
����������
�������

Citation: Huang, Y.; Yu, J.; Dai, X.;

Huang, Z.; Li, Y. Air-Quality

Prediction Based on the EMD–

IPSO–LSTM Combination Model.

Sustainability 2022, 14, 4889. https://

doi.org/10.3390/su14094889

Academic Editor: Elena

Cristina Rada

Received: 11 March 2022

Accepted: 18 April 2022

Published: 19 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Air-Quality Prediction Based on the EMD–IPSO–LSTM
Combination Model
Yuan Huang, Junhao Yu *, Xiaohong Dai, Zheng Huang and Yuanyuan Li

School of Information and Electrical Engineering, Hebei University of Engineering, Handan 056038, China;
huangyuan@hebeu.edu.cn (Y.H.); dxhong163@163.com (X.D.); huangzheng6668@163.com (Z.H.);
lyuanyuanm@163.com (Y.L.)
* Correspondence: junhaoyu1997@163.com

Abstract: Owing to climate change, industrial pollution, and population gathering, the air quality
status in many places in China is not optimal. The continuous deterioration of air-quality conditions
has considerably affected the economic development and health of China’s people. However, the
diversity and complexity of the factors which affect air pollution render air quality monitoring
data complex and nonlinear. To improve the accuracy of prediction of the air quality index (AQI)
and obtain more accurate AQI data with respect to their nonlinear and nonsmooth characteristics,
this study introduces an air quality prediction model based on the empirical mode decomposition
(EMD) of LSTM and uses improved particle swarm optimization (IPSO) to identify the optimal LSTM
parameters. First, the model performed the EMD decomposition of air quality data and obtained
uncoupled intrinsic mode function (IMF) components after removing noisy data. Second, we built an
EMD–IPSO–LSTM air quality prediction model for each IMF component and extracted prediction
values. Third, the results of validation analyses of the algorithm showed that compared with LSTM
and EMD–LSTM, the improved model had higher prediction accuracy and improved the model
fitting effect, which provided theoretical and technical support for the prediction and management of
air pollution.

Keywords: long short-term memory; EMD; improved PSO; air-quality prediction

1. Introduction

Aerial substances that are dangerous and serious to human health are collectively
known as “air pollution” [1]. The Chinese economy’s rapid expansion and the growth in
the number of cars and industries has increased air pollution and has become a serious
problem [2]. Thus, most Chinese cities have established air-quality monitoring networks
with the government’s help [3]. However, to solve the problem of air pollution, the
important thing is not to monitor the air pollution in real-time, but to accurately predict
the air quality, which helps cities develop and protect people’s health [4]. Figure 1 shows
the air quality of Beijing on a specific day in 2020. The continually deteriorating air-
quality conditions have seriously affected the economic development and human health of
China. The air quality index (AQI) is an evaluation standard for the concentration of aerial
pollutants. It is calculated from the concentration of the individual pollutants of SO2, NO2,
PM10, PM2.5, CO, and O3 in the air, which enables people to have an intuitive understanding
of air pollution. Table 1 shows the classification criteria for AQI. Research shows that there
is an inevitable relationship between air pollution and respiratory diseases [5]. Polluted
air mainly enters the human body through the respiratory system, which seriously affects
human health. Accurate early warnings concerning the predicted level of air pollution
are crucial to the prevention and control of air pollution as cities develop. Therefore, it is
important to monitor and warn people about the air quality.
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Figure 1. AQI values of air-quality monitoring stations in Beijing on a specific day in 2020. 

Table 1. Classification criteria for AQI. 

AQI Air Quality Level Representative Color 
0~50 Excellent Green 

51~100 Good Yellow 
101~150 Light pollution Orange 
151~200 Moderate pollution Red 
201~300 Severe pollution Purple 
301~500 Serious pollution Maroon 

