated
cooling tower systems. The results showed that the proposed method may reduce daily
operating costs by more than 13.4% [67].

Zhou et al. proposed a multivariate optimization method using ANN and an advanced
optimization algorithm for a hybrid system. The results show that the ANN-based learning
algorithm is more accurate and computationally efficient than traditional methods for
describing optimization performance. In general, the results show that teaching-learning
methods are stronger than methods such as PSO in terms of optimal overall energy produc-
tion [68].

Ilbeigi et al. presented a model using MLP and GA algorithms to optimize the
energy consumption of a research center located in Iran. By using the MLP model, energy
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consumption is simulated in the building, and then energy optimization is performed
based on the GA by considering important variables. The main results showed that system
optimization can reduce energy consumption by about 35%. The results of calculations
also showed that the trained MLP model that has been presented in this study can predict
energy consumption in the building with good accuracy [69].

Naserbegi et al. investigated the multi-objective optimization of a hybrid nuclear
power plant using the ANN-based Gravitational Search Algorithm (GSA). ANN with
10 power plant thermodynamic inputs is used to predict proper performance for the
optimization process. The results of this study have shown that this method is suitable for
this purpose [70].

Abbas et al. optimized the production capacity of renewable energy with storage
systems by using the ANN-GA algorithm. The results obtained from their research showed
good accuracy and also the appropriateness of the result’s computation period [71]. In
addition, Li et al. used the same algorithm for optimizing engine efficiency. They gained
results with suitable accuracy and an acceptable computation period too [72].

Xu et al. used a new intelligent reasoning system to evaluate energy consumption and
optimize parameters in an industrial process. This system consists of three parts: Improved
Case Based Reasoning (ICBR), ANFIS, and Vibration Particle Swarm Optimization (VPSO).
In ICBR, similar inputs are retrieved using the kNN and ANN methods in the case recovery
step. The results show an acceptable accuracy of 91.7% and an optimization error of less
than 13.5%, which is confirmed by the experimental results. This system can also reduce
energy consumption, maintain tool stability and improve process efficiency [73].

Wen et al. used ANN to optimize wind turbine airfoil design. They used ANN to train
the data to predict the lift coefficient and the maximum lift-drag ratio of the airfoil. The
results have shown that this paper can offer new ideas for airfoil optimization and greatly
reduce optimization time [74].

2.5. Fault and Defect Detection

Monitoring large-scale industrial processes and energy systems for Fault Detection
and Diagnosis (FDD) is a major challenge. According to statistics, 70% of the industrial
accidents are caused by human mistakes [75]. Therefore, there is a need for prioritization
to develop an efficient and reliable real-time Decision Support Tool (DST) that can help
operators identify the causes of abnormal events and subsequently take remedial action
to ensure safety, environmental protection, and increased profitability [75]. Maintaining
the reliability, availability, and safety of equipment has been one of the most challenging
tasks in energy systems. Therefore, it is important to provide the conditions for monitoring
requirements for the assessment of the equipment [76,77].

Some power system equipment, such as wind turbines, have both mechanical and elec-
trical components. Therefore, their faults can be divided into two categories: electrical and
mechanical. it is easy to find and identify electrical faults but the detection of mechanical
faults requires monitoring the performance of different parts of the equipment, analyzing
and processing performance data, evaluating the performance status of components ac-
cording to data processing results, and so on. Therefore, to shorten the outage time due
to defects and problems caused by errors, a fast and effective fault detection technology
should be used [78].

Faults that occur in different layers of the system can be divided into three categories;
device faults/physical component fault, communication fault, and software/hardware
level fault. In general, fault analysis is necessary to increase performance and minimize
interruptions in power systems. Detection, locating, and troubleshooting is essential at
every level of the system to be able to operate normally and meet the needs of users and
subscribers [79]. That is why the use of methods and models based on AI and ML is
increasing day by day to improve the speed and process of doing so [80].

The summary and results of some interesting and new studies for this application are
reviewed below.
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Yang et al. proposed a new signal reconstruction modeling method for fault detection
using the SVR model and the use of wind turbine fault data from a real event. Multiple
indicators have been calculated to detect partial displacement of the normal state and
to detect faults in the early stages. A comparison between the observed signal and the
reconstruction signal is used to check the normal operating conditions. Three statistical
indicators are defined to quantify the level of deviation from normal to abnormal conditions.
By introducing the variables of penalty factor and slack variables in the calculation, the
SVR algorithm can identify outliers in model construction and partially filter out unwanted
signals in training samples. The results have shown several advantages, such as achieving a
better balance between false alarms, providing more information to identify the root cause
of faults, and identifying faults in the early stages [81].

Choi et al. proposed a model for detecting faults and abnormal conditions using
energy consumption forecasting for a tool. In this study, an intervening sampling of TS
data was performed to form a data structure under SL. The RF algorithm was used in this
model. When the accuracy of the RF model is greater than the specified value of MAPE,
outlier data detection is performed on the predicted data. The final results show that this
model can be used for this purpose [82].

Wang et al. proposed a new intelligent fault detection method for rotary bearings of a
wind turbine based on Mahalanobis Semi-Supervised Mapping (MSSM) and Beetle Anten-
nae Search based SVM (BAS-SVM) algorithms. SVM can make appropriate and accurate
decisions under limited instances that do not require complex mathematical models and
are better generalizable. Therefore, it is suitable for pattern recognition. However, two
important parameters (e.g., penalty factor c and kernel function σ) significantly affect the
final SVM pattern recognition results and need to be adjusted before using SVM. Therefore,
BAS-SVM is recommended to use BAS to search for the best parameters. The operational
results of this model show that the proposed method can effectively and accurately detect
different states of the wind turbine rotary bearing with 100% detection accuracy [83].

Han et al. proposed a model using the LSSVM algorithm for the FDD of chillers. In
this study, four faults at the component level and three faults at the system level were
investigated. The results showed that compared to the two models, Probabilistic Neural
Networks (PNN) and SVM, the proposed optimized LSSVM model shows better FDD
performance in terms of accuracy, fault detection, and runtime, especially when it comes to
system level defects [84].

Zhao et al. conducted an interesting review of AI-based methods that have been used
so far to detect faults in building energy systems. In this study, almost all ML and DL
algorithms have been investigated [8].

Helbing et al. presented a review study of DL-based methods for fault detection in
wind turbines in which most of the methods have been examined [85].

The following is a summary of ML and DL algorithms used in some other interesting
studies for FDD:

Wang et al. used the HM including SVM-PSO for FDD in nuclear power plants [86];
and Sarwar et al. used the SVM algorithm to detect and isolate high impedance faults in
power distribution networks [87]. Eskandari et al. used an Ensemble Learning (EL) model,
including SVM, Naive Bayes (NB), and kNN, to detect and classify line-line fault for PV
systems [88]; and Han et al. used an EL model including SVM, RF, and kNN to diagnose
building energy system defects [89]. Tightiz et al. used the ANFIS model to diagnose power
transformer defects [90].

Table 1 provides a summary of the articles and studies reviewed in this section.
This table tries to point out the algorithms used in each article and the areas covered by
each reference.

2.6. Other Applications and Algorithms Comparison

This article discusses the five main applications mentioned above, but there are some
other important applications in the field of energy systems such as power quality distur-
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bances [91,92], energy efficiency [93,94], electricity market price prediction [95,96], saving
energy [97], wind power fluctuation [98], forecasting of CO2 emission in power grids [99],
ranking of different potential power plant projects [100], crack detection in wind turbine
blades [101], module temperature estimation of PV systems [102], and so on.

Comparison of algorithms is not possible at all and the performance of one algorithm
cannot be considered superior to another algorithm because, if this were possible, weaker
algorithms would be obsolete and would never be used again [103]. Each of the algorithms
shows better performance in particular applications and we should look for the best al-
gorithm in terms of accuracy and error rate according to the intended application. For
example, for the study [47], in the field of global solar radiation prediction, four algorithms,
SVM, KNN, DL and ANN, were examined, which, according to the results presented in
the study, the ANN algorithm showed good accuracy. However, in a study with another
application, the accuracy of another algorithm may be higher than that of ANN. In gen-
eral, in-depth learning offers a promising solution to existing challenges that cannot be
addressed effectively with traditional approaches. For example, in cases where there is a
lack of data, high complexity, etc., deep learning algorithms can be very effective. Today,
special attention is paid to these types of models and they are used in many different
applications. The features and advantages of each of these algorithms are fully described
in Section 5 [104].

However, in the study [105], an interesting comparison has been made between
supervised machine learning algorithms for classification in terms of some parameters such
as general accuracy, speed of classification, tolerance to missing values, tolerance to noise,
speed of learning with respect to number of attributes and the number of instances, etc. It
is suggested to refer to the mentioned reference for more details.

Table 1. A summary of the reviewed articles related to the applications section.

Year Reference The Algorithms Investigated in This
Study Application

2017 Deb et al. [22] SVM, MA & ES, CBR, NN, ARIMA, Grey,
HM, ANN, Fuzzy

Energy consumption and
demand forecast

2018 Amasyali et al. [21]
SVM, ANN, LSSVM, DT, GLR, MLR,

FFNN, LASSO, NARIX, PENN, GRNN,
ARIMA, AR, BN, CBR, RBF, MARS, ELM

2019 Beyca et al. [34] MLR, SVR, ANN

2020

Walker et al. [23] ANN, SVM, RF, BT

Grimaldo et al. [24] kNN

Haq et al. [25] SVM, ANN, K-mean

Hafeez et al. [26] FCRBM

Khan et al. [27] CSNNN

Kazemzadeh et al. [28] PSO-SVR, ANN, ARIMA, HM

Fathi et al. [29] MLR, ANN, SVR, GA, RF, CA, BN, GP, GB,
PCA, DL, RL, ARIMA, ENS

Liu et al. [30] SVM

Kaytez et al. [31] LSSVM, ARIMA, HM, MLR

Fan et al. [32]
EMD-SVR-PSO-AR-GARCH,

EMD-SVR-AR, SVR-GA, AR-GARCH,
ARMA

Wen et al. [35] DRNN-GRU, DRNN-LSTM, DRNN, MLP,
ARIMA, SVM, MLR

Jamil [33] ARIMA
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Table 1. Cont.

Year Reference The Algorithms Investigated in This
Study Application

2017 Voyant et al. [6] LR, GLM, ANN, SVR/SVM, DT, kNN,
Markov Chain, HM, ARIMA

Predicting the output power
of solar systems

2019
Srivastava et al. [45] RF, CART, MARS, M5

Benali et al. [46] ANN, RF, SP

2020

Huertas-Tato et al. [41] SVR-HM

Gürel et al. [43] ANN

Alizamir et al. [44] GBT, MLPNN, ANFIS-FCM, ANFIS-SC,
MARS, CART

2021
Govindasamy et al. [42] ANN, SVR, GRNN, RF

Khosravi et al. [47] SVM, ANN, DL, kNN

2015 Wang et al. [52] ARIMA, SVM, ELM, EWT, LSSVM, GPR,
HM

Predicting the output power
of wind systems

2016 Cadenas et al. [55] ARIMA, NARX

2018 Zendehboudi et al. [51] SVM-HM, ANN, SVM

2019 Demolli et al. [53] LASSO, kNN, RF, XGBoost, SVR

2020

Li et al. [56] IDA-SVM, DA-SVM, GA-SVM, Grid-SVM,
GPR, BPNN

Tian et al. [57] LSSVM, HM, LMD

Hong et al. [58] CNN

2021 Xiao et al. [54] ANN, KELM

2018 Abbas et al. [71] ANN-GA

Optimization

2019

Perera et al. [66] TL, HM

Wen et al. [74] ANN, GABP-ANN

Zhou et al. [68] ANN, PSO

2020

Ilbeigi et al. [69] ANN, MLP, GA, HM

Naserbegi et al. [70] GSA-ANN

Xu et al. [73] VPSO, ANN, ANFIS, ANFIS-VPSO, ICBR

2021
Li et al. [72] ANN-GA, CFD-GA

Ikeda et al. [67] DNN, HM

2018 Zhao et al. [8] AE, MLP, CNN, DBN

Fault and defect detection

2019

Wang et al. [83] LSSVM, SVM, PNN

Han et al. [84] ANN, SVM, PCA, BN, SVR, Fuzzy

Helbinget al. [85] SV-PSO, BPNN, ANFIS

Sarwar et al. [87] SVM, kNN, NB

Wang et al. [86] SVM, PCA, FDA

2020

Yang et al. [81] RF, DT, kNN

Choi et al. [82] BAS-SVM, SVM, PSO-SVM, GA-SVM,
ABS-SVM

Rivas et al. [80] SVM

Eskandari et al. [88] kNN, SVM, RF, EL

Han et al. [89] ANFIS-BWOA, AR
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3. Machine Learning (ML)

ML is a set of techniques that obtains very useful information and relationships from
existing data using mathematical and statistical methods [106]. Based on the definition
of Arthur Samuel (1959) [107], ML is Field of study that gives computers the ability to
learn without being explicitly programmed. In the process of solving ML problems, the
available data are divided into two parts: training and test [108]. Then, after designing the
model through coding, the training data is analyzed by the model, and in the next step,
after the model realizes the relationship between the training data, it should be able to
solve the problem with test data. By comparing the actual results with the test data, the
accuracy of the model can be determined. If the accuracy of the model is not high enough
and acceptable, we try to improve the accuracy of the model by performing methods such
as changes in features, scaling data, etc. to be able to solve the problem. Figure 3 shows the
overall process.
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3.1. Types of ML

In general, there are different categories of ML, based on the type of model or combi-
nation of methods, but the general categories are divided into SL, Unsupervised Learning
(USL), and RL. There is a fourth category called Semi-Supervised Learning (SSL) [109].

