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Abstract: Drones have been increasingly adopted to address several critical challenges faced by
humanity to provide support and convenience . The technological advances in the broader domains
of artificial intelligence and the Internet of Things (IoT) as well as the affordability of off-the-shelf
devices, have facilitated modern-day drone use. Drones are readily available for deployment in hard
to access locations for delivery of critical medical supplies, for surveillance, for weather data collection
and for home delivery of purchased goods. Whilst drones are increasingly beneficial to civilians,
they have also been used to carry out crimes. We present a survey of artificial intelligence techniques
that exist in the literature in the context of processing drone data to reveal criminal activity. Our
contribution also comprises the proposal of a novel model to adopt the concepts of machine learning
for classification of drone data as part of a digital forensic investigation. Our main conclusions include
that properly trained machine-learning models hold promise to enable an accurate assessment of
drone data obtained from drones confiscated from a crime scene. Our research work opens the door
for academics and industry practitioners to adopt machine learning to enable the use of drone data in
forensic investigations.

Keywords: drones; criminal activity; machine learning; digital forensics

1. Introduction

Drones are flying Internet of Things (IoT) objects that are an embodiment of hardware
designed to be driven by software-based controls. Drones are programmed to fly according
to user-defined specifications and have on-device IoT sensors and cameras augmented
with a Global Positioning System (GPS) controller to facilitate their flight and all activity
relevant to their operations. Drones are useful for several civilian applications. Some of the
earlier work from the 1990s in unmanned aerial vehicle (UAV) technology [1] was specified
for military applications alone. This comprised reconnaissance work for battlefields to
enable military expeditions. However, contemporary drone utility in the civilian domain is
gaining increasing acceptance by consumers.

Drone sales have only exponentially increased in the last five years, with sales topping
eight million in 2021. According to [2], retail applications adopting drones will exceed
122,000 by 2023, with popular purposes being aerial photography, express delivery services,
reconnaissance for disaster-hit zones, thermal sensing for rescue operations, building safety
inspections, crop monitoring, storm tracking and border surveillance (law enforcement).
Moreover, we live in an era of Generation 7 drones, which have the capability of intelligent
operation, hazard avoidance, holistic airspace awareness and automated flight. Data that
consequently are produced through drone flights are significant in volume.

Drones have been deployed to reach locations too hazardous for human access, such as
facility observation at an altitude, surveillance and monitoring of high-rise buildings, anal-
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ysis of mobile communication towers for anomalies and overhead electricity transmission
line monitoring.

Smartphones play an integral role in the process of controlling drones. They serve
dual purposes in the phone-to-drone interaction, where users can switch between manual
and automatic/autonomous control modes. In [3], the studied drones sent light commands,
drone status, images, and video over WIFI communication channels. Under this setup, a
client smartphone may issue a set of predefined commands that vary the drone’s rotors
to change the drone’s position while operating in the manual mode. Alternatively, image
processing and machine-learning algorithms can run on the client smartphone, generat-
ing commands that return the drone to autonomous flight modes. For longer distance
transmission of data between drones and smartphones, a different method of operation
is employed. It relies on a 2.4 GHz radio communication channel between a transmitter
and a receiver controller attached to a smartphone via a USB cable and a receiver mounted
on the drone’s assembly [4]. Autonomous navigation of the drone can be achieved by
having the smartphone gain access to the drone’s controls to issue commands based on
flight calculations as a result of trajectory calculations and vision-based processing that run
on the smartphone. The authors in [5] suggest building on top of these functions to deploy
an autonomous landing system for drones.

Drones can breach airspace regulations of their jurisdictions as part of malicious attacks
that can be perpetrated by a criminal, where the rogue agent can use a fake email address
to log in to the mobile smart app of a drone and conceal its identity when it is carrying out
some criminal action such as ‘breach of airspace’ or carrying out illegal activities such as
taking photos of strategic or sensitive locales [6]. This threat is posed to vulnerable drones
that have few or no security controls in place to prevent device compromise.

In the event of a drone being involved in criminal activities, its confiscation and
subsequent analysis at a digital forensic investigation laboratory is a crucial part of evidence
gathering and analysis. Such activity precedes any presentation of admissible evidence
against the owner of a confiscated drone.

According to [7], challenges associated with drone forensics include:

1. Post-crash scattering of individual drone components encumbers routine association
of parts to a drone seized at crash site.

2. The diverse types of on-device components for a drone imply that the use of a single
digital forensic investigation tool will not serve the purpose of investigation; a full
range of tools, both hardware and software, would be needed to run a thorough
forensic procedure.

3. Physical data acquisition of forensic images from a drone may not be practicable as
certain drones only permit wireless transfer of images.

4. Access control and protection mechanisms may prevent certain data elements from
being acquired as part of the forensic image. Moreover, drone controller chips may be
accessible only through an owner-signed remote controller, which can be difficult to
emulate by law enforcement.;

5. Certain drones have multiple file systems on them, thus encumbering the process of
identifying the right tool to be able to carry out data acquisition.

6. Add-on software makes it difficult to forecast the software platform, file system and
the corresponding hardware configuration for a seized drone.

7. Flash memory and RAM can lose data after a crash, if the battery of the drone runs out;
8. Data logs may be partial or programmed to not hold any data depending on the drone

model.
9. Deliberate attempts by a remote controller to wipe out data on a confiscated drone

does not help the law enforcement procedure.

As enumerated in the above list of challenges for drone forensics, the introduction of
artificial intelligence-based techniques for accurate modeling of evidence collation of drone-
based criminal activities is anticipated to be a future direction for carrying out forensic
investigations.
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In this paper, we present a robust analysis of existing digital forensic frameworks and
popular drone families in Section 2. The fundamental concepts of machine learning (branch
of artificial intelligence) and adaptability of the same for drones is presented in Section 3.
We propose a novel model for machine-learning-based drone forensics in Section 4. The
paper is concluded in Section 5.