In the 1980s, mathematical and statistical prediction methods and numerical anal-
yses were used to quantify pollutants [6]. The classic time series analysis is a standard 
statistical technique. The autoregressive, moving average, autoregressive moving aver-
age, and autoregressive integrated moving average (ARIMA) models are classical statis-
tical models used in this field [7]. TRIPTI et al. [8] used the seasonal ARIMA (SARIMA) 
model and forecast future trends by making the data stationary. However, owing to the 
diversity of the factors affecting air pollution, air-quality monitoring data have complex 
characteristics which greatly influence the accurate prediction of air-quality. Nowadays, 
air quality has become increasingly important to people. An increasing number of re-
search studies have been conducted on air quality [9]. Machine learning (ML) algorithms 
have been successfully applied to air-quality prediction by several researchers [10–14]. 
The support vector regression machine is a ML method used to minimize structural risk 
based on statistical learning theory [15]. Leong et al. [16] proposed a support vector ma-
chine (SVM) model to predict the air pollution index and showed that the model could 
solve the problem of air pollution using radial basis functions effectively and accurately. 
Wang et al. [17] proposed the new hybrid Garch method that combined the individual 
prediction model of ARIMA and SVM and generated reliable and accurate predictions. 
Traditional analysis methods are no longer suitable for processing a large amount of 
time series data. Du et al. [18] studied the periodic solution of a discrete-time neutral 
neural network. The study proved its stability and was extended to other neural net-
works. In recent years, neural networks such as biological neural networks and artificial 
neural networks have developed rapidly [19] and have been extensively used in the 
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Table 1. Classification criteria for AQI.

AQI Air Quality Level Representative Color

0~50 Excellent Green
51~100 Good Yellow

101~150 Light pollution Orange
151~200 Moderate pollution Red
201~300 Severe pollution Purple
301~500 Serious pollution Maroon

In the 1980s, mathematical and statistical prediction methods and numerical analyses
were used to quantify pollutants [6]. The classic time series analysis is a standard statistical
technique. The autoregressive, moving average, autoregressive moving average, and au-
toregressive integrated moving average (ARIMA) models are classical statistical models
used in this field [7]. TRIPTI et al. [8] used the seasonal ARIMA (SARIMA) model and
forecast future trends by making the data stationary. However, owing to the diversity of
the factors affecting air pollution, air-quality monitoring data have complex characteristics
which greatly influence the accurate prediction of air-quality. Nowadays, air quality has
become increasingly important to people. An increasing number of research studies have
been conducted on air quality [9]. Machine learning (ML) algorithms have been success-
fully applied to air-quality prediction by several researchers [10–14]. The support vector
regression machine is a ML method used to minimize structural risk based on statistical
learning theory [15]. Leong et al. [16] proposed a support vector machine (SVM) model to
predict the air pollution index and showed that the model could solve the problem of air
pollution using radial basis functions effectively and accurately. Wang et al. [17] proposed
the new hybrid Garch method that combined the individual prediction model of ARIMA
and SVM and generated reliable and accurate predictions. Traditional analysis methods are
no longer suitable for processing a large amount of time series data. Du et al. [18] studied
the periodic solution of a discrete-time neutral neural network. The study proved its
stability and was extended to other neural networks. In recent years, neural networks such
as biological neural networks and artificial neural networks have developed rapidly [19]
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and have been extensively used in the fields of image identification [20–22], stock price
forecasting [23–25], intelligent robots [26–28], and elsewhere.

Recurrent neural networks (RNNs) have been extensively used for learning time
series data, and long short-term memory (LSTM) neural networks enable RNN to learn
long-term temporal dependencies. Seng et al. [29] proposed a comprehensive method of
prediction based on LSTM with many environmental datasets. The results showed that
LSTM solved the gradient disappearance and gradient explosion of RNN and achieved
higher prediction accuracy, which verified that LSTM had good application prospects in
time series prediction. Qadeer et al. [30] used different ML methods to predict hourly PM2.5
concentrations in two major cities in Korea. The results showed that the performance of
an optimized LSTM network was superior to other models. Liu et al. [31] used a LSTM
model based on factory-aware attention mechanism for PM2.5 predictions and showed that
the obtained results were superior to other traditional ML methods for forecasting PM2.5
pollutants. Arsov et al. [32] used RNNs with memory units to forecast PM10 particulate
matter concentrations and revealed that (a) the prediction effect of this model was better
than the base model and (b) it could be successfully applied to the prediction of atmospheric
pollution. Wang et al. [33] proposed a chi-square test (CT)-LSTM method which combined
the CT and a LSTM network model to build a predictive model. The results showed that
the air quality data could be further analyzed from the aspect of data preprocessing in
future work to improve prediction accuracy. In recent years, wavelet decomposition has
been used for data enhancement in deep learning. Sheen Mclean et al. [34] proposed a
new spatiotemporal interpolation model which combined deep learning with wavelet
preprocessing technology. The overall results showed that the latest model proposed
exhibited great potential in the assessment of the spatiotemporal characteristics of outdoor
air pollution. Huang et al. [35] used the combination of empirical mode decomposition
(EMD) and gated recurrent unit to predict PM2.5 concentration, and the study showed that
the prediction result was greatly improved compared with the single model. This work
showed that EMD could use decomposition and reconstruction to improve the prediction
accuracy of the model when dealing with complex air quality data.