3.1.1. Supervised Learning (SL)

In this type of problem, there is a label for each data as output, and finally, we seek to
solve the problem and predict the output. There are two types of issues in this style, which
are classification, and regression. In the classification, the model must use its observations
to determine in which category the new observations fall, and in fact, in this category,
we are looking to predict outputs that have discrete values [110,111]. In Regression, the
model must understand the relationships between the variables to estimate the value of the
output, and in fact, in this category, we are looking to predict outputs that have continuous
values [112,113].

Zhou et al. developed a surrogate model based on SL to analyze stochastic uncertainty-
based optimization on a building in China [114].

3.1.2. Unsupervised Learning (USL)

In this type of problem, the model examines and analyzes the data to identify patterns.
In other words, in this category, the data lacks labels and the model should examine
correlations and relationships using existing data analysis [115].
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Helbing et al. investigated the applications of SL and USL algorithms in monitoring
the condition of wind turbines to identify initial faults in the early stages of improvement
and maintenance [85].

3.1.3. Reinforcement Learning (RL)

In this type of model, the focus is on ambiguous learning processes. The model learns
from its past experiences and feedback, and tries to improve its methods to adapt them
to optimal solutions and achieve the desired result. The RL process can be modeled on
Markov’s decision-making process [116]. It is suggested to refer to the mentioned reference
for more details about this fascinating type of machine learning [116,117].

Li et al. proposed DNNs in the context of RL to improve the prediction of hydrocarbon
production [118].

3.1.4. Semi-Supervised Learning (SSL)

This type of problem is very similar to SL, with the difference that the model uses
both labeled and unlabeled data to solve the problem. Finally, the purpose of solving the
problem is to statistically analyze labeled data to learn the model and obtain unlabeled
data [119].

Li et al. proposed an SSL algorithm that includes both labeled and unlabeled data
to further reduce dependence on labeled data and improve data-based fault detection
performance for chiller systems [120].

3.2. ML Algorithms

In ML algorithms, ANN, DNN, SVM/SVR, Decision Tree (DT), RF, kNN, K-Means,
and DL are very common, among which ANN, SVM/SVR, and DL are widely used.
Among the algorithms mentioned, ANN and DNN are subsets of DL, which are discussed
in detail in Section 4. However, in some articles, it can be seen that combining several
algorithms with each other can increase the accuracy of the model. These algorithms
include Ensemble method, ELM, ANFIS, and hybrid ML Method. The algorithms that
result from the combination and integration of several algorithms are given at the end
of Section 4. The reason for this categorization is that the reader reaches this part after
studying all the methods and algorithms. TS models are also mentioned following the
contents of Section 4.

3.2.1. Linear Regression (LR)

LR is one of the simplest and most common methods of learning in SL. In general,
it is used for regression and continuous data. These algorithms try to identify the linear
relationship between existing data-based input variables (features) and the output variable
(target) by finding a straight line. Therefore, if we look at the data and find the linear
relationship between input and output, we can use this algorithm. Thus, this algorithm is
used in linear problems. It should be said that this algorithm has two types [121].

Simple Linear Regression (SLR)

If there is only one independent variable, the algorithm belongs this type. Due to the
existence of several influential variables in the available data in this field, the problems are
often in the form of MLR.

Multiple Linear Regression (MLR)

Multiple linear regression is a regression model that estimates the relationship between
a quantitative dependent variable and two or more independent variables using a straight
line [122].

Ciulla et al. proposed an ML model based on MLR to predict and evaluate the energy
balance of a building, and also to determine its energy requirements [123].
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3.2.2. Logistic Regression (LOR)

This algorithm is used in SL problems to predict binary discrete predictable data. The
logic of this algorithm is based on the sigmoid function given in Table 2. In this case, if
between two predictable events, the probability of the occurrence of each was more than
0.5, we consider its value as 1, and if it was less than 0.5, we consider its value as zero and
unlikely [124].

Gung et al. proposed an HM involving LOR to design an effective strategy for
predicting energy consumption in the residential sector [125].

3.2.3. k Nearest Neighbor (kNN)

One of the most popular algorithms in SL problems is used to predict discrete data,
with the difference that there is no limit for being binary and probable events can be more
than two. Thus, this algorithm can also be used to predict discrete binary data. This
algorithm is commonly used in classification. In this algorithm, first, a reference value is
selected as the amount of data close to the desired data, and then, by examining the sum
of the Euclidean distances of the data from the surrounding data and according to their
label, the desired data is determined. Among the significant issues of this algorithm can be
considered the high cost of forecasting and not achieving the desired result if the number
of predictable variables increases. It is also very important to choose the amount of data
near to the desired data, which can be easily optimized and achieved by examining and
plotting the number of errors in the training data according to this parameter [126,127].
Olatunji et al. proposed a kNN-based model for classifying biomass resources and their
characteristics [128].

3.2.4. Decision Tree (DT)

DT, or classification and regression tree (CART), is a statistical model for solving
classification and regression problems that was introduced by Breiman. The general
definition of a tree is a set of nodes and edges arranged in a hierarchy without loops. The
split nodes of a decision tree store a test function that will be applied to the incoming
data. The leaves are the final nodes. Each leaf stores the final test result, or answer. In fact
this algorithm uses mathematical modeling and finds the most optimal permutations by
defining a function and minimizing the cost function [129,130]. For example, if we want
to use this model to predict the electrical load and we have the three factors of maximum
temperature during the day, season, and type of day, then the DT model is as shown in
Figure 4 [130].

Coşgun et al. reviewed data on algal biomass to evaluate its productivity using a DT
algorithm. In this model, the variables related to microalgae biomass have been investigated
in this way [131].
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3.2.5. Random Forest (RF)

Another common algorithm in SL is one that uses a large number of DT. Therefore,
the general structure of this method is based on DT method. In this algorithm, first, the
number of forest trees is taken, and then, for each tree, a model is built based on the DT;
among the available features, different permutations are randomly checked and analyzed
and all of the combinations of the prediction are presented [132]. The classification of each
permutation and checking it is called ‘bagging’ (bootstrap aggregation). It is important to
note that in this algorithm, the label, which is more repetitive in training data and is more
dominant, is discarded to prevent errors and other data is used with related labels and
their permutations. Each tree in this forest has only one dominant feature. This algorithm
can be used in binary problems, linear regression, and classification [133,134].

Zolfaghari et al. proposed an HM involving RF to generate electricity through hy-
dropower plants [135].

3.2.6. SVM/SVR

One of the other SL algorithms that are used to analyze data in binary problems,
though it can also be generalized to multi-labeled problems, is SVM. This algorithm was
introduced by Vapnik in 1995 based on the structural risk minimization (SRM) principle.
By minimizing the upper bound of expected risk, SRM minimizes the overall risk. Based on
that, SVM minimizes the training data error. SVM can also be used for time analysis. This
algorithm is used to solve the classification problem. In recent years, SVM has been applied
to regression problems as well. The application of SVM in time series regression is known
as support vector regression (SVR) [136,137]. SVM/SVR can be used in many problems
such as regression analysis, classification, and approximation of nonlinear functions [138].
Also, this algorithm can be used in the field of pattern recognition, in which predicting
electrical load is the most significant area of use [139].

Liu et al. proposed an EL model including an SVM to predict daily radiation [140].

3.2.7. Naive Bayes Classifier (NB)

This algorithm is one of the statistical classification methods that uses Bayesian classi-
fication theory. NB classifiers differ from conventional classifiers because they calculate
posterior probabilities of classes instead of learning them, so they are less computation-
ally complex and do not require training like NNs. According to Bayes’ theorem, prior
probability means the original probability in the absence of any further information. Bayes’
Theorem can be explained by Equations (1) and (2):

P(A|B) = P(B|A)P(A)

P(B)
(1)

P(A|B) = P(B|A)P(A)

P(B|A) ∗ P(A) + P(B|−A) ∗ P(−A)
(2)

In Equations (1) and (2), P(A) represents the probability of A, P(B) represents the
probability of B without having knowledge about event A, P(A|B) is the posterior proba-
bility of A based on B, P(B|A) is the posterior probability of B based on A, P(−A) is the
probability of A being false and the P(B|−A) represents the probability of B given A is
false. It is based on the assumption that the effect of each feature on a class is statistically
independent of all other features. These assumptions are made to simplify computation by
assuming class conditional independence [141].

Montesinos et al. developed an automated cloud classification model in which
Bayesian network classifications are applied to satellite imagery to optimize solar sys-
tems [142].
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3.2.8. K-Means

The K-means clustering method is an iterative clustering analysis algorithm and was
first proposed by Lloyd in 1957. This algorithm belongs to USL and is widely used in
the field of data analysis due to its simplicity and high efficiency. K-means takes k as
input parameter and divides m object sets into k clusters, making the similarity of the
same cluster high and the similarity of different clusters low. The aim of the K-means
algorithm is to divide data points within certain dimensions into k clusters so that the
within-cluster sum of squares is minimized. In the method, k objects are randomly selected
as the initial clustering center, the distance between each object and the initial clustering
center is calculated, and it is assigned to the nearest clustering center. Clustering centers
and the objects assigned to them represent a class cluster. For each object allocated, the
cluster center will be recalculated according to the existing objects in the cluster. The loop
does not end until the cluster center no longer changes or no data has been reassigned to a
different cluster [143,144].

4. Deep Learning (DL)

DL has been brought to a separate section for further attention due to expansion and
advancements as well as the many algorithms that have been developed based on it, but in
general, it is a branch of ML. DL is a set of algorithms that can solve complex problems by
imitating the structure of the human brain.

4.1. DL Algorithms

ANN is the most common algorithm for DL, but CNN, Recurrent Neural Network
(RNN), Wavelet Neural Network (WNN), Deep Belief Neural Network (DBN), Radial Basis
Function (RBF), etc. are algorithms that also fall into this category. DL models have shown
that they have more accuracy and efficiency in prediction based on unstructured data
compared to ML algorithms [145,146].

4.1.1. Artificial Neural Network (ANN)

ANN imitates the structure of the human brain, which is made up of a large number
of neurons and can process vast amounts of information [147]. To build an accurate and
efficient model, we need a set of parameters. In each case, we have the input data and we
are looking to obtain the output data. Input data are considered as nodes in the input layer
and the output data are considered as nodes in the output layer. In ANN structure, one or
more hidden layers must be considered between these two layers, which include a large
number of nodes that connects the input layer nodes to the output layer nodes. When data
is transferred from one node in one layer to another node in another layer, it is multiplied
by a specific weight factor (weight & bias values) to apply the effect of each of the input
parameters in the problem-solving process. Single layer perceptron (SLP) is the simplest
type of ANNs and can only classify linearly separable cases with a binary target. An SLP is
a feed-forward network based on a threshold transfer function. In contrast, a multilayer
perceptron (MLP) is a feedforward ANN that generates a set of outputs from a set of inputs.
An MLP is characterized by several layers of input nodes connected as a directed graph
between the input and output layers. MLP uses back propagation (BP) for training the
network. These models are very efficient and accurate in predicting test data and nonlinear
problems [148–150]. Figure 5 shows an image of an ANN with a hidden layer [151].
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It should be noted that if the number of hidden layers or the number of nodes in
them is high, the problem becomes an overfit and will no longer have the necessary
performance [152]. Since the learning process is performed on training data and examined
on test data, after obtaining the answer, it is compared with the real answer and optimized
by the loss function. In this way, the obtained value is compared with the actual value,
the difference is considered, and then the process is performed in the opposite direction
to correct the assigned weights to reduce the difference; these steps are repeated until the
desired result is reached, this process being BP [153]. The optimization process is performed
by returning to the input data and modifying the weight & bias values. In Table 2, some
common activation functions are introduced, which are further explained in Activation
Function in Section 4.1.2.

Jahirul et al. used a model involving ANN to analyze the relationship between
chemical composition and biodiesel properties to find the main components [154]. Huang
et al. proposed a multivariate hybrid DNN model to accurately predict solar radiation for
efficiency in electrical energy management and planning [155].

Table 2. Types of activation functions used in NN [137,156,157].

Name of the Activation Function Formula Graphical Representation Number of Equations

Linear f (w) = w
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Hyperbolic tangent sigmoid
(tanh-sig) f (w) = tan h(w) = ew−e−w

ew+e−w
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Table 2. Cont.