2. Background
2.1. Digital Forensics Frameworks

Several drone forensic frameworks exist in the literature. We summarize these and
provide a gap analysis of existing solutions. Drone components are known to have distinct
identification numbers. Such information may comprise serial numbers of the drone
itself (manufacturer assigned), its propeller, motor, camera, and the on-board GPS device.
Depending on the drone type, such information may or may not be available to the
investigator, but if available, it is useful to foster a linkage between the drone and its
potential ground user.

As part of drone forensics, data generated in flight, which are captured in log files,
can be processed to reveal various aspects of the drone’s movement and operations, such
as, time stamps, flight duration, power speed, yaw, pitch and roll, altitude and drone
type. Data need to be retrievable for analysis, and encryption encumbers such activity. A
visualization of the drone flight can be performed to augment the forensic investigation if
the data are in readable formats.

In [1], the drone forensic paradigm was bifurcated into the following: digital forensics
and hardware or physical forensics. Furthermore, digital forensics was classified as the
procedure conglomerate of network traffic analysis including analysis of drone to controller
communication messages, system log analysis, file systems analysis and camera recordings.

Hardware forensics comprises drone type, payload description, fingerprinting and
drone flight location/trajectory. The typical approach for drone data acquisition consists
of confiscation of the drone from a crash scene and application of various techniques for
careful recovery of hardware and stored data. The proposed drone forensic methodology
comprised the following steps: data acquisition, digital forensics, hardware forensics and
an overall forensic analysis framework. Additionally, forensic procedures entail evidence
preservation and the assurance through a chain of custody of the integrity of confiscated
components and resident data.

As part of hardware forensics, fingerprinting ascertains users who were in contact
with the drone and its individual components such as the battery, propellers, payload and
wings and are captured and subsequently analyzed where payloads may include illegal
contents such as weapons, drugs and mobile devices, given the capability of commercial
drones to carry anywhere between 2 and 20 kg [8,9].

In [10], the authors attempted to study the possibility of image retrieval from a drone’s
memory, flight path reconstruction, and linkage a confiscated drone to a suspected com-
mand and control (rogue) device. The analysis comprised the following drone attributes
for the DJI Phantom 3 and 4 drone types: maximum flight time, maximum transmission
distance, operating frequency, drone–controller connection type, mobile apps supported,
memory definition and flight information. The authors were able to conclude that the com-
munication standard adopted for drone to ground controller communication is significant
in determining the data elements transferred, which can effectively lead to retrieval of
admissible evidence from a confiscated drone.

In summary, existing work comprises proposals to retrieve all drone data in a safe
manner to avoid tampering with evidence. The data vary from one proposed framework to
another and is also contingent upon the availability of data within various drone families.
With the advent of Generation 7 drones, the volume of data as well as their diversity will
only increase over time.
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2.2. Forensic Readiness for Popular Drone Families

Digital forensic examination of drones is reliant upon multiple sources of data that are
acquired from various streams, applications (including mobile apps) and devices.

In [11], the contributors compared digital forensic preparedness for three drone fami-
lies, namely 3DR Solo, Yuneec Typhoon H and DJI Phantom 4. All three commercial drones
are popular for personal use. Analysis of the drone data extraction process and approach is
as follows: 3DR Solo has a 16 GB SDCard, logs data in .txt format and flight path in .kmz
format, which are viewable on the Google Earth application. On average, 20 log entries
are created by the drone for on-device storage. Yuneec Typhoon H stores data in a .csv
format when it is equipped with an SD card, otherwise, the data are streamed to the ground
controller for storage. The DJI Phantom 4 holds flight logs in an encrypted format. Several
third party applications such as DroneDeploy and Litchi facilitate decryption of log files.
The contributors were able to analyze log files in a Java-based integrated development
environment to study the drone flight paths by running these files on Google Earth for path
visualization. Key parameters observed were drone type, flight duration, flight altitude,
FAA notes, location, power, speed, yaw, pitch, roll, and importantly, date/time. One
challenge noted was the inability of forensic investigators to accurately identify a drone
model after it is recovered from a crash site unless a priori registration is made with the
drone manufacturer before flying.

The DJI Mavic Air was developed by SZ DJI Technology Co., Ltd., Shenzen, China.
The Mavic comprises four propellers, light sensors, GPS and Wi-Fi based communication.
On-device memory includes 8 GB storage. The drone is operated from the ground through
a ground controller station which interacts with a remote controller device. Mavic Air has
a flight duration of roughly 21 min and a range of 10 km. The drone is equipped with
software to render real-time images to the ground station, and the on-device flight path
recording is also provisioned [6].

Experimental data extraction comprised retrieval of data from two file types: .dat
captured by the drone for on-device storage and a .txt file, generated by the mobile remote
controller app of the ground user. The contributors were able to analyze the .dat files by
feeding these as inputs to CSVView and AirData apps. The media files were located at
‘/DCIM/100MEDIA’ path in the drone’s memory, comprising images in JPEG and videos
in MP4 formats, respectively. Streaming of media files to the ground device app was also
identified, however, the quality/resolution of the images was not as high in quality as those
obtained from the on-device storage. Additionally, EXIF data were also retrieved from
the JPEG images, comprising data and timestamps, file source, GPS coordinates of image,
latitude and longitude. The contributors were able to note that the reference time used
by the drone and captured in EXIF data, is provided by the group device smart app, and
therefore, the timestamps of images captured by the drone are reliant upon the accuracy
of the group device smart app [6]. It was also noted in [12] that drone data across the DJI
Mavic 2 Pro, DJI Mavic Air, DJI Spark, and DJI Phantom 4 models were similar in type.
The DJI GO 4 smartphone app stores .dat files that are retrievable in a decrypted manner to
enable forensic investigations, whereas, except for DJI Spark, all other models stored data
in an encrypted format.