Name of the Activation Function Formula Graphical Representation Number of Equations

Binary step f (w) =

{
1 w > 0
0 w ≤ 0
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Rectified Linear Units (ReLU) f (w) =

{
w f or w ≥ 0
0 f or w < 0
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Leaky ReLU f (w) =

{
w f or w > 0
aw f or w < 0

Sustainability 2022, 14, x FOR PEER REVIEW 19 of 46 
 

  
  
  
  

  
  
  
  
  

(9)  

  
  

  
  
  

𝑓ሺ𝑤ሻ ൌ ൜ 𝑤 𝑓𝑜𝑟 𝑤 ൐ 0𝑎ሺ𝑒௪ െ 1ሻ 𝑓𝑜𝑟 𝑤 ൏ 0 Exponential Linear 
Unit (ELU) 

(10)  

  
  

  
  
  

𝑓ሺ𝑤ሻ  ൌ  𝑒𝑥𝑝 ሺെ‖𝑤 െ  𝜔‖2𝜎ଶ ሻ Gaussian Radial Basis

(11) 

  
  

  
  
  

𝜎ሺ𝑧ሻ௜ ൌ 𝑒௭೔∑ 𝑒௭ೕ௞௝ୀଵ  Softmax 

4.1.2. Convolutional Neural Network (CNN) 
Due to the continuing development of NNs, and also the requirement to solve new 

problems and challenges, these types of NNs have a special application. CNNs have be-
come very popular in image-related projects due to their optimal performance and high 
accuracy results, but have other applications too, such as speech recognition, image clas-
sification, image recognition, autopilot vehicles, and so on [158,159]. 

Zhou et al. developed a model based on this type of network for fault detection in 
gas turbines [160]. Imani et al. proposed a model based on CNN, using hourly electrical 
load and the nonlinear relationship between the load and energy consumption, as well as 
the the associated temperature to predict electrical load demand in the residential sector 
[161]. 

(8)

Exponential Linear Unit (ELU)
f (w) ={

w f or w > 0
a(ew − 1) f or w < 0

Sustainability 2022, 14, x FOR PEER REVIEW 19 of 46 
 

  
  
  
  

  
  
  
  
  

(9)  

  
  

  
  
  

𝑓ሺ𝑤ሻ ൌ ൜ 𝑤 𝑓𝑜𝑟 𝑤 ൐ 0𝑎ሺ𝑒௪ െ 1ሻ 𝑓𝑜𝑟 𝑤 ൏ 0 Exponential Linear 
Unit (ELU) 

(10)  

  
  

  
  
  

𝑓ሺ𝑤ሻ  ൌ  𝑒𝑥𝑝 ሺെ‖𝑤 െ  𝜔‖2𝜎ଶ ሻ Gaussian Radial Basis

(11) 

  
  

  
  
  

𝜎ሺ𝑧ሻ௜ ൌ 𝑒௭೔∑ 𝑒௭ೕ௞௝ୀଵ  Softmax 

4.1.2. Convolutional Neural Network (CNN) 
Due to the continuing development of NNs, and also the requirement to solve new 

problems and challenges, these types of NNs have a special application. CNNs have be-
come very popular in image-related projects due to their optimal performance and high 
accuracy results, but have other applications too, such as speech recognition, image clas-
sification, image recognition, autopilot vehicles, and so on [158,159]. 

Zhou et al. developed a model based on this type of network for fault detection in 
gas turbines [160]. Imani et al. proposed a model based on CNN, using hourly electrical 
load and the nonlinear relationship between the load and energy consumption, as well as 
the the associated temperature to predict electrical load demand in the residential sector 
[161]. 

(9)

Gaussian Radial Basis f (w) = exp
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2σ2

)
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Softmax σ(
→
z )i =

ezi

∑k
j=1 ezj
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4.1.2. Convolutional Neural Network (CNN)

Due to the continuing development of NNs, and also the requirement to solve new
problems and challenges, these types of NNs have a special application. CNNs have
become very popular in image-related projects due to their optimal performance and
high accuracy results, but have other applications too, such as speech recognition, image
classification, image recognition, autopilot vehicles, and so on [158,159].

Zhou et al. developed a model based on this type of network for fault detection in gas
turbines [160]. Imani et al. proposed a model based on CNN, using hourly electrical load
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and the nonlinear relationship between the load and energy consumption, as well as the
the associated temperature to predict electrical load demand in the residential sector [161].

In general, CNNs have a specific structure and actions as follows, among them the
input layer, activation function, back propagation, feed-forward, and loss function, which
also exist in basic ANN.

Input Layer

The data is given to the model through input layers. In any network, the input layer is
the first and one of the most important steps.

Convolutional Layer

The core of a CNN is where most of the necessary calculations are made. Each
convolutional layer contains a set of filters that the output of the convolution layer (feature
map) is obtained through the convolution between the filters and the input layers. In
general, more layers means more filters, a deeper network and more accurate results [158].

Pooling Layer

The purpose of these layers is to reduce the size of the feature map obtained in the
previous step. It is also used to reduce the number of parameters and to prevent overfitting,
and also to eliminate unwanted noise. The process is to move a specific frame on the image
and sample it so that it calculates the value of the new parameter in each navigation using
mathematical operations. The pooling operation is performed in two ways: max pooling
and average pooling. These steps operate on the pixels of the image, and in each step,
depending on the type of pooling operation, the maximum value or the average number
corresponding to the pixels results in reducing the dimensions [162].

Activation Function

The activation function specifies the output of the neurons. The weighted sum of the
input values of the linear network is transferred to the activation function to convert it
to a nonlinear function. This step aims to maintain the features and eliminate some extra
features, the most important abilities of CNNs in solving nonlinear problems. It should also
be noted that one of the most widely used nonlinear activations in fully connected layers is
the ReLU function, although the softmax function is employed as an activation function of
an output layer [163]. Some types of activation functions used in NNs, especially softmax,
are given in Table 2. It is suggested to those interested to refer to the mentioned references
for more details regarding each activation function [137,156,157].

In Equation (11): i = 1, 2 . . . , k, σ represents softmax,
→
z is input vector, ezi is the

standard exponential function for input vector, k is number of classes in the multi-class
classifier, ezj is the standard exponential function for the output vector [157].

Fully Connected Layer (FCL)

In general, the last layers of a CNN for classification are these types of layers. The most
important application of these layers in the CNN is use as a classifier. The set of properties
extracted using convolutional layers are eventually transformed into a vector. Finally, this
attribute vector is given to a fully connected classifier to identify the correct class [160,163].

Loss Function

This function is used to estimate the deviation of the predicted value from the actual
value. The lower the value of this function, the greater the accuracy of the proposed model.
Therefore, this function plays a very important role in optimizing the model and increasing
its accuracy. Equation (12) displays the general form [158].

L(Y, F(x)) = |Y− F(x)| (12)
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In Equation (12): Y represents the actual value and F(x) represents the value calculated
by the CNN.

Back Propagation and Feedforward

In a CNN, a random weight is first multiplied by each of the inputs. In the next step,
the activation function is applied to each of the said items and their value is changed. In the
end, the output is taken according to the previous cases and the value of the loss function is
calculated. These steps are called feedforward steps. Due to the error and deviation of the
mentioned cases from the values of the training data, the feedforward step is conducted
in reverse to change the values of the weights assigned to each of the inputs, in order to
increase accuracy and reduce error. The feedforward step is performed again to evaluate
the results. The set of steps mentioned is the same as BP described in Section 4.1.1. Figure 6
shows the outline of a CNN model with numerous CLs and PLs performed alternately, as
well as fully connected layers and a softmax layer as the classifier [164]. The study of the
mathematical relationships of CNNs is beyond the scope of this article and therefore can be
referred to [160,163,165].

Sustainability 2022, 14, x FOR PEER REVIEW 22 of 50 
 

 

Figure 6. A CNN has several CLs and PLs with ANN at the end [164]. 

4.1.3. Recurrent Neural Network (RNN) 

Another type of NN used in DL is RNN, which is used in matters where the data 

sequence is important, such as language translation or electrical load prediction. The con-

secutive connection of neurons in the past, and with their internal state, provides the basis 

for modeling time problems so that these types of networks are also related to past out-

puts. In general, RNN is designed so that the process of BP takes place over time, and such 

a feature for models with very large sequences causes them to forget the previous data. 

To solve this problem, the LSTM model has been developed, which enables the model to 

store data for longer periods and make more accurate predictions. As the main part of the 

recurrent hidden layer of the LSTM, there are special units called memory blocks which 

lead to the storage of data over extended periods of time. In addition, there are three mul-

tiplicative units for managing the flow of information, namely the input gate, forget gate, 

and output gate around each LSTM cell, forming a new computing unit. The input infor-

mation is controlled by the input gate, the saving of the computation unit’s past status 

information is made by the forget gate, and the information output is controlled by the 

output gate. Thus, it can be said that such networks are an improved type of RNN 

[167,168]. 

Figure 7 shows the internal structure of RNN [169]. Figure 8 shows the outline of 

LSTM, in which, 𝑐𝑡 denotes the calculation rules of LSTM cells at time t, ℎ𝑡  is the output 

of the calculation unit at time t, W, U and V denote the parameter matrices, and b is the 

bias vector. 𝑖𝑡, 𝑓𝑡  and 𝑜𝑡 denote the input, forget, and output gates and the cell state 

vector at time t. It is clear that the input, forget and output gates are respectively connected 

to a multiplicative unit to control the input and output of information and the state of each 

LSTM cell. ⊗ represents element-wise multiplication. In addition, activation functions 

are mentioned in Table 2 [169]. 

Sun et al. proposed an LSTM-based RNN for power prediction in real power plants 

for turbine evaluation [170]. Pang et al. proposed an ANN model and an RNN to investi-

gate ML algorithms for predicting solar radiation [171]. Agga et al. used an HM including 

LSTM to predict the production capacity of a PV power plant [172]. 

 

Figure 6. A CNN has several CLs and PLs with ANN at the end [164].

Alves et al. examined the impact of data utilization techniques to enhance CNN
performance for classifying anomalies in PV modules [166].

4.1.3. Recurrent Neural Network (RNN)

Another type of NN used in DL is RNN, which is used in matters where the data
sequence is important, such as language translation or electrical load prediction. The
consecutive connection of neurons in the past, and with their internal state, provides the
basis for modeling time problems so that these types of networks are also related to past
outputs. In general, RNN is designed so that the process of BP takes place over time, and
such a feature for models with very large sequences causes them to forget the previous
data. To solve this problem, the LSTM model has been developed, which enables the model
to store data for longer periods and make more accurate predictions. As the main part
of the recurrent hidden layer of the LSTM, there are special units called memory blocks
which lead to the storage of data over extended periods of time. In addition, there are three
multiplicative units for managing the flow of information, namely the input gate, forget
gate, and output gate around each LSTM cell, forming a new computing unit. The input
information is controlled by the input gate, the saving of the computation unit’s past status
information is made by the forget gate, and the information output is controlled by the
output gate. Thus, it can be said that such networks are an improved type of RNN [167,168].

Figure 7 shows the internal structure of RNN [169]. Figure 8 shows the outline of
LSTM, in which, ct denotes the calculation rules of LSTM cells at time t, ht is the output
of the calculation unit at time t, W, U and V denote the parameter matrices, and b is the
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bias vector. it, ft and ot denote the input, forget, and output gates and the cell state vector
at time t. It is clear that the input, forget and output gates are respectively connected to
a multiplicative unit to control the input and output of information and the state of each
LSTM cell. ⊗ represents element-wise multiplication. In addition, activation functions are
mentioned in Table 2 [169].
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Sun et al. proposed an LSTM-based RNN for power prediction in real power plants for
turbine evaluation [170]. Pang et al. proposed an ANN model and an RNN to investigate
ML algorithms for predicting solar radiation [171]. Agga et al. used an HM including
LSTM to predict the production capacity of a PV power plant [172].

4.1.4. Restricted Boltzmann Machine (RBM)

RBM machines are a special type of generative energy-based model. Generative Mod-
els (GMs) learn an underlying data distribution by analyzing a sample dataset. Structurally,
the RBM is a shallow neural network with only two layers—the visible layer and the
hidden layer. In this network, each node is connected to all nodes in the adjacent layer
and represented by an undirected fully connected graph. The term restriction refers to
the fact that no two nodes in a layer are related to each other. RBM is the mathematical
equivalent of a two-way translator and the standard type of RBM has binary-valued hidden
and visible units. In the forward pass, the RBM takes the inputs and converts them to a
set of numbers that are the encrypted state of the inputs. In the backward pass, it takes
the set of numbers and translates them to obtain the early input. A well-trained network
will be able to translate back with a high accuracy. Weights and biases are very important
in both stages. They allow the RBM to decode the interrelationships between the input
attributes, and they also help the RBM decide which input attributes are the most important
when identifying patterns. An RBM is trained to reconstruct the input data through several
forward and backward movements. The interesting aspect regarding RBM is that the data
does not need to be labeled. This is very important for real-world data sets such as photos,
videos, audio and sensor data, and all items that tend to be unlabeled. Instead of people
tagging data manually and reporting errors to the system, an RBM automatically sorts the
data, and by setting the weights and bias correctly, the RBM is able to extract important
features and reconstruct the input. Those who are interested can also refer to the mentioned



Sustainability 2022, 14, 4832 24 of 49

references for more details and equations related to this model [173–175]. The structure of
this model is shown in Figure 9 [174].
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Yang et al. proposed an unsupervised model for detecting anomalies in the monitoring
system of wind turbines including RBM [176].

4.1.5. Auto Encoder (AE)

AE is generally known as a feature extraction algorithm in the case of USL problems.
It is a type of symmetrical NN that is used to optimize learning. Instead of training the
network and predicting the target value of y, for x input, the AE model is trained to
reconstruct the input value of x, so the output value will be the same as the value of x [177].
This algorithm can extract properties with the least amount of reconstruction error (RE). As
mentioned in Equation (13) and Figure 10, the AE network reconstructs the same value for
input x and delivers it as output [178,179].
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It should be noted that during the process, the model is optimized by minimizing the
RE value [180]. Figure 11 provides an overview of the process of performing AE.

Qi et al. designed a variable AE model to evaluate and describe uncertainties in
power systems and to examine possible scenarios [181]. Renström et al. proposed an
AE-based model that reconstructs all its input signals to detect widespread anomalies in
wind turbines [179].

4.1.6. Deep Belief Neural Networks (DBN)

DBN is another NN that the network serves as a graphical model, introduced by
Hinton, and learns to extract deep hierarchical representations of the input data [173,182].
In general, this type of network consists of a USL pattern and a large number of RBMs and
LOR, which RBM uses to identify and extract features, and LOR to predict [183].

Hao et al. developed a model based on this type of network to predict the energy
consumption required by the calcination process for cement production [184]. Sun et al.
used a new efficient method to optimally identify proton exchange fuel cell cells based on
an improved version of a DBN [185]. Figure 12 shows the structure of a DBN instance with
RBMs inside it [186].
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4.1.7. Generative Adversarial Network (GAN)

Another type of NN is very powerful and popular, which was introduced in 2014 by
Ian Goodfellow. This type of NN consists of two parts, the GM and Discriminator Model
(DM). The task of the first part is to generate new data based on past data, while the task of
the second part is to examine and distinguish between the actual data presented and the
generated data. Some of the applications of these networks can be considered as reducing
the noise in images or producing human images. Figure 13 shows the general structure and
also the implementation process of this type of network. In CNN, GM and DM compete
with each other so that the model can produce the desired result. Finally, there is a loss
function to optimize results by performing the BP process, similar to that mentioned in
Sections 4.1.1 and 4.1.2. It should be noted that each of the two parts, GM and DL, is
performed by two separate NNs [187–190].

Wang et al. used a generalized model based on GAN as EL to predict the distributed
surface pressure distribution on gas turbine blades [191].
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4.1.8. Adaptive Neuro-Fuzzy Inference System (ANFIS)

Fuzzy systems are a common computational method based on fuzzy theory and its
rules and logic [192]. If NNs and fuzzy theory are combined, a powerful network will be
created that will both use NN rules and have a logic based on fuzzy theory. In neuro-fuzzy
systems, the weight coefficients in the NN are determined based on fuzzy equations [193].
ANFIS can be used for classification, approximation of highly nonlinear functions, online
identification in discrete control systems and to predict a chaotic time series. ANFIS can
serve as a basis for constructing a set of fuzzy ‘if–then’ rules with appropriate membership
functions to generate the stipulated input-output pairs. ANFIS is based on the Takagi-
Sugeno model [194,195]. The Takagi-Sugeno systems are one of the most common fuzzy
models. In such systems, consequents are functions of inputs. They use a rule structure
that has fuzzy antecedent and functional consequent parts [196].

Figure 14 shows an example of the structure of such networks, which contain five
layers with different functions. The following is a description of each layer’s function. The
main purpose of layer one is to map input variables into fuzzy sets through the process
of fuzzification. This layer’s nodes are square nodes with node functions that generate
membership grades. In layer two, after integrating the fuzzy sets of each input, the firing
strength will be used. The output is obtained using the G-norm operator, which performs
the fuzzy conjunction “and”. The primary goal of layer three is to calculate the ratio of the
ith rule, the firing strength to the sum of all firing strengths. In layer four, the output from
layer three is multiplied with the function of the Sugeno fuzzy rule. In layer five, there
is only one node. This single node computes the sum of all the outputs of each rule from
the previous layer. Next, we perform the process of defuzzification by using the weighted
average method, which converts the fuzzy result into a crisp result. It is suggested to refer
to the mentioned reference for more details regarding this structure [195,197].

Ammar et al. proposed a model based on ANFIS to show the accuracy and importance
of ANFIS for optimizing maximum output power in PV systems. [198].

Sustainability 2022, 14, x FOR PEER REVIEW 26 of 50 
 

membership functions to generate the stipulated input-output pairs. ANFIS is based on 

the Takagi-Sugeno model [194,195]. The Takagi-Sugeno systems are one of the most com-

mon fuzzy models. In such systems, consequents are functions of inputs. They use a rule 

structure that has fuzzy antecedent and functional consequent parts [196]. 

Figure 14 shows an example of the structure of such networks, which contain five 

layers with different functions. The following is a description of each layer’s function. The 

main purpose of layer one is to map input variables into fuzzy sets through the process of 

fuzzification. This layer’s nodes are square nodes with node functions that generate mem-

bership grades. In layer two, after integrating the fuzzy sets of each input, the firing 

strength will be used. The output is obtained using the G-norm operator, which performs 

the fuzzy conjunction “and”. The primary goal of layer three is to calculate the ratio of the 

ith rule, the firing strength to the sum of all firing strengths. In layer four, the output from 

layer three is multiplied with the function of the Sugeno fuzzy rule. In layer five, there is 

only one node. This single node computes the sum of all the outputs of each rule from the 

previous layer. Next, we perform the process of defuzzification by using the weighted 

average method, which converts the fuzzy result into a crisp result.  It is suggested to refer 

to the mentioned reference for more details regarding this structure [195,197]. 

Ammar et al. proposed a model based on ANFIS to show the accuracy and im-

portance of ANFIS for optimizing maximum output power in PV systems. [198]. 

 

Figure 14. The structure of ANFIS [197]. 

4.1.9. Wavelet Neural Network (WNN) 

This is a type of NN based on wavelet transforms and based on deep multilayer NN 

as an alternative to ANN [199]. In this type of NN, the discrete wavelet-based function is 

considered as the activation function for each node and generally has better results than 

ANNs with the same number of layers and neurons. This type of NN is faster due to the 

use of a discrete wavelet-based function [200]. The inputs to the WNN and forecasted 

outputs are shown by 𝑐𝑖  and 𝑦𝑘 , respectively. The weights of the data association be-

tween the input layer and the hidden layer are shown by 𝑤𝑖𝑗 , and Equation (14) shows 

the results of the hidden layer. 

ℎ(𝑗) = ℎ𝑗 (
∑ 𝑤𝑖𝑗𝑐𝑖 − 𝑏𝑗
𝑑
𝑖=1

𝑎𝑗
) 

(14) 𝑗 = 1,2,3, … , 𝑙 

𝑖 = 1,2,3, … , 𝑙 

𝑘 = 1,2,3, … ,𝑚 

Figure 14. The structure of ANFIS [197].

4.1.9. Wavelet Neural Network (WNN)

This is a type of NN based on wavelet transforms and based on deep multilayer NN
as an alternative to ANN [199]. In this type of NN, the discrete wavelet-based function is
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considered as the activation function for each node and generally has better results than
ANNs with the same number of layers and neurons. This type of NN is faster due to the
use of a discrete wavelet-based function [200]. The inputs to the WNN and forecasted
outputs are shown by ci and yk, respectively. The weights of the data association between
the input layer and the hidden layer are shown by wij, and Equation (14) shows the results
of the hidden layer.

h(j) = hj

(
∑d

i=1 wijci − bj

aj

)
j = 1, 2, 3, . . . , li = 1, 2, 3, . . . , lk = 1, 2, 3, . . . , m (14)

In Equation (14): h(j) represents the result of the jth hidden layer node, aj represents
scaling parameter of the wavelet-based function, bj defines an interpretation parameter for
a wavelet-based function, l is the number of neurons that are in the hidden layer and hj is
the wavelet-based function. The final result of WNN is given in Equation (15) [201]:

yK =
l

∑
i=1

wikh(j) (15)

Yuan et al. developed a WNN-based method for predicting midterm electrical energy
consumption in buildings on two numerical items [201]. Aly et al. proposed an HM for
predicting harmonic tidal currents based on clustering approaches to improve the accuracy
of the related systems [202].

4.1.10. Radial Basis Neural Network (RBNN)

RBNN is a three-layer NN that contains a hidden layer that can learn quickly and can
be used in nonlinear continuous functions. Figure 15 shows the general structure of an
RBNN [203,204]. This type of NN is based on ANN, in which the Radial Basis Function
of the type of the Gaussian function is used as the activation function. In general, the
equation of a Gaussian function is Equation (16). Equation (17) represents the Radial Basis
function and Equation (18) represents the value of the radial basis function multiplied by
the assigned weight factor [205].

φ(x) = exp
(
− x2

σ2

)
(16)

g(x) = exp

(
−‖x− βk‖2

σk
2

)
(17)

f (x) =
n

∑
i=1

wigi(x) (18)

In Equation (16): σ is the radius of the Gaussian function. In Equation (17): βk is
the center of the function, and σk is the radius of the function. In Equation (18): wi is
the weighted coefficients assigned and gi(x) is the output of the radial basis function in
Equation (17).

Hussain et al. designed an RBNN with two inputs for fault detection in PV sys-
tems [206]. Karamichailidou et al. designed a model based on an RBNN to model the wind
turbine power curve using wind speed, wind direction, ambient temperature, and blade
pitch angle as input parameters, achieving accurate and appropriate results [207].
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4.1.11. General Regression Neural Network (GRNN)

This type of network, which is used in regression and in classification, can be consid-
ered as a normalized type of RBNN, in which there is a centralized unit in each training
process. However, unlike RNBB, it does not require BP. In general, in this type of network,
an arbitrary function of training data is approximated [208]. GRNNs have four layers,
including the input layer, output layer, pattern layer, and summation layer. The input of
the pattern layer is the output of the input layer and the pattern layer is connected to the
summation layer. The output layer and the summation layer work together to normalize
the output vector of the network. In the learning process, both in the hidden layers and the
output layer, linear and radial basis functions are used as the activation function [209,210].

Sakiewicz et al. designed an HM including GRNN to predict three types of biomass
ash melting temperatures [211].

4.1.12. Extreme Learning Machine (ELM)

ELM is a technique for practicing NN data such as the Single Hidden Layer Feed-
Forward Neural Network (SLFN), which was introduced in 2006 by Guang-Bin
Huang et al. [212]. It is very similar to RBFN and its structure is similar (both consist
of an input and output layer and a hidden layer). The difference is that in RBFN, all
neurons are assigned a single weight between the input layer and the hidden layer, but
in ELM, a small weight is initially randomly assigned. This type of network has a faster
learning speed than RBFN and CNN [213].

Shamshirband et al. used this technique to predict horizontal solar radiation [214].

4.1.13. Ensemble Learning (EL)

EL is a model that consists of a large number of ML algorithms and is used to study
and analyze a specific goal [215]. In other words, several ML methods are taught in parallel
for a single purpose, so that the performance of each is compared and each should have a
lower amount of uncorrelated error (UE) [216]. EL is one of the most common methods
in statistical topics and ML. In general, fast learning methods such as RF and DT are
used in this type of model. Slower learning methods can also be used in this type of
learning. It should be noted that performing computational operations for EL may be
a little time-consuming, but this can be compensated by the weak accuracy and results
of slow methods [217]. One can refer to [218] for further details. The following are the
different types of EL methods. Figure 16 outlines this type of learning.



Sustainability 2022, 14, 4832 29 of 49
Sustainability 2022, 14, x FOR PEER REVIEW 29 of 50 
 

 

Figure 16. The general process of EL. 

Boosting 

Boosting is an EL method that uses weak classification methods, such as DT, and 

optimizes the loss function step by step [217]. In this method, the classifiers are combined 

and the sample weights are considered repeatedly, while weights are adjusted step by 

step to increase the weight in question to the items used in the previous step. Finally, the 

final predictions are obtained by weighting the results produced [219]. The general basis 

of this algorithm is that a large number of simple algorithms will have better performance 

than a complex algorithm; however,  we will face the problem of a high bias value in the 

results. Therefore, as the name of this method indicates, by reducing the bias value, it 

makes it possible for us to use this method [220]. This method also includes AdaBoost, 

XGBoost and AdaBoost.MRT, each of which is discussed below. 

Li et al. developed an HM of this method to predict wind speed in several stages in. 

order to discover the power of wind power generation [221]. 