In [13], a key observation noted by the contributors was that drone data emanating
from data extraction of crashed drones can be correlated to data that are stored in mobile
apps as part of a logical backup setup. Consequently, data across DJI drones can be
associated with corresponding data items as stored on mobile devices. Such correlation
can help investigators produce insights to aid in their forensic investigations. Data items
for analysis can include log-in credentials, flight paths, multimedia file signatures and
metadata that can also ascertain verification of data source, which is essential to hold
evidence valid in the court of law. Lack of automated media file processing and data
correlation (including intelligence analysis) tools encumbers the process, and the need for
future work on development of such tools cannot be understated.



Sustainability 2022, 14, 4861 5 of 17

In [14], the contributors defined a methodology to adopt for examining a confiscated
drone, namely a DJI Mavic Air 2. The tools adopted for their forensic investigation included
2D and 3D X-ray machines, DataCon, CSVView, EnCase/FTK Imager and Compact Forensic
Imaging Device (CFID). Hardware retrieval comprises careful dismantling of the drone
motherboard and the flash memory chip. As previously highlighted, if the drone model
is known through user registration of the same, it is easier to identify the right technical
datasheet for reference which in turn helps understand the data storage technique adopted
by the drone’s software as well as the data vs. control pins on the chip. The contributors
identified the drone type by observing the model number as imprinted on the memory
chip, which was intact after the crash. They subsequently used X-ray machines to trace
circuit tracks and in-chip pins/points and to read data if they were unavailable to be read
directly from the memory chip through a chip reader. Specific data on the the DJI Mavic Air
2 are not encrypted and include temporary folders and data on the total number of files. In
summary, the forensically sound and viable data items included the blackbox folder (flight
information), the system folder (operating system and process information), the upgrade
folder (firmware information), the log file (system, disk and process details), the FTP file
(commands, start time and logon information), the board serial number and the camera
sensor serial number. Data encryption on the DJI Mavic family encumbers the forensic
investigation process, and the process will thus have to rely upon those data assets that are
offered through extraction in plaintext format.

In [7], the contributors were able to adopt a forensic investigation methodology on
a Parrot AR drone. Data can be acquired through both a USB connection and a Wi-Fi
access point, which is established by the drone at booting time. Flight path history was
located within the ‘/data/video’ folder and found to be timestamped. It was noted that
the remote controller can also be used for acquiring the flight path data. Images and videos
are stored in the internal flash memory of the device and can be downloaded via FTP.
GPS coordinates were included in the EXIF files of images only when these were available
during flight. Ownership information was not retrievable from this drone type unless the
drone and its remote controller are both seized, at which time it is possible to match the
drone serial number with the controller. A related contribution by the same authors is
presented in [15], where a Parrot AR drone 2.0 was analyzed through an active file system
access approach adopted for a serial or an FTP connection between the device and the
forensic investigation system. An analysis of various techniques for retrieval of image and
video capture data from the drone were reported. Specifically, wireless connections were on
FTP, Telnet and wired connections through a USB port or a serial (UART) port. Full media
access was accomplished through the wireless connections (Telnet and FTP), whereas the
USB connection was unable to allow for a physical disc direct access. The serial (UART)
connection yielded an advantage in terms of the amount of accessible data, namely media
files as well as the drone system files and onboard data.

In Table 1, we provide a comparative analysis of various drone families in terms of the
type of data available for conducting forensic investigations. Encrypted data confiscated
from a drone encumber the investigation process, except if third party tools for decryption
can be arranged. Moreover, the lesser the date for investigation, the lesser is the forensic
readiness for a given drone type.

In [16], the authors provided a forensic analysis of two drone families, namely DJI
Phantom 3 Professional and A.R. Drone 2.0. Both drones are commercial and provide
good coverage relative to their costs; DJI Phantom 3 Professional can fly for 5 Km, whereas
A.R. Drone 2.0 has a range of 50 m. The two drones were flown to deliberately participate
in a simulated crime (operating within legally acceptable drone safety guidelines). The
drones were made to fly on four way points over a 150 m radius across high-rise buildings
as well as through open spaces. Data thus collected were analyzed in a digital forensics
lab. The goal of the experiments was to provide evidence under the ‘daubert’ guidelines
to confirm its admissibility [17]. Various operating systems, licensed and open source,
were adopted for conducting the forensic examination of the drone data. These include
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CyanogenMod, an open-source operating system, CSVView, Google API, Google Maps
and DJI Go application. DJI Phantom was connectable to the forensic analysis workstation
through a micro-USB port, whereas the A.R drone was connected through Wi-Fi as a wired
option is not available for this drone type. DJI Phantom directories of interest contained
flight data, activity logs, error logs, MP4 files with accompanying descriptor text files and
GPS data. The A.R Drone data comprised system logs, drone serial number, drone name,
SSID, GPD data,and footprint of the mobile platform. EXIF data obtained from the drones
were analyzed using the Exiftool [18].

Table 1. Summary of drone data availability and forensic readiness.

Drone Family Data Extracted Encryption Memory Forensic Readiness

3DR Solo [1] Text-based Logs and
Flight path No 16 GB High

Yuneec Typhon H [1] Text-based Logs and
Flight Path No 128 GB Med

DJI Phantom 4, DJI
Mavic DJI Spark [11]

.dat and .txt files EXIF
for images Date/time

stamps GPS
Coordinates Flight Path

Yes (3rd party
tools req.) 8 GB High (if decryption

enabled)

Parrot AR [7] Flight Path Images and
Video EXIF for images No 8 GB Med

In [19], it was noted that for Phantom 3 drones, in the absence of flight logs, EXIF data
can yield GPS coordinates that can be used for reconstructing the flight. An IPv4 network
is formed between drone and accompanying components/devices including the drone
itself, the controller, the camera and the mobile smartphone. Through a reverse engineering
(decompilation) of the DJI GO application, the SSID and accompanying password for
this ad hoc IPv4 network can be revealed, which is a useful trait to foster the drone
forensic procedure.

Whilst acknowledging that the DJI Phantom III drone has previously been involved
in malicious activities such as drop bombs, plane watching and remote surveillance, the
authors in [20] present their findings on the forensic analysis of this drone type. Contri-
butions reported include a set of procedures for forensic examiners to follow, the binary
file structure of the flight recording file, the design of a .dat file parser and the correlation
procedure for extracted drone data. As reported previously, the DJI GO smartphone app
stores flight data in.txt format alongside a date and timestamp. The payload of data is
encrypted; however, several data components of the.txt file are readable, namely file length,
file version, flight data including GPS, battery, flight status and general drone information
including drone name, location, serial and model numbers.

In [21], the contributors presented flight recording data for the DJI Spark drone. Data
obtained from the DJI GO mobile app comprised several traits reflective of the flight. These
included photos taken during the flight in JPG format, videos during flight, flight data
stored in the.dat file and .txt files generated during the flight. A correlation analysis was
conducted by the authors to compare the date and timestamps obtained from the drone,
SD card and the DJI GO app on the mobile phone. No significant findings were reported
through their analysis for aiding in the forensic investigation, i.e., corroboration of results
from the three sources was not possible.

In summary, existing literature in the field of digital forensics for drones is at a
preliminary stage, and a significant opportunity exists for the proposal of novel digital
forensic frameworks for drone data analysis. Moreover, the limitations in the amount of
data accessible from a drone can be highlighted as the key impediment to undertaking any
viable forensic investigation on a confiscated/crashed drone.
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3. Machine Learning from Drone Forensics
3.1. Machine Learning Primer

Machine learning (ML) is a branch of artificial Intelligence that primarily focuses on
making predictions (or forecasting) through the development of mathematical models.
These models are designed in such a way that they explore abundant and massive amounts
of data and attempt to exploit the inherent correlations within the various components
of the data to identify repeating patterns. This helps with the process of decision making
with little or no human intervention, i.e., automated decision making is made tangible.
These models also try to learn from “experience” (also known as historic data) to improve
prediction accuracy. Machine-learning algorithms comprise two parts: a training phase
and a testing phase.

The process of improving prediction performance is carried out during the training
phase of machine learning, where the algorithm is introduced with a large set of historic data
typically in an iterative manner for producing mathematical values, to emulate an artificially
trained brain. Applications of machine learning include speech recognition [22], natural
language processing [23], robotic vehicles [24], fraud detection [25], text and handwriting
classification [26], object classification [27], digital forensics [28] and systems security [29].

Machine-learning algorithms can also help uncover and learn hidden patterns em-
bedded in the data under analysis or perform classification of observed data. This is the
test phase of the process. Each of these algorithms implement a different philosophy on
how data are analyzed. Example of such algorithms include decision trees, support vector
machines, artificial neural networks, linear regression, K-nearest neighbor, naïve Bayes and
random forest.

3.2. Machine Learning for Drone Data

Machine learning has been previously proposed to analyze several problem domains
related to unmanned aerial vehicles (UAV). A detailed survey on ML techniques used
for UAV-based communications is presented in [30]. The paper highlights how ML has
been used for improving several communication concerns including channel modeling,
resource management and positioning and security within UAV based communication.
The paper classifies ML applications within four broader categories including: (1) physical
layer aspects (channel modeling, interference management and spectrum allocation), (2)
resource management aspects (such as network planning, power management, routing and
data caching), (3) positioning (such as placement, detection and mobility), and (4) security
(public safety, network jamming and eavesdropping). The paper then provides a summary
of relevant work within each problem domain of these broader categories.

A jamming attack comprises an adversarial attempt to inject noise into a communi-
cation channel to cause disruption of routine communication exchange. In [31], a two
classifier-based approach is proposed for detecting jamming attacks on a C-RAN network.
The first classifer is a multilayer perceptron (MLP) and the second is a Kernlab support
vector machine (KSVM). Jamming attacks were attested as not being linearly separable in a
low dimension space. Therefore, the distinction between two classes of radio signal data is
realizable through the adoption of a KSVM machine-learning solution for those jamming
attack vectors that circumvent the MLP classifier. Results show promise and help prove the
significance of adopting machine learning for classification of data to refer to a jamming or
an eavesdropping attack.

In [32], an anomaly detection scheme is proposed for mitigating the effects of several
attack vectors. The machine- learning-based anomaly detector is able to identify five attack
types, namely constant position deviation attack (message modification), random position
deviation attack (message modification), velocity drift attack (message modification), DOS
attack (message deletion) comprising constructive and destructive interference, and the
flight replacement attack (message injection). The use case analyzed is the air traffic
surveillance system, ADS-B (automatic dependent surveillance-broadcast). The two-step
anomaly detection scheme comprises preliminary reconstruction of ADS-B data, combined
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presentation of the reconstructed and the actual values to the SVDD (support vector data
description) for training, and the definition and implmenetation of a hypersphere classifier
for anomaly detection.