Adaptive Boosting (AdaBoost) 

AdaBoost is one of the most common boosting methods, introduced by Freund in 

1995 [222]. The algorithms used in it are executed sequentially. As shown in Figure 17, 

training data is first used as the first data set. In the next step, Algorithm No. 1 is executed 

upon it and the preliminary results are obtained.  Next, the algorithm is evaluated accord-

ing to test data and a weighting factor is given to the algorithm according to the accuracy 

of the results obtained. Then, those data that were not correctly predicted by this algo-

rithm proceed to the next section as a data set, so that the next algorithm can be tested 

with them and the mentioned steps are repeated. Thus, in AdaBoost, at each stage, each 

algorithm tries to complete and strengthen the previous algorithm to optimize the results. 

Finally, based on the assigned weight coefficients 𝑊, the final processing is performed 

and presented to obtain the best and most accurate method [221,223,224]. 

Wang et al. designed a model based on the EL method, based on AdaBoost, to predict 

electrical energy consumption in the industrial sector in China [225]. 

Figure 16. The general process of EL.

Boosting

Boosting is an EL method that uses weak classification methods, such as DT, and
optimizes the loss function step by step [217]. In this method, the classifiers are combined
and the sample weights are considered repeatedly, while weights are adjusted step by step
to increase the weight in question to the items used in the previous step. Finally, the final
predictions are obtained by weighting the results produced [219]. The general basis of this
algorithm is that a large number of simple algorithms will have better performance than a
complex algorithm; however, we will face the problem of a high bias value in the results.
Therefore, as the name of this method indicates, by reducing the bias value, it makes it
possible for us to use this method [220]. This method also includes AdaBoost, XGBoost and
AdaBoost.MRT, each of which is discussed below.

Li et al. developed an HM of this method to predict wind speed in several stages in.
order to discover the power of wind power generation [221].

Adaptive Boosting (AdaBoost)

AdaBoost is one of the most common boosting methods, introduced by Freund in
1995 [222]. The algorithms used in it are executed sequentially. As shown in Figure 17,
training data is first used as the first data set. In the next step, Algorithm No. 1 is executed
upon it and the preliminary results are obtained. Next, the algorithm is evaluated according
to test data and a weighting factor is given to the algorithm according to the accuracy of
the results obtained. Then, those data that were not correctly predicted by this algorithm
proceed to the next section as a data set, so that the next algorithm can be tested with them
and the mentioned steps are repeated. Thus, in AdaBoost, at each stage, each algorithm tries
to complete and strengthen the previous algorithm to optimize the results. Finally, based
on the assigned weight coefficients W, the final processing is performed and presented to
obtain the best and most accurate method [221,223,224].

Wang et al. designed a model based on the EL method, based on AdaBoost, to predict
electrical energy consumption in the industrial sector in China [225].
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Extreme Gradient Boost (XGBoost)

XGBoost was introduced by Chen [226]. In this method, weak algorithms are combined
to create a powerful model. Despite the simplicity and volume reduction in the calculations,
the results are very accurate [227]. This algorithm is based on gradient amplification so that
its purpose is to reduce the loss function using the idea of a descending gradient. XGBoost
is widely used in classification and regression problems [228]. In order to read more details,
one can refer to [228].

Wei et al. developed a model based on some of the most common ML algorithms,
including XGBoost, to predict the residential district heating load in Shanghai, China, based
on data from electrical, thermal, and meteorological sensors [229].

AdaBoost.MRT

If the output of the problem involves several variables (vectors), the classical AdaBoost
algorithm must be generalized to be able to solve the problem in this situation. The general
approach in this algorithm, as in the previous cases, is to integrate simple and weak
algorithms to increase the accuracy of problem-solving [230]. To read more details, one can
refer to [221,231].

Liu et al. developed a model based on EL, including this algorithm, to predict the air
quality index and pollution in China [232].

Bagging

Bootstrap aggregating, also known as bagging, was introduced in 1996 by Breiman.
He has stated that grouping decision and regression trees yield much better results than
individual trees [233]. An example of this approach is the RF method, the contents of
which were mentioned in the relevant section [234]. This method is used in statistics
and regression-based classifications where the data have high variance or there is a large
amount of data. Here, a type of averaging is conducted in the model and the overall goal is
to increase the stability and validity of other ML algorithms [235]. The important point is
that the basis of all the algorithms used must be the same (such as kNN, ANN, NB, DT).
The main purpose of this method is to use complex ML algorithms in a way that avoids
overfitting [236].

Oliveira et al. developed an EL model including this method for predicting electricity
consumption based on electrical energy data from various countries [237].
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Stacking

Stacked Generalization, or stacking, is a method in which, for each of the ML algo-
rithms, according to its importance and accuracy, a weighting factor is supposed to consider
the impact of the importance and power of each algorithm in the final results. In the end,
the results are grouped by the weighting coefficients assigned in the final model and the
overall result is presented [238,239].

Ngo et al. proposed an alternative model based on ensemble bagging and stacking
ANNs to predict cooling loads of buildings with few common parameters in the design
phase [240].

4.1.14. Hybrid Model (HM)

In general, if the mentioned algorithms are combined in series, reviewing the data in
this way can increase the accuracy and efficiency of the analysis to an acceptable level. Thus,
using an HM, we can predict the desired parameters by combining different algorithms
and analyzing the results together [155,241].

Zhang et al. used an HM involving several ML algorithms, especially DL algorithms,
to accurately and reliably predict wind speeds for the development and management of
wind power generation systems [241].

4.1.15. Transfer Learning (TL)

If the data and learning experiences of one model are transferred to other models for
use in new learning, several models will use shared learning experiences and data [242].
The purpose of TL is to improve learning performance to achieve greater accuracy in the
results obtained [243,244]. Figure 18 shows an overview of TL.
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Hu et al. proposed a TL-based method using wind data from the region’s older wind
farms to predict the wind power of a newly established power plant [245].

5. Time Series (TS)

A TS is a set of time data recorded at equal intervals and specified. Time data analysis
is divided into two parts. The first part is related to identifying the structure and pattern of
the given data and the second part is related to fitting a model to predict the future trend.
TS analysis is used for many applications, including economic forecasting, processing and
quality control, census analysis, and so on. A TS can be univariate or multivariate. If there
are several target variables, the problem is multivariate. One of the important applications
of univariate TS in energy systems is the analysis and prediction of energy consumption
over time [22,246].
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5.1. TS Algorithms

The TS has important algorithms such as moving average (MA), exponential smooth-
ing (ES), autoregressive moving average (ARMA), case-based reasoning (CBR), etc., which
are explained below. In addition, LSTM, as one of the DL algorithms, as mentioned before,
has been widely used in predicting TS with high accuracy due to the observance of time
data sequences.

5.1.1. Moving Average (MA) & Exponential Smoothing (ES)

ES & MA are two distinct forecasting methods, but they have one thing in common:
they both consider the TS locally stationary over the local period. Despite this, ES gives a
higher weighting to recent values whereas MA gives equal weighting to all values. The
MA assumes that observations close to each other in time are likely to have similar values
in the future. Many TS analysis techniques derive their basic underlying foundation from
these decomposition components [22]. The MA written in Equation (19) is a simple equally
weighted calculation.

Ẑt+1 =
Zt + Zt−1 + . . . + Zt−m+1

m
(19)

In Equation (19): The average is centered at period t−(m+1)
2 and, at time t + 1, Ẑt+1

represents the forecasted value of Z, which is calculated at the moment t + 1, equal to the
simple average of the recent observations m at time t.

By applying greater weights to more recent observations, ES is accomplished. Weighted
averages are used to calculate forecasts, which decrease exponentially as observations are
taken further into the past. The proposed concepts can be modeled mathematically as
Equations (20) and (21) [22].

St = Ẑt+1|t = aZt + (1− a)St−1 = St−1 + a(Zt − St−1) (20)

ẐT+h|t = ST (21)

In Equation (20): St represents the estimation of the level at time t, Zt is the observed
TS at time t, Ẑt is the forecasted value of Zt at time t and a is the parameter related to the
smoothing of the level that can be chosen from (0 < a < 1). In the case of a close to 1,
the forecast becomes very sensitive to swings in previously recorded values based on the
previous period’s error.

In Equation (21): The T-index represents the periodicity obtained in the data utilized in
the variables and the concepts of other variables are similar to the variables in Equation (20).
One can refer to [247] for further details.

Cadenas et al. analyzed wind data from a temporal perspective through ES, and then
compared the results obtained through EL with the results obtained through ANN [248].

5.1.2. Autoregressive Moving Average (ARMA)

This algorithm is a combination of MA and AR. AR concentrates on movement and
trend patterns, while MA records the effects of white noise. This method is a statistical
method that allows us to predict the behavior of TS. Equations (22) and (23) represent the
mathematical formulation of ARMA [22].

x̂t = c + εt +
n

∑
i=1

ϕixt−i +
m

∑
i=1

θiεt−i (22)

et = xt − x̂t (23)

In Equation (22): xt is related to the actual value of x in time t, x̂t is the forecasted value
of xt through this algorithm, and εt represents the additional factors. In ARMA(n, m), n is
related to the order of AR and m is related to the order of MA, while ϕi, θi are related to the
effect of previous errors and predictions on subsequent predictions.
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In Equation (23): et represents the prediction error performed. It should be noted that
the value of (n, m) can be calculated according to the data [249,250].

The validity of the predicted data is checked using the Akaike Information Criterion
(AIC), formula given in Equation (24).

AIC = logA +
2c
n

(24)

In Equation (24): A represent the value of loss function, c represents the number of
estimated parameters and n is related to the total data that exist in the dataset [251]. It
should also be noted that the validity of the model can be calculated through the formulas
in Section 6.

Zhang et al. developed a model including ARMA to achieve spatial-temporal correla-
tion between wind and solar power plants. They obtained a joint distribution for wind and
solar power plants and considered the relevant scenarios [252].

5.1.3. Autoregressive Integrated Moving Average (ARIMA)

ARIMA, or BOX-Jenkins, is another statistical algorithm for predicting data behavior
based on AR and MA. The term ‘integrated’ refers to a separation step used to eliminate
the trend or periodicity of a TS [253]. In general, ARIMA parameters are similar to ARMA,
except that it is specified as ARIMA (n, d, m). Parameter d represents the number of peri-
ods that need to be integrated to be fixed. The mathematical Equation of ARIMA (n, d, m)
is similar to Equations (22) and (23). The difference between ARMA and ARIMA is that
ARMA is used for fixed TS, whereas, if our TS is not fixed, it needs to be integrated, in
which case we must use ARIMA.

Some examples of the application of this method are: predicting the trend of the
daily air purity index [254], forecasting wind speed in the coming days [255,256], pre-
dicting sunlight and its fluctuations during the day [257], forecasting hydropower energy
consumption [33], and analyzing energy supply and demand trends.

5.1.4. Case-Based Reasoning (CBR)

CBR is a method of combining learning and problem-solving methods and is based
on retrieving past information about a case to solve a new case. In general, this method
is based on past observations and tries to model new cases based on past scenarios. The
resource needed for learning is a memory of previously stored records. The basis of this
method is the role of reminders in human inference [22,258]. Learning in this type of system
is related to the structure within it, which consists of four key stages. Retrieve, reuse, revise
and retain (4R) refer to retrieving past similar cases, reusing methods from similar cases
to provide a possible solution to a new problem, revising the solution if necessary, and
retaining the new solution by placing it at the basis of the solution method for solving
similar cases in the future. CBR has been widely used to build information archives for
science management and decision making. Figure 19 shows the operation process of this
method [259].

Koo et al. used an advanced CBR-based ML model to study solar radiation in China
due to the complexity of patterns and relationships in the region’s solar data, using data
from 2006 to 2020, and achieving very good results [260].
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5.1.5. Fuzzy Time SERIES (FTS)

FTS that are modeled with values corresponding to linguistic variables cannot be
analyzed by the rules and relationships common to other TS. Song et al. (1993) introduced
this type of series [261]. The important aspect is choosing the appropriate fuzzy distance
length, which has a great impact on the accuracy of the results. Providing more content in
this area is beyond the scope of this article; one can refer to [261,262] for more information.

Severiano developed a model based on FTS to predict solar and wind energy [263].

5.1.6. Grey Prediction Model (GPM)

This method was first introduced in 1982 by Deng [264]. This algorithm is used to
solve discrete data uncertainty problems if there is not enough data available. The main
application and purpose of this method are to predict the future of systems that cannot be
studied and predicted by fuzzy methods or limited data. In this method, there is no need
to know the probability distribution of the input data. One of the general advantages of
this method is the possibility of using it in cases of limited data. In general, this method is
based on a set of first-order differential equations [265]. For more details about this method
and its equations, one can refer to [266,267].

Duan et al. used a new multivariate GPM model to predict energy in China based on
the energy logistics equation [268].

5.1.7. Prophet Model

The Prophet prediction model was introduced by Facebook in 2017. The prophet is a
method for predicting TS data in which nonlinear trends are predictable in daily, weekly,
and annual periods. This algorithm was originally designed for use in business forecasting,
but due to its high ability to analyze various trends, it can be used for forecasting renewable
energy [269,270].

Wang et al. developed an HM involving the Prophet algorithm to predict power
outages and weather events [271].

6. Performance Evaluation Metrics

Since the purpose of predicting the critical parameters of energy systems is the evalua-
tion of reliability and stability, the accuracy of the constructed model is critical. Thus, paying
attention to the accuracy of the model and optimizing it to reduce errors and increase its
accuracy is very important [137]. To evaluate the results of ML and DL models and evaluate
their effectiveness, we must evaluate the results according to the appropriate metrics. For
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this purpose the following metrics can be considered: R2 [272], MSE [106,113], MAE [3,106],
RMSE [273,274], nRMSE% [275], MAPE [3,113], MBE [272], t-stat [43], CV-RMSE [276].

In this section, there are many statistical evaluation metrics to examine the learning
process of the model. In all these cases, the real variable and the predicted variable in the
learning data are used. Thus, a brief explanation of each is given below.

6.1. Mean Squared Error (MSE)

In general, this value is defined as the mean squared of the difference between the
actual data and the predicted data [4]. The MSE equation is given below as Equation (25).

MSE =
1
N

N

∑
i=1

(
y f orecastedi − yactual i

)2
(25)

6.2. R-Squared (R2)

To evaluate the performance of linear regression models, a coefficient of determination
known as R2 is used. The R2 equation is given below as Equation (26) [277].

R2 = 1−
∑N

i=1

(
yactual i − y f orecastedi

)2

∑N
i=1 (yactual i − ymeani)

2 (26)

6.3. Mean Absolute Error (MAE)

This metric results in an absolute mean error. The MAE equation is given below as
Equation (27) [278].

MAE =
1
N

N

∑
i=1

∣∣∣y f orecastedi − yactual i

∣∣∣ (27)

6.4. Root Mean Square Error (RMSE)

The general concept is the standard deviation of the difference between the forecast
and actual data. The RMSE equation is given below as Equation (28) [279].

RMSE =
√

MSE =

√√√√ 1
N

N

∑
i=1

(
y f orecastedi − yactual i

)2
(28)

6.5. Normalised Root Mean Square Error (nRMSE)

As the name implies, this criterion is the same as the previous but in the normalized
state [6]. The nRMSE equation is given below as Equation (29).

nRMSE =


√√√√ 1

N

N

∑
i=1

(
y f orecastedi − yactual i

)2
/ymean (29)

6.6. Mean Absolute Percentage Error (MAPE)

MAPE is the average percentage difference of the predicted data compared to the
actual data. The MAPE equation is given below as Equation (30) [280].

MAPE =
1
N

N

∑
i=1

∣∣∣∣y f orecastedi − yactual i

yactual i

∣∣∣∣ ∗ 100 (30)
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6.7. Mean Bias Error (MBE)

MBE is the average error of predicted data, indicating a systematic error of a pre-
dicted model below or above prediction [281]. The MAPE equation is given below as
Equation (31).

MBE =
1
N

N

∑
i=1

(
y f orecastedi − yactual i

)
(31)

6.8. t-Statistics

The t-stat is used to decide on the success of predictive performance models. The t-stat
equation is given below as Equation (32) [39].

t− statistics =
1
N

√
(N − 1)MBE2

RMSE2 −MBE2 (32)

6.9. Coefficient of Variation of the Root Mean Square Error (CV-RMSE)

This index is the measure of cumulative error normalized to the mean of the measured
values. Because this metric generally indicates the amount of error accumulation, it is a
better measure of the overall accuracy of the model’s prediction [276,282]. Its equation is
given below as Equation (33).

CV − RMSE =

√
1
N ∑N

i=1

(
y f orecastedi − yactual i

)2

ymean
(33)

In Equations (25)–(33): N represents the total number of data, y f orecasted represents the
forecasted value of data and yactual represents the actual value of data.

7. Conclusions

With increase in population, we are witnessing increasing demand and consumption
of energy in various aspects such as social, transportation, welfare, and so on. Limited fossil
fuel resources, and the emergence of recent technologies and advances, indicate the need to
use renewable energy to meet this need. Climate conditions have a considerable impact on
the performance and sources of renewable energy and cause fluctuations and uncertainty in
their use. Therefore, to balance the supply and demand of energy through these resources,
we need to predict the output power of systems that use these resources. This has created
new and exciting challenges for energy systems. In addition, the emergence of equipment
such as smart grids, smart sensors, IoT technologies, etc., has led to the discovery of a
considerable amount of statistical data. The use of historical data to meet the leading
goals of energy systems has become very important in recent years. Therefore, data-
driven methods such as AI have played a significant role in accelerating the process and
improving methods to meet this need and energy demand. One of the most recent and
practical models based on AI can be called ML and DL, which have made wonderful
advances in recent years.

Today, ML and DL algorithms are used in many fields and applications related to
energy systems. The main applications of this science are related to forecasting with short-
term, medium-term, and long-term time horizons, and also topics related to optimization.
The results of this study show that ML and DL models have acceptable performance
for these purposes, although all models have specific strengths and weaknesses, each of
which should be used in applications and situations where the model performs better. It is
also impossible to use one model for each situation and application because each model
performs better in a particular application.

This paper reviews recent studies on the use of ML and DL for major applications
in energy systems, namely the five applications of energy consumption and demand
forecasting, predicting the output power of solar systems, predicting the output power of
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wind systems, optimization, and fault and defect detection. Other interesting and important
applications such as electricity market price prediction, forecasting of CO2 emission in
power grids, crack detection in wind turbine blades, energy efficiency, and more have
been mentioned. The results of this study indicate the further use of certain algorithms
in particular fields. For example, in the optimization section, most of the articles written
use the ANN algorithm. In the predictions section, SVM, ANN, and MLP algorithms are
mainly used. In the fault detection section, the SVM algorithm is mainly used to perform
part of the problem development process.

In general, the prominent role of ANN and SVM algorithms in articles on energy
systems can be mentioned. In addition, some relatively new DL algorithms, which have
many features and benefits, can be widely used in energy systems. Some of these algorithms,
such as RBM, DBN, CNN, LSTM, ANFIS, WNN, etc., can be used in problems in this field
that are sometimes very complex where we face a lack of data. With the development of
DL and the progress that has been made in this field, we are expected to see more articles
and studies using these algorithms in various fields. RMSE, MAPE, and MAE metrics have
been used mainly for error assessment in learning models. It should be said that most of
the studies conducted in the field of forecasting are related to short-term time horizons.
Major studies seek to provide an extended model to improve forecast accuracy, reduce
error, and reduce computational time and cost.

In addition, it can be concluded that the use of HM, EL, and optimized models,
by algorithms such as GA and PSO, etc., have significantly increased the accuracy of
models. Some articles have used innovative and interesting models and algorithms, and it
is expected that future studies will move towards this approach and not just use common
and widely used algorithms. In general, the purpose of this study is a comprehensive
review of articles using conducted algorithms and models of DL and ML in the field of
energy systems. We have tried to address all the algorithms, whether it be the ones that
have been used the most or the ones that are newer and less covered in the literature. It
should also be noted that, unlike the present article, other studies conducted in the field of
energy systems related to ML and DL are not complete and are limited to specific areas of
energy systems, such as solar prediction, wind speed and direction prediction, time series,
and fault detection, and so on. This article has also demonstrated an gap in the literature
in some topics, such as long-term forecast of building energy consumption, forecast of
residential building energy consumption, and forecast of lighting energy consumption
in buildings, where more attention should be paid. RL in this field can also be used in
various topics, such as controlling the combustion process in combustion plants to reduce
pollutants, etc. It is necessary to work on such topics in future studies. It is suggested that
future studies, by using initiatives, recording the results of their work reports, and using
mathematical and empirical models, along with ML and DL algorithms, can expand and
develop the field further.
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Abbreviations

ML Machine Learning
DL Deep Learning
SL Supervised Learning
SSL Semi-Supervised Learning
ANN Artificial Neural Network
R2 Coefficient of Determination
DNN Deep Neural Network
CNN Convolutional Neural Network
CL Convolutional Layer
nRMSE% Normalized Root Mean Square Error
GAN Generative Adversarial Network
RNN Recurrent Neural Network
LSTM Long-Short term Memory
RBM Restricted Boltzmann Machine
RE Reconstruction Error
AE Auto Encoder
DBN Deep Belief Networks
GAN Generative Adversarial Network
ARMA Autoregressive Moving Average
ARIMA Autoregressive Integrated Moving Average
CBR Case-Based Reasoning
HM Hybrid Model
FCL Fully Connected Layer
GRNN General Regression Neural Network
TL Transfer Learning
LASSO Least Absolute Shrinkage Selector Operator
kNN k Nearest Neighbor
SVR Support Vector Regression
KELM Kernel Extreme Learning Machine
NARX Nonlinear Autoregressive Exogenous
NN Neural Networks
DNI Direct Normal Irradiance
GHI Global Horizontal Irradiance
ANFIS-FCM ANFIS based on Fuzzy C-means Clustering
ANFIS-SC ANFIS based on Subtractive Clustering
SP Smart Persistence
BT Boosted-Tree
MMI Modified Mutual Information
FCRBM Factored Conditional Restricted Boltzmann Machine
GWDO Genetic Wind-Driven Optimization
APSONN Accelerated Particle Swarm Optimization Neural Network
GANN Genetic Algorithm Neural Network
ABCNN Artificial Bee Colony Neural Network
MLR Multiple Linear Regression
GRU Gated Recurrent Unit
AEM Actual Engineering Model
GSA Gravitational Search Algorithm
ICBR Improved Case Based Reasoning
FDD Fault Detection and Diagnosis
IDA Improved Dragonfly Algorithm
MSSM Mahalanobis Semi-Supervised Mapping
SM Surrogate Model
HOA Hybrid Optimization Algorithm
LSSVM Least Square SVM
FA Firefly Algorithm
HVAC Heating Ventilating and Air Conditioning
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PV Photovoltaic
EM Energy Management
LR Linear Regression
DT Decision Tree
WNN Wavelet Neural Network
BP Back Propagation
AIC Akaike Information Criterion
ReLU Rectified Linear Unit
GB Gradient Boosting
DA Dragonfly algorithm
ELU Exponential Linear Unit
DM Discriminator Model
GM Generative Model
USL Unsupervised Learning
RL Reinforcement Learning
EORV Expectation of a Random Variable(Expected Value)
UE Uncorrelated Error
NB Naive Bayes
WT Wavelet Transform
ELM Extreme Learning Machine
PCA Principal Component Analysis
SLFN Single Hidden Layer Feed-Forward Neural Networks
MAE Mean Absolute Error
MSE Mean Squared Error
MRE Mean Relative Error
MBE Mean Bias Error
MAPE Mean Absolute Percentage Error
RMSE Root Mean Square Error
MA Moving Average
AR Autoregressive
ES Exponential Smoothing
FTS Fuzzy Time Series
MLP Multilayer Perceptron Network
GPM Gray Prediction Model
TS Time Series
SVM Support Vector Machine
XGBoost eXtreme Gradient Boost
RF Random Forest
NWP Numerical Weather Prediction
WRF Weather Research and Forecasting
CIADCast Cloud Index Advection and Diffusion
GBT Gradient Boosting Tree
MLPNN Multi Layer Perceptron Neural Network
ANFIS Adaptive Neuro-Fuzzy Inference Systems
MARS Multivariate Adaptive Regression Spline
CART classification and regression tree
MI-ANN Mutual Information-Based Artificial Neural Network
AFC-ANN Accurate and Fast Converging based on ANN
CSNN Cuckoo Search Neural Network
CS Cuckoo Search
OPEC Organization of Petroleum Exporting Countries
GARCH Generalized Autoregressive Conditional Heteroscedasticity
EMD Empirical Mode Decomposition
PSO Particle Swarm Optimization
GA Genetic Algorithm
DRNN Deep Recurrent Neural Network
SMTL Surrogate Model trained using Transfer Learning
VPSO Vibration Particle Swarm Optimization
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DST Decision Support Tool
PNN Probabilistic Neural Networks
LMD Local Mean Decomposition
BAS-SVM Beetle Antennae Search based Support Vector Machine
SMANN Surrogate Model trained using ANN
EM Energy Management
GPR Gaussian Process Regression
RBNN Radial Basis Neural Network
AI Artificial Intelligence
EWT Empirical Wavelet Transform
EL Ensemble Learning
SLR Simple Linear Regression
LOR Logistic Regression
RBF Radial Basis Function
AdaBoost Adaptive Boosting
IoT Internet of Things
CA Cluster Analysis
GP Gaussian Processes
FDA Fischer Discriminant Analysis
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139. Özdemir, S.; Demirtaş, M.; Aydın, S. Harmonic Estimation Based Support Vector Machine for Typical Power Systems. Neural