Reinforced learning-based power provision approaches are used to protect UAV
transmissions against attacks such as eavesdropping and jamming [33]. ML can also be
used for detecting an eavesdropper by building a classifier based on the received signals
associated with eavesdropping attacks and non-attacks [34]. This activity is based upon
prior training of ML models through presentation of data that depict a radio signal jamming
attack to the ML classifier.

Another survey paper [35] focused on deep-learning techniques used in UAV problem
domains for feature extraction, planning and situational awareness. In [36], the authors first
highlighted that drones typically fly at an altitude that is higher than traditional ground
user equipment. Radio signal propagation is affected through flight through height and
also line of sight of free space propagation. A scheme is proposed for the identification of
rogue drones that may be found in a mobile network. Legitimate drones may be registered
with ground equipment. However, unregistered rogue drones permeating the airspace in
sensitive locales may prove to be a security risk. The authors emulated drone deployment
scenarios comprising outdoor drones and ground user equipment for urban scenarios. The
simulation setup included the following parameters: number of flying sites and sectors,
inter-site distance, antennas for a base station (height, power) and carrier frequencies.
Measurement data were collected from the simulations and split into a training and a
testing set. Two machine-learning techniques were adopted, namely logistic regression
(LR) and decision trees (DT). For LR, two categories (variables) were specified, drones
and other user equipment, respectively. DT are supervised-learning models that work on
feature-value tuples extracted from a dataset. In this case, four features were observed,
namely received signal strength indicator (RSSI), standard deviation of the eight strongest
reference signals, difference between top two strength reference signals and serving cell
values. Classification results yielded a 100% accuracy in detection of rogue drones for
>60 m altitudes, and 5% detection rate for lower altitudes. This was attributed to the radio
frequency interference phenomenon, which is more significant at lower altitudes.

In [37], a deep-learning-based approach is presented for drone detection and identifi-
cation. In particular, drone acoustic fingerprints were analyzed for detection and identifica-
tion. Specifications on drone noise data comprised foot printing of drones to produce 1300
audio clips of drone sounds. Furthermore, to ascertain accuracy in detection, the datasets
thus derived were an amalgamation of pure drone noise, silence and drone audio clips
that were captured through drone propeller noise generated in an indoor setting. Audio
clips were also balanced based on time intervals between captures. Each audio file was
processed based on file type, data sampling rate and the bitrate of the channel. Additionally,
audio files were also segmented into smaller chunks (which were further experimented on
to deduce the most accurate segment size) to improve the performance of the deep-learning
classifier. Classification of the processed drone data by the three adopted classifiers, namely
recurrent neural networks (RNN), convolutional neural network (CNN) and convolutional
recurrent neural network (CRNN), were subsequently reported by the contributors when
these were tested on a three-class classification experiment (drone type one, drone type two
and other noise). Results portrayed the superiority of the CNN technique over the other
two.

Lee et al. provide a comprehensive drone detection system using machine learning
in [38]. The authors were able to classify camera-equipped drone data, i.e., image data,
through the adoption of a cascade classification of images using CNNs. Drone data were
manually labeled, comprising 2099 drone images. A total of 1777 were used for training
and the remainder 429 for testing. The system was able to deduce the location of a drone
on a camera-captured image as well as the vendor model of a drone based on machine
classification with reported accuracies of >90%. For feature extraction, the authors were
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able to adopt the Haar feature processing method to extract drone sub-images from the
image dataset obtained from [39].

In [40], an approach for identifying anomalies in a swarm flight comprising multiple
flying drones, wherein certain drones may be deliberately controlled by the adversary to
cause a possible sabotage, was proposed. Flight data from multiple streams were analyzed
to identify such anomalies. Drone data comprising time-series sensory data are sampled
at a certain frequency, with the authors generating 16 samples per time stamp. Data from
normal and anomalous drones are prelabeled. Categories of anomalies were defined into
three, namely noise caused through sensor generated signal disruption in flight, abnormal
signals generated in actual flight but recoverable in flight and signal errors causing the
aircraft to halt flight due to malfunction. The classifier selected for the experiments was the
1D signal unsupervised CNN based on a generative model.

In [41], a prediction technique for drone position is defined based on classification of
drone data through the adoption of machine learning. Drone data captured at the ground
controller are introduced to a naïve Bayes classifier to help predict the power utilization and
current location of a drone, to potentially enable subsequent plans to continue or to interrupt
drone flight. Data fields adopted for classification include drone altitude, switching status
of the four transmitter coils and measured power transfer efficiency. Resulting drone
position is compared against the actual drone position to verify the accuracy in classification.
Training of the classifier is achieved through the introduction of past observations on drone
flight trajectory, path and location as input to facilitate naïve Bayes model generation. Error
rates in accuracy in the range 0.09% to 45%, were noted to depend upon the feature values
such as the transmitter coil-switching values.

The authors in [42] proposed a methodology to detect the presence of a remotely
operated drone, its current status and movement based solely on the communication
between drone and the remote controller. They used random forest algorithms as the
classifier. It also evaluates the effectiveness of the methodology in the presence of heavy
packet loss and evasion attacks. The methodology is specifically designed and evaluated
for remotely operated aircraft systems (RPAS) drones. They have shown a drone detection
accuracy of 99.9% within 30 m without any packet loss and a detection accuracy >97%
within 200 m with a packet loss up to 74.8%.

In [43], authors proposed UAV detection and identification based on radio frequency
(RF) data using a hierarchical ensemble learning approach. The first classifier detects UAVs,
the second one identifies the type of UAV, and the remaining two are used to identify the
mode of operations. Each classifier used ensemble learning based on KNN and XGBoost
algorithms. The proposed approach resulted in a classification accuracy of 99% with
10 classes. Each class uniquely identified the presence or absence of a UAV, its type (out of
three different types of UAVs) and its mode of operation (ON mode, hovering mode, flying
mode and recording mode). The paper also summarized the existing UAV detection using
machine-learning approaches based on different data sources.