Netw. World 2016, 26, 233–252. [CrossRef]
140. Liu, Y.; Zhou, Y.; Chen, Y.; Wang, D.; Wang, Y.; Zhu, Y. Comparison of support vector machine and copula-based nonlinear

quantile regression for estimating the daily diffuse solar radiation: A case study in China. Renew. Energy 2020, 146, 1101–1112.
[CrossRef]

141. Sheikh, M.F.; Kamal, K.; Rafique, F.; Sabir, S.; Zaheer, H.; Khan, K. Corrosion detection and severity level prediction using acoustic
emission and machine learning based approach. Ain Shams Eng. J. 2021, 12, 3891–3903. [CrossRef]

142. Alonso-Montesinos, J.; Martínez-Durbán, M.; del Sagrado, J.; del Águila, I.; Batlles, F. The application of Bayesian network
classifiers to cloud classification in satellite images. Renew. Energy 2016, 97, 155–161. [CrossRef]

143. Liu, G.; Yang, J.; Hao, Y.; Zhang, Y. Big data-informed energy efficiency assessment of China industry sectors based on K-means
clustering. J. Clean. Prod. 2018, 183, 304–314. [CrossRef]

144. Niu, G.; Ji, Y.; Zhang, Z.; Wang, W.; Chen, J.; Yu, P. Clustering analysis of typical scenarios of island power supply system by
using cohesive hierarchical clustering based K-Means clustering method. Energy Rep. 2021, 7, 250–256. [CrossRef]

145. Zhang, T.; Bai, H.; Sun, S. A self-adaptive deep learning algorithm for intelligent natural gas pipeline control. Energy Rep. 2021, 7,
3488–3496. [CrossRef]

146. Su, Q.; Khan, H.U.; Khan, I.; Choi, B.J.; Wu, F.; Aly, A.A. An optimized algorithm for optimal power flow based on deep learning.
Energy Rep. 2021, 7, 2113–2124. [CrossRef]

147. Zahedi, R.; Ahmadi, A.; Sadeh, M. Investigation of the load management and environmental impact of the hybrid cogeneration
of the wind power plant and fuel cell. Energy Rep. 2021, 7, 2930–2939. [CrossRef]

148. Sharifzadeh, M.; Sikinioti-Lock, A.; Shah, N. Machine-learning methods for integrated renewable power generation: A compara-
tive study of artificial neural networks, support vector regression, and Gaussian Process Regression. Renew. Sustain. Energy Rev.
2019, 108, 513–538. [CrossRef]

149. Premalatha, M.; Naveen, C. Analysis of different combinations of meteorological parameters in predicting the horizontal global
solar radiation with ANN approach: A case study. Renew. Sustain. Energy Rev. 2018, 91, 248–258.

150. Ramezanizadeh, M.; Ahmadi, M.H.; Nazari, M.A.; Sadeghzadeh, M.; Chen, L. A review on the utilized machine learning
approaches for modeling the dynamic viscosity of nanofluids. Renew. Sustain. Energy Rev. 2019, 114, 109345. [CrossRef]

151. Zhong, X.; Enke, D. Predicting the daily return direction of the stock market using hybrid machine learning algorithms. Financ.
Innov. 2019, 5, 1–20. [CrossRef]

152. Zhou, Y.; Huang, Y.; Pang, J.; Wang, K. Remaining useful life prediction for supercapacitor based on long short-term memory
neural network. J. Power Sources 2019, 440, 227149. [CrossRef]

153. Zhang, W.; Du, Y.; Yoshida, T.; Yang, Y. DeepRec: A deep neural network approach to recommendation with item embedding and
weighted loss function. Inf. Sci. 2019, 470, 121–140. [CrossRef]

154. Jahirul, M.; Rasul, M.; Brown, R.; Senadeera, W.; Hosen, M.; Haque, R.; Saha, S.; Mahlia, T. Investigation of correlation between
chemical composition and properties of biodiesel using principal component analysis (PCA) and artificial neural network (ANN).
Renew. Energy 2021, 168, 632–646. [CrossRef]

155. Huang, X.; Li, Q.; Tai, Y.; Chen, Z.; Zhang, J.; Shi, J.; Gao, B.; Liu, W. Hybrid deep neural model for hourly solar irradiance
forecasting. Renew. Energy 2021, 171, 1041–1060. [CrossRef]

156. Apicella, A.; Donnarumma, F.; Isgrò, F.; Prevete, R. A survey on modern trainable activation functions. Neural Netw. 2021, 138,
14–32. [CrossRef]

157. Mittal, A.; Soorya, A.; Nagrath, P.; Hemanth, D.J. Data augmentation based morphological classification of galaxies using deep
convolutional neural network. Earth Sci. Inform. 2020, 13, 601–617. [CrossRef]

158. Akram, M.W.; Li, G.; Jin, Y.; Chen, X.; Zhu, C.; Zhao, X.; Khaliq, A.; Faheem, M.; Ahmad, A. CNN based automatic detection of
photovoltaic cell defects in electroluminescence images. Energy 2019, 189, 116319. [CrossRef]

159. Chou, J.-S.; Truong, D.-N.; Kuo, C.-C. Imaging time-series with features to enable visual recognition of regional energy consump-
tion by bio-inspired optimization of deep learning. Energy 2021, 224, 120100. [CrossRef]

160. Zhou, D.; Yao, Q.; Wu, H.; Ma, S.; Zhang, H. Fault diagnosis of gas turbine based on partly interpretable convolutional neural
networks. Energy 2020, 200, 117467. [CrossRef]

161. Imani, M. Electrical load-temperature CNN for residential load forecasting. Energy 2021, 227, 120480. [CrossRef]
162. Qian, C.; Xu, B.; Chang, L.; Sun, B.; Feng, Q.; Yang, D.; Ren, Y.; Wang, Z. Convolutional neural network based capacity estimation

using random segments of the charging curves for lithium-ion batteries. Energy 2021, 227, 120333. [CrossRef]

http://doi.org/10.1016/j.apenergy.2018.02.126
http://doi.org/10.1016/j.renene.2021.02.017
http://doi.org/10.1007/BF00994018
http://doi.org/10.1016/j.rser.2017.08.017
http://doi.org/10.1016/j.rser.2014.01.069
http://doi.org/10.14311/NNW.2016.26.013
http://doi.org/10.1016/j.renene.2019.07.053
http://doi.org/10.1016/j.asej.2021.03.024
http://doi.org/10.1016/j.renene.2016.05.066
http://doi.org/10.1016/j.jclepro.2018.02.129
http://doi.org/10.1016/j.egyr.2021.08.049
http://doi.org/10.1016/j.egyr.2021.06.011
http://doi.org/10.1016/j.egyr.2021.04.022
http://doi.org/10.1016/j.egyr.2021.05.008
http://doi.org/10.1016/j.rser.2019.03.040
http://doi.org/10.1016/j.rser.2019.109345
http://doi.org/10.1186/s40854-019-0138-0
http://doi.org/10.1016/j.jpowsour.2019.227149
http://doi.org/10.1016/j.ins.2018.08.039
http://doi.org/10.1016/j.renene.2020.12.078
http://doi.org/10.1016/j.renene.2021.02.161
http://doi.org/10.1016/j.neunet.2021.01.026
http://doi.org/10.1007/s12145-019-00434-8
http://doi.org/10.1016/j.energy.2019.116319
http://doi.org/10.1016/j.energy.2021.120100
http://doi.org/10.1016/j.energy.2020.117467
http://doi.org/10.1016/j.energy.2021.120480
http://doi.org/10.1016/j.energy.2021.120333


Sustainability 2022, 14, 4832 46 of 49

163. Eom, Y.H.; Yoo, J.W.; Hong, S.B.; Kim, M.S. Refrigerant charge fault detection method of air source heat pump system using
convolutional neural network for energy saving. Energy 2019, 187, 115877. [CrossRef]

164. Poernomo, A.; Kang, D.-K. Content-aware convolutional neural network for object recognition task. Int. J. Adv. Smart Converg.
2016, 5, 1–7. [CrossRef]

165. Geng, Z.; Zhang, Y.; Li, C.; Han, Y.; Cui, Y.; Yu, B. Energy optimization and prediction modeling of petrochemical industries: An
improved convolutional neural network based on cross-feature. Energy 2020, 194, 116851. [CrossRef]

166. Alves, R.H.F.; de Deus Júnior, G.A.; Marra, E.G.; Lemos, R.P. Automatic fault classification in photovoltaic modules using
Convolutional Neural Networks. Renew. Energy 2021, 179, 502–516. [CrossRef]

167. Zhang, W.; Li, X.; Li, X. Deep learning-based prognostic approach for lithium-ion batteries with adaptive time-series prediction
and on-line validation. Measurement 2020, 164, 108052. [CrossRef]

168. Fekri, M.N.; Patel, H.; Grolinger, K.; Sharma, V. Deep learning for load forecasting with smart meter data: Online adaptive
recurrent neural network. Appl. Energy 2021, 282, 116177. [CrossRef]

169. Yang, G.; Wang, Y.; Li, X. Prediction of the NOx emissions from thermal power plant using long-short term memory neural
network. Energy 2020, 192, 116597. [CrossRef]

170. Sun, L.; Liu, T.; Xie, Y.; Zhang, D.; Xia, X. Real-time power prediction approach for turbine using deep learning techniques. Energy
2021, 233, 121130. [CrossRef]

171. Pang, Z.; Niu, F.; O’Neill, Z. Solar radiation prediction using recurrent neural network and artificial neural network: A case study
with comparisons. Renew. Energy 2020, 156, 279–289. [CrossRef]

172. Agga, A.; Abbou, A.; Labbadi, M.; El Houm, Y. Short-term self consumption PV plant power production forecasts based on
hybrid CNN-LSTM, ConvLSTM models. Renew. Energy 2021, 177, 101–112. [CrossRef]

173. Dedinec, A.; Filiposka, S.; Dedinec, A.; Kocarev, L. Deep belief network based electricity load forecasting: An analysis of
Macedonian case. Energy 2016, 115, 1688–1700. [CrossRef]

174. Hu, S.; Xiang, Y.; Huo, D.; Jawad, S.; Liu, J. An improved deep belief network based hybrid forecasting method for wind power.
Energy 2021, 224, 120185. [CrossRef]

175. Harrou, F.; Dairi, A.; Kadri, F.; Sun, Y. Effective forecasting of key features in hospital emergency department: Hybrid deep
learning-driven methods. Mach. Learn. Appl. 2022, 7, 100200. [CrossRef]

176. Yang, W.; Liu, C.; Jiang, D. An unsupervised spatiotemporal graphical modeling approach for wind turbine condition monitoring.
Renew. Energy 2018, 127, 230–241. [CrossRef]

177. Daneshgar, S.; Zahedi, R. Optimization of power and heat dual generation cycle of gas microturbines through economic, exergy
and environmental analysis by bee algorithm. Energy Rep. 2022, 8, 1388–1396. [CrossRef]

178. Roelofs, C.M.; Lutz, M.-A.; Faulstich, S.; Vogt, S. Autoencoder-based anomaly root cause analysis for wind turbines. Energy AI
2021, 4, 100065. [CrossRef]

179. Renström, N.; Bangalore, P.; Highcock, E. System-wide anomaly detection in wind turbines using deep autoencoders. Renew.
Energy 2020, 157, 647–659. [CrossRef]

180. Das, L.; Garg, D.; Srinivasan, B. NeuralCompression: A machine learning approach to compress high frequency measurements in
smart grid. Appl. Energy 2020, 257, 113966. [CrossRef]

181. Qi, Y.; Hu, W.; Dong, Y.; Fan, Y.; Dong, L.; Xiao, M. Optimal configuration of concentrating solar power in multienergy power
systems with an improved variational autoencoder. Appl. Energy 2020, 274, 115124. [CrossRef]

182. Hinton, G.E. Deep belief networks. Scholarpedia 2009, 4, 5947. [CrossRef]
183. Fu, G. Deep belief network based ensemble approach for cooling load forecasting of air-conditioning system. Energy 2018, 148,

269–282. [CrossRef]
184. Hao, X.; Guo, T.; Huang, G.; Shi, X.; Zhao, Y.; Yang, Y. Energy consumption prediction in cement calcination process: A method of

deep belief network with sliding window. Energy 2020, 207, 118256. [CrossRef]
185. Sun, X.; Wang, G.; Xu, L.; Yuan, H.; Yousefi, N. Optimal Estimation of the PEM Fuel Cells applying Deep Belief Network

Optimized by Improved Archimedes Optimization Algorithm. Energy 2021, 237, 121532. [CrossRef]
186. Hu, L.; Zhang, Y.; Yousefi, N. Nonlinear modeling of the polymer Membrane Fuel Cells using Deep Belief Networks and Modified

Water Strider Algorithm. Energy Rep. 2021, 7, 2460–2469. [CrossRef]
187. Wei, H.; Hongxuan, Z.; Yu, D.; Yiting, W.; Ling, D.; Ming, X. Short-term optimal operation of hydro-wind-solar hybrid system

with improved generative adversarial networks. Appl. Energy 2019, 250, 389–403. [CrossRef]
188. Huang, X.; Li, Q.; Tai, Y.; Chen, Z.; Liu, J.; Shi, J.; Liu, W. Time series forecasting for hourly photovoltaic power using conditional

generative adversarial network and Bi-LSTM. Energy 2022, 246, 123403. [CrossRef]
189. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial

networks. arXiv 2014, arXiv:1406.2661. [CrossRef]
190. Feng, J.; Feng, X.; Chen, J.; Cao, X.; Zhang, X.; Jiao, L.; Yu, T. Generative adversarial networks based on collaborative learning and

attention mechanism for hyperspectral image classification. Remote Sens. 2020, 12, 1149. [CrossRef]
191. Wang, Q.; Yang, L.; Rao, Y. Establishment of a generalizable model on a small-scale dataset to predict the surface pressure

distribution of gas turbine blades. Energy 2021, 214, 118878. [CrossRef]
192. Zahedi, R.; Ghorbani, M.; Daneshgar, S.; Gitifar, S.; Qezelbigloo, S. Potential measurement of Iran’s western regional wind energy

using GIS. J. Clean. Prod. 2022, 330, 129883. [CrossRef]

http://doi.org/10.1016/j.energy.2019.115877
http://doi.org/10.7236/IJASC.2016.5.3.1
http://doi.org/10.1016/j.energy.2019.116851
http://doi.org/10.1016/j.renene.2021.07.070
http://doi.org/10.1016/j.measurement.2020.108052
http://doi.org/10.1016/j.apenergy.2020.116177
http://doi.org/10.1016/j.energy.2019.116597
http://doi.org/10.1016/j.energy.2021.121130
http://doi.org/10.1016/j.renene.2020.04.042
http://doi.org/10.1016/j.renene.2021.05.095
http://doi.org/10.1016/j.energy.2016.07.090
http://doi.org/10.1016/j.energy.2021.120185
http://doi.org/10.1016/j.mlwa.2021.100200
http://doi.org/10.1016/j.renene.2018.04.059
http://doi.org/10.1016/j.egyr.2021.12.044
http://doi.org/10.1016/j.egyai.2021.100065
http://doi.org/10.1016/j.renene.2020.04.148
http://doi.org/10.1016/j.apenergy.2019.113966
http://doi.org/10.1016/j.apenergy.2020.115124
http://doi.org/10.4249/scholarpedia.5947
http://doi.org/10.1016/j.energy.2018.01.180
http://doi.org/10.1016/j.energy.2020.118256
http://doi.org/10.1016/j.energy.2021.121532
http://doi.org/10.1016/j.egyr.2021.04.050
http://doi.org/10.1016/j.apenergy.2019.04.090
http://doi.org/10.1016/j.energy.2022.123403
http://doi.org/10.1145/3422622
http://doi.org/10.3390/rs12071149
http://doi.org/10.1016/j.energy.2020.118878
http://doi.org/10.1016/j.jclepro.2021.129883


Sustainability 2022, 14, 4832 47 of 49

193. Amirkhani, S.; Nasirivatan, S.; Kasaeian, A.; Hajinezhad, A. ANN and ANFIS models to predict the performance of solar chimney
power plants. Renew. Energy 2015, 83, 597–607. [CrossRef]

194. Noushabadi, A.S.; Dashti, A.; Raji, M.; Zarei, A.; Mohammadi, A.H. Estimation of cetane numbers of biodiesel and diesel oils
using regression and PSO-ANFIS models. Renew. Energy 2020, 158, 465–473. [CrossRef]

195. Anicic, O.; Jovic, S. Adaptive neuro-fuzzy approach for ducted tidal turbine performance estimation. Renew. Sustain. Energy Rev.
2016, 59, 1111–1116. [CrossRef]

196. Walia, N.; Singh, H.; Sharma, A. ANFIS: Adaptive neuro-fuzzy inference system-a survey. Int. J. Comput. Appl. 2015, 123, 32–38.
[CrossRef]

197. Akkaya, E. ANFIS based prediction model for biomass heating value using proximate analysis components. Fuel 2016, 180,
687–693. [CrossRef]

198. Aldair, A.A.; Obed, A.A.; Halihal, A.F. Design and implementation of ANFIS-reference model controller based MPPT using FPGA
for photovoltaic system. Renew. Sustain. Energy Rev. 2018, 82, 2202–2217. [CrossRef]

199. Balabin, R.M.; Safieva, R.Z.; Lomakina, E.I. Wavelet neural network (WNN) approach for calibration model building based on
gasoline near infrared (NIR) spectra. Chemom. Intell. Lab. Syst. 2008, 93, 58–62. [CrossRef]

200. Aly, H.H. A novel deep learning intelligent clustered hybrid models for wind speed and power forecasting. Energy 2020, 213,
118773. [CrossRef]

201. Yuan, Z.; Wang, W.; Wang, H.; Mizzi, S. Combination of cuckoo search and wavelet neural network for midterm building energy
forecast. Energy 2020, 202, 117728. [CrossRef]

202. Aly, H.H. A novel approach for harmonic tidal currents constitutions forecasting using hybrid intelligent models based on
clustering methodologies. Renew. Energy 2020, 147, 1554–1564. [CrossRef]

203. Wu, Z.-Q.; Jia, W.-J.; Zhao, L.-R.; Wu, C.-H. Maximum wind power tracking based on cloud RBF neural network. Renew. Energy
2016, 86, 466–472. [CrossRef]

204. Han, Y.; Fan, C.; Geng, Z.; Ma, B.; Cong, D.; Chen, K.; Yu, B. Energy efficient building envelope using novel RBF neural network
integrated affinity propagation. Energy 2020, 209, 118414. [CrossRef]

205. Cherif, H.; Benakcha, A.; Laib, I.; Chehaidia, S.E.; Menacer, A.; Soudan, B.; Olabi, A. Early detection and localization of stator
inter-turn faults based on discrete wavelet energy ratio and neural networks in induction motor. Energy 2020, 212, 118684.
[CrossRef]

206. Hussain, M.; Dhimish, M.; Titarenko, S.; Mather, P. Artificial neural network based photovoltaic fault detection algorithm
integrating two bi-directional input parameters. Renew. Energy 2020, 155, 1272–1292. [CrossRef]

207. Karamichailidou, D.; Kaloutsa, V.; Alexandridis, A. Wind turbine power curve modeling using radial basis function neural
networks and tabu search. Renew. Energy 2021, 163, 2137–2152. [CrossRef]

208. Zahedi, R.; Ahmadi, A.; Gitifar, S. Reduction of the environmental impacts of the hydropower plant by microalgae cultivation
and biodiesel production. J. Environ. Manag. 2022, 304, 114247. [CrossRef]

209. Wang, L.; Kisi, O.; Zounemat-Kermani, M.; Salazar, G.A.; Zhu, Z.; Gong, W. Solar radiation prediction using different techniques:
Model evaluation and comparison. Renew. Sustain. Energy Rev. 2016, 61, 384–397. [CrossRef]

210. Wang, L.; Kisi, O.; Zounemat-Kermani, M.; Hu, B.; Gong, W. Modeling and comparison of hourly photosynthetically active
radiation in different ecosystems. Renew. Sustain. Energy Rev. 2016, 56, 436–453. [CrossRef]

211. Sakiewicz, P.; Piotrowski, K.; Kalisz, S. Neural network prediction of parameters of biomass ashes, reused within the circular
economy frame. Renew. Energy 2020, 162, 743–753. [CrossRef]

212. Huang, G.-B.; Zhu, Q.-Y.; Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501.
[CrossRef]

213. Feng, Y.; Hao, W.; Li, H.; Cui, N.; Gong, D.; Gao, L. Machine learning models to quantify and map daily global solar radiation
and photovoltaic power. Renew. Sustain. Energy Rev. 2020, 118, 109393. [CrossRef]
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277. Uyanık, T.; Karatuğ, Ç.; Arslanoğlu, Y. Machine learning approach to ship fuel consumption: A case of container vessel. Transp.
Res. Part D Transp. Environ. 2020, 84, 102389. [CrossRef]

278. Elsaraiti, M.; Merabet, A. Solar power forecasting using deep learning techniques. IEEE Access 2022, 10, 31692–31698. [CrossRef]
279. de Medeiros, R.K.; da Nóbrega Besarria, C.; de Jesus, D.P.; de Albuquerquemello, V.P. Forecasting oil prices: New approaches.

Energy 2022, 238, 121968. [CrossRef]
280. Nsangou, J.C.; Kenfack, J.; Nzotcha, U.; Ekam, P.S.N.; Voufo, J.; Tamo, T.T. Explaining household electricity consumption using

quantile regression, decision tree and artificial neural network. Energy 2022, 250, 123856. [CrossRef]
281. Kato, T. Prediction of photovoltaic power generation output and network operation. In Integration of Distributed Energy Resources

in Power Systems; Elsevier: Amsterdam, The Netherlands, 2016; pp. 77–108.
282. Moslehi, S.; Reddy, T.A.; Katipamula, S. Evaluation of data-driven models for predicting solar photovoltaics power output. energy

2018, 142, 1057–1065. [CrossRef]

http://doi.org/10.1016/j.renene.2014.02.016
http://doi.org/10.1016/j.renene.2008.09.006
http://doi.org/10.1016/j.renene.2020.10.126
http://doi.org/10.1016/j.renene.2018.08.081
http://doi.org/10.1016/j.apenergy.2015.04.036
http://doi.org/10.1016/j.apenergy.2015.11.015
http://doi.org/10.1016/j.renene.2018.10.066
http://doi.org/10.1016/0165-0114(93)90372-O
http://doi.org/10.1016/j.amc.2006.07.128
http://doi.org/10.1016/j.renene.2021.02.117
http://doi.org/10.1016/S0167-6911(82)80025-X
http://doi.org/10.1016/j.apenergy.2011.05.013
http://doi.org/10.1016/j.rser.2016.06.001
http://doi.org/10.1016/j.apenergy.2020.116339
http://doi.org/10.1016/j.energy.2021.120716
http://doi.org/10.5121/ijcsit.2020.12203
http://doi.org/10.1016/j.isprsjprs.2019.10.003
http://doi.org/10.1016/j.adapen.2021.100025
http://doi.org/10.1016/j.rser.2020.110114
http://doi.org/10.1016/j.seta.2018.01.001
http://doi.org/10.1016/j.egyai.2021.100073
http://doi.org/10.1016/j.rser.2013.07.058
http://doi.org/10.1016/j.enbuild.2015.02.050
http://doi.org/10.1016/j.trd.2020.102389
http://doi.org/10.1109/ACCESS.2022.3160484
http://doi.org/10.1016/j.energy.2021.121968
http://doi.org/10.1016/j.energy.2022.123856
http://doi.org/10.1016/j.energy.2017.09.042

	Introduction 
	The Main Applications of ML and DL in Energy Systems 
	Energy Consumption and Demand Forecast 
	Predicting the Output Power of Solar Systems 
	Predicting the Output Power of Wind Systems 
	Optimization 
	Fault and Defect Detection 
	Other Applications and Algorithms Comparison 

	Machine Learning (ML) 
	Types of ML 
	Supervised Learning (SL) 
	Unsupervised Learning (USL) 
	Reinforcement Learning (RL) 
	Semi-Supervised Learning (SSL) 

	ML Algorithms 
	Linear Regression (LR) 
	Logistic Regression (LOR) 
	k Nearest Neighbor (kNN) 
	Decision Tree (DT) 
	Random Forest (RF) 
	SVM/SVR 
	Naive Bayes Classifier (NB) 
	K-Means 


	Deep Learning (DL) 
	DL Algorithms 
	Artificial Neural Network (ANN) 
	Convolutional Neural Network (CNN) 
	Recurrent Neural Network (RNN) 
	Restricted Boltzmann Machine (RBM) 
	Auto Encoder (AE) 
	Deep Belief Neural Networks (DBN) 
	Generative Adversarial Network (GAN) 
	Adaptive Neuro-Fuzzy Inference System (ANFIS) 
	Wavelet Neural Network (WNN) 
	Radial Basis Neural Network (RBNN) 
	General Regression Neural Network (GRNN) 
	Extreme Learning Machine (ELM) 
	Ensemble Learning (EL) 
	Hybrid Model (HM) 
	Transfer Learning (TL) 


	Time Series (TS) 
	TS Algorithms 
	Moving Average (MA) & Exponential Smoothing (ES) 
	Autoregressive Moving Average (ARMA) 
	Autoregressive Integrated Moving Average (ARIMA) 
	Case-Based Reasoning (CBR) 
	Fuzzy Time SERIES (FTS) 
	Grey Prediction Model (GPM) 
	Prophet Model 


	Performance Evaluation Metrics 
	Mean Squared Error (MSE) 
	R-Squared (R2) 
	Mean Absolute Error (MAE) 
	Root Mean Square Error (RMSE) 
	Normalised Root Mean Square Error (nRMSE) 
	Mean Absolute Percentage Error (MAPE) 
	Mean Bias Error (MBE) 
	t-Statistics 
	Coefficient of Variation of the Root Mean Square Error (CV-RMSE) 

	Conclusions 
	References