The authors in [44] provided a technique to identify the pilot of the drones based on
radio control signals sent to a UAV using a typical transmitter. The dataset was collected
from 20 different trained pilots flying the UAV through three different trajectories. The
dataset consists of nine features including thurst, pitch, roll and yaw at time (t) and their
derivatives at time (t). It also included control simultaneity variable at time (t) which
describes the control signals available simultaneously at time (t). The proposed system
used a random forest algorithm and resulted in an accuracy of 90%. The proposed technique
can be used during forensic analysis to identify the pilot of the UAV and raise an alert in
case of the suspected hijacking of a drone.

The authors in [45] proposed a methodology to detect drone status (flying or at rest)
using just the encrypted communication traffic between the drone and the remote con-
troller. The dataset was collected using communication from a drone running ArduCopter
firmware. The encrypted packet information (without using its contents) was converted
into six features (inter-arrival time, packet size, mean and standard deviation computed
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over a certain number of samples of inter-arrival time and packet size). Three different
classifiers were used for classification (decision tree, random forest and neural networks).
The random forest classifier provided better results for drone detection.

In [46], the authors identified the issue of inter-drone communication reliability,
wherein transmitted packets may not reach the intended target successfully. The au-
thors attempted to apply machine learning for accurate prediction of transmission patterns.
The success/failure probabilities are computed using a Monte Carlo simulation setup com-
prising modeling channel design for transmission. The linear regression machine-learning
technique was adopted alongside a comparative analysis with support vector machines
(SVMs) with a quadratic kernel. The first property observed was the inverse proportionality
between inter-drone distance and probability of a successful packet transmission. To foster
measurement data collection, a total of 20 drones were simulated. Communication channel
success in packet transmission was fixed at a 0.05 probability factor. Specific features
identified for training of linear regression were transmission probability, node locations,
transmission probability within a channel and time. For the SVM-QK classifier, features
comprised quantization factor values, transmission probabilities, times, and locations of
nodes in the network. Average prediction rates were found to yield a very low error rate of
0.00597

3.3. Machine Learning for Drone Data

There has been relatively less work on digital forensics for drones using machine-
learning techniques. In [47], the authors conducted a survey on existing work in drone
forensic domain (DRFs). They highlighted the challenges and opportunities in drone
forensics. They also presented a methodology for drone-related event investigation. The
existing work on forensic analysis for drone data has quite limited work focused on using
machine-learning techniques for forensic analysis.

In [48], the authors proposed a methodology for drone forensic analysis and to identify
suitable tools for performing digital forensics on drone data. Their work focused on the data
acquired from the DJI Mavic air drone, and they compared three different tools including
Airdata, CsvView and Autopsy. The acquired data included deleted files, attached devices
information, emails and images along with audio and video files stored on the SD card.
They presented their findings on the usage of these tools for forensic analysis and considered
Airdata and Autopsy to be more suitable for drone data forensic analysis. The authors
had earlier also provided a methodology based on a self-organizing map (SOM) for digital
forensic analysis in [49]. The experiments were conducted using images acquired from
ArduPilot DIY drone and DJI Phantom 4 drones. As part of the investigation, flight paths
were extracted, and their associated datasets were obtained from both the drones. These
datasets were further subjected to SOM-based clustering. The results obtained identify DJI
Phantom 4 drones to hold more evidence and be forensically sound when compared with
ArduPilot DIY drones.

In digital forensics, through clustering of common data samples into a single cluster
and through subsequent visualization of the data clusters, commonalities between data
elements can be observed, which can subsequently be labeled. Through the definition
of such clusters for drones and the generated data during flight, it is possible to predict
the trajectory of drones in flight and to label these as either legitimate flight paths or
compromised ones that are typically exhibited by rogue/compromised drones [50,51].

Machine-learning techniques are beneficial in analyzing diverse datasets with variable
volumes to generate inferences on the likelihood of an event occurring. Drone data analysis
would benefit from such inferences as also evidenced in the recent literature that includes
proposals to adopt machine-learning-based analysis of confiscated drones [38,39,42].

Table 2 provides a summary of the work presented in this section highlighting the
different usages of machine-learning techniques for drone data and forensic analysis.
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Table 2. Summary of machine-learning techniques used for drone data and forensics.

Paper Year Short Description Scope Evaluation Type

[30] 2019 Machine-Learning Tech-
niques used for UAV-based
Communications

ML use to address communication concerns including channel
modeling , resource management, positioning and security within
UAV-based communication.

Survey Paper

[35] 2017 Deep-Learning Techniques
used in UAV problem do-
main

Survey paper highlighting work performed on use of deep learn-
ing for feature extraction, planning, situational awareness and
motion control aspects of UAV systems based on Aerostack archi-
tecture.

Survey Paper

[36] 2019 Rogue drone detection A novel machine-learning approach to identify the rogue drones
in mobile networks based on radio measurements

In Lab (Simulated data)

[37] 2021 Deep-Learning-based tech-
nique for drone detection
and identification using
acoustic data

Uses CNN, RNN and CRNN-based architectures to identify
drones using acoustic fingerprints of flying drones.

In Lab (Real data with
augmentation)

[38] 2018 Drone detection and identi-
fication system using Artifi-
cial Intelligence

Uses Haar classifier to detect a drone in an image and then uses
CNN model to identify the type of drone.

In Lab (Real data)

[40] 2020 Deep-learning-based
anomaly detection for a
vehicle in swarm drone
system

The proposed anomaly detection model uses a deep neural
network-based generation model to create a training model with
normal data and perform tests with abnormal data.

In Lab (Real data)

[41] 2017 Novel wireless power trans-
fer system for drones us-
ing machine-learning tech-
niques

Machine-learning model (using naïve Bayes) is used to identify
position of the drone for enhancing wireless power transfer effi-
ciency.

In Field

[42] 2020 Drone detection via network
traffic analysis

Detect presence, status and movement of drones by applying
standard classification algorithms to the eavesdropped traffic,
analyzing features such as packets inter-arrival time and size.

In Field

[43] 2021 RF-Based UAV Detection
and Identification

UAV detection and identification based on radio frequency (RF)
data using hierarchical ensemble learning approach. The first
classifier detects UAVs, second one identifies the type of UAV and
the remaining two are used to identify the mode of operations.

In Lab (Real data)

[44] 2018 Drone Pilot Identification
based on Radio Control Sig-
nals

Describes an approach where radio control signal sent to an un-
manned aerial vehicle (UAV) using a typical transmitter can be
captured and analyzed to identify the controlling pilot using
machine-learning techniques.

In Lab (Real data)

[45] 2019 Detecting drones status via
encrypted traffic analysis

Detect the current status of a powered-on drone (flying or at rest),
leveraging just the communication traffic exchanged between the
drone and its remote controller (RC) analyzing features such as
packets inter-arrival time and size.

In Field

[47] 2021 Research Challenges and Op-
portunities in Drone Foren-
sics Models

It provides a detailed review of existing digital forensic models.
It highlights the research challenges and opportunities through
which an effective investigation can be carried out on drone-
related incidents.

No evaluation

[49] 2019 Digital forensics for drone
data using SOM

Proposes a methodology based on self-organizing map (SOM) for
digital forensic analysis of drone data.

In Lab (Real data)

[46] 2016 Prediction of information
propagation in a drone net-
work by using machine
learning

The packet transmission rates of a communication network with
20 drones were simulated, and results were used to train the linear
regression and support vector machine with quadratic kernel
(SVM-QK).

In Lab (Simulated data)

[48] 2020 Digital Forensics for Drones:
A Study of Tools and Tech-
niques

Proposes a methodology that can help forensic investigators iden-
tify the most pertinent forensic investigation tools

In Lab (Real data)

4. A Machine-Learning-Based Drone Forensics Framework

We propose a drone forensics framework to comprise several components that refer to
a robust and forensically ready design to foster an accurate depiction of criminal activity.
In Figure 1, we illustrate the high-level components of the framework.
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Figure 1. Proposed machine-learning-based drone forensics framework.

Drone configuration is essential in defining the data elements that are captured by
a drone during flight as well as the amount and frequency of data transmissions that are
made between the drone and a ground remote controller. Drone configuration can be
specified to include log files that contain descriptions of the following key parameters:

• Drone coordinates;
• Flight trajectory;
• Flight duration;
• Battery life;
• Drone-to-controller communication frequency;
• Drone-to-controller data exchange definitions.

Drone data acquisition can be defined to ensure that two copies of drone data are
defined and stored, with the potential to hold a third copy in the Cloud. Real-time analysis
of drone data on the ground controller can also be enabled while it is being transmitted
from the drone to the receiving unit. Through such real-time analysis, only those elements
of the data being captured would be logged, which will prove to be beneficial for digital
forensic procedures that will subsequently be undertaken for forensic analysis. If all data
transmitted to a drone ground controller is logged, it will present an unusually high
volume of data to the machine-learning system, which will also include insignificant data
for forensics. Through such a rapid analysis mechanism, the data volume can be condensed
before it is stored to foster a subsequent forensic procedure. This constitutes the concept of
live forensics [52], wherein, while a system is still operational, the data being generated is
being filtered and intelligently logged to foster a subsequent forensic investigation process.
Additionally, by designing systems that comprise previously seen data models of routine
and suspicious drone data, the overall forensic readiness of such systems is increased.

In Figure 2, we illustrate the machine-learning-based model for drone forensics. As
part of training, raw drone data is transmitted to the ground controller and is stored in
log files for subsequent analysis. All stored data will have to be preprocessed first. The
preprocessing of data can follow one of the following techniques as found in the literature:
entropy analysis, group method for data analysis, Chi-squared feature ranking and k-means
clustering. The training data is generated through test flights that are conducted in various
modes: altitudes, distances and heterogeneous payloads (if the drones have this capacity).
After several runs, the data collected would be representative of actual drone flights. The
process can be repeated with anomalous trajectories representative of a compromised drone
or a drone being involved in criminal activity. An example of such training data includes
drones flying outside acceptable flying zones despite having a clear zone specification in
place.

The application of ML for training and model generation can be subsequently carried
out, where parameters are defined for the ML system that is adopted. The testing phase
comprises the deliberate anomalous behavior of a drone in flight, so that the data generated
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by the drone represents a real-life incident based on a criminal motive. The purpose of
machine-learning algorithm testing is the definition of a robust and high accuracy system
for evaluating real-time drone data, which is being generated by inflight drones and
captured by a ground-based remote controller.

Figure 2. Machine-learning process applied to raw drone data (training) and life drone data (testing).

Following the ML step, the trained and tested models for classification can be placed
in production mode awaiting actual drone data from a confiscated drone from a crash site
to be presented for subsequent classification into normal (routine crash) vs. anomalous
(deliberate attempt by a criminal). As part of the forensic procedure, the confiscated drone
data is subject to the following steps:

1. Data is securely extracted without affecting its integrity;
2. Data is securely stored through validation and cross examination, in order to maintain

a chain of custody;
3. Preprocessing of data is then conducted based on those techniques that were adopted

for preprocessing of the training data;
4. ML-based data classification is then conducted to identify whether or not the drone

was involved in a malicious event.

Though the ability of the ML-based classification systems is very much reliant upon
the quality of training data, the efficacy of the digital forensic procedure can be elevated
through the definition of robust flight paths that a specific drone model can undertake
to emulate a normal flight pattern. For example, a drone that performs temperature
sensing in a given fly zone can be operated with specific characteristics that represent the
‘routine’ flight. Depending upon the use case, this may include altitude ranges, flying zone
coordinates, distance from the remote controller, triggering sensor usage in-flight, etc. By
flying a drone within these predefined bounds, routine operations and associated data can
be generated. By having the drone violate these parameters, obviously without breaching
the aviation policy of the jurisdiction where the flight takes place, a range of anomalous
drone flight data can be generated and collected for subsequent analysis.

Through such preincident activity, the ML-based digital forensic model can be defined
with a high degree of precision, as the training models will have insights on both routine and
malicious flight paths. The other possibility for drone investigators to produce valid training
models from routine flight data only is to use machine-learning techniques such as single-
class SVM that are capable of producing models from training data belonging to a single
class [53]. It may be noted that the adoption of machine learning to identify suspicious
drone flight data may not be acceptably accurate if the training data is not robust enough.
As reported in [51], several pitfalls in the type of data presented to the classifier should be
avoided to prevent a skew in the classification accuracy between true positives/negatives
and false positives/negatives. It is therefore significant to generate preincident drone
data that is both robust and complete to eliminate the chance of inaccuracies in data
classification.
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Data acquisition of drone data is dependent upon its accessibility after an inciden
tsuch as a drone crash has occurred, . The process of data acquisition is dependent upon
availability of a USB connection (port access) to the drone or through a live Wi-Fi network
card that has not been damaged in the crash.

Once the data acquisition process is initiated, a free traversal of all on-device data to
the data acquisition device is carried out.

The second source for data acquisition is the remote controller. As discussed in
Section 2, real time flight data is captured by the remote controller if the preflight firmware
configuration enables such a process. This is practicable in the Parrot AR drone. Moreover,
postincident, the remote controller data can be retrieved through a FTP connection if it is
still accessible. In case it was turned off by the criminal, this data source is unreachable.
However, for purposes of training, model generation and testing, this data is to be presented
to the ML engine.

The next step comprises secure storage of the drone data through a hash computation
of all data elements and subsequent storage of both the fully acquired data and the associ-
ated hash values. It may be noted that the data will comprise audio, video, and generic
data in the form of bits and bytes that can be readily hashed using a known hash function
such as the secure hash algorithm (SHA-3). The purpose of computing the hash value is
to mark the digital forensic procedural register with a description of the personnel who
are handling the investigation and through whose hands the acquired evidence is passed.
The third step in the forensic investigation is the deployment of common software-based
tools to carry out an analysis of the acquired data. These tools include CSVView, Google
API, Google Maps, ExifTool and CyanogenMod. The extracted data is then presented to
the trained machine-learning engine for classification.

Based upon our analysis of drone families (Table 1), we proposed that the following
data elements can be presented to the machine-learning algorithm to enable robust training
for drone forensic readiness:

1. Received signal strength indicator (RSSI)–normal ranges;
2. Drone in-flight acoustic signatures—noise;
3. Flight data as time-series sensory values;
4. Power surge or utilization data;
5. Location data;
6. Network traffic–packet loss data, interarrival times of data packets, packet lengths;
7. Mode of operation data–ON, hovering, flying or recording.

Drone signals lost through longer flights that traverse beyond acceptable limits into no-
fly zones can be referred through higher RSSI (weaker) signals. In-flight acoustic signatures
can refer to a cyberattack, where malicious software may have been successfully installed
on a drone to sabotage its flight. Time series-based collection of IoT sensory data from drone
sensors is essential in the diagnosis of the various value ranges. Subsequent comparison of
sensory data with normal ranges at the receiver’s end will support drone data analysis to
refer to anomalous locales visited by the drone or unusual value ranges that can confirm
the compromise of the drone. Similarly, power surges in a drone can either occur through
malfunction or through deliberate sabotage. Drone location data is essential in identifying
the location coordinates visited by a drone in-flight. We postulate that network traffic data
is also essential in identifying the proximity of a drone to the ground receiver. This data
can subsequently be corroborated with in-flight data obtained from the drone. Operations
data will also be representative of routine flight paths adopted by the drone.

The drone forensic process comprising machine-learning-based model generation and
analysis may suffer from several limitations listed as follows:

1. Limits to the volume of training data that may be available during the training phase
of the machine-learning process;

2. Unclear demarcation in the classes of normal and anomalous data retrieved from
previously crashed/confiscated drones;
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3. Inability of the machine-learning algorithm to accurately classify live drone data into
normal or anomalous (with a high degree of admissible accuracy)

5. Conclusions

Drones are prone to compromise as well as to adoption by malicious actors to carry
out criminal activities. Drones confiscated from a crash site or from a suspect need to be
examined for evidence that may be presented in a court of law to implicate the perpetrators.
We have provided a review of existing forensic frameworks suited for drone forensics,
machine-learning techniques as found in the literature and their adaptability for drone data
analysis, and finally, a model for implementation of machine-learning-based analysis of
captured drone data to support digital forensics investigation. The future direction of this
work would comprise hands-on activities for drone data generation, data collection, and
adoption of the posed machine-learning techniques for conducting a robust digital forensic
investigation.
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