Based on the above, an air-quality prediction method combined with EMD–IPSO–
LSTM is proposed here to improve the predictive accuracy of the air-quality index (AQI).
Figure 2 shows a general overview of the research methodology. First, EMD was mainly
used to extract all the scales of the original signal. Second, the extracted components
with different frequencies were input in the LSTM model for training. Subsequently, the
numbers of neurons in each LSTM layer were determined by the improved particle swarm
optimization (IPSO) algorithm. Third, the latest model was used to conduct experiments
on the AQI for data from Beijing acquired from 1 January 2020 to 31 December 2020.

This paper’s contributions are:
(1) Since EMD can decompose time series data into multiple signals of different

frequencies, training each signal separately can make complex time series data easier to
predict, so we used EMD decomposition to decompose the AQI data. The decomposed
multiple smooth subsequences were then input in the constructed LSTM model. Finally,
results were acquired by summarizing all the sequences predicted by the LSTM. (2) Given
that the parameters of the LSTM model are mostly set empirically, the IPSO algorithm
was used to solve the optimal parameters. (3) A nonlinear decreasing inertia weight and a
learning factor that changes with the inertia weight are proposed to overcome the problems
of standard PSO associated with the fact that it is easy to fall into local optima and slow
convergence at the later stage. (4) Model training was conducted at representative locations
in Beijing to prove the universality of the model. (5) The model was compared with
the single LSTM and EMD–LSTM model, and the experimental results show that each
evaluation index has been significantly improved, which proves the model’s effectiveness.
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This paper is organized as follows. Section 1 introduces the definition of air quality
index and expounds the research status of air quality. In view of the shortcomings of
previous work, we analyze the progress of relevant research work and demonstrate the
main contribution of this paper. Section 2 introduces the main techniques used in this paper
and the relevant theories are described in detail. Section 3 introduces the data source and
the method of data preprocessing. In addition, the experimental setup and research process
are described, and the research results are recorded. Section 4 summarizes this paper and
discusses the results obtained. At the same time, it also discusses the shortcomings of
this work and provides research ideas for future work. Section 5 summarizes the results
of this study and draws a conclusion which verifies the contribution of this paper to air
quality prediction.

2. Materials and Methods
2.1. Principle of EMD

As an adaptive signal decomposition method, EMD was extensively used to decompose
time series into multiple intrinsic mode function (IMF) and a residual component [36–38].
In turn, the IMF components were determined by satisfying two conditions:

(1) The number of extreme and zero points had to be equal to or differ by no more
than one.

(2) For each time series, the average value of the upper envelope formed by the local
maximum value and the lower envelope formed by the local minimum value was zero.

Figure 3 shows the flow of the specific decomposition method of EMD. The specific
decomposition method was:

(1) Identify all local maxima and local minima of the sequence X(t) to be decomposed
and connect all local maxima and local minima to form the upper envelope u0(t) and
the lower envelope d0(t), respectively.
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(2) Identify the mean value a0(t) = (u0(t) + d0(t))/2 of the upper and lower envelopes,
and subtract the mean value a0(t) from the sequence X(t) to be decomposed to obtain
the component h1(t), i.e., h1(t) = X(t)− a0(t).

(3) Determine whether h1(t) satisfied the IMF condition. If it was satisfied, h1(t) was the
first IMF component. However, if the condition was not satisfied, apply the same
processing to h1(t) as that applied to X(t). The new component would be judged and
processed in the same way until the IMF conditions were met. The first component of
IMF would then be obtained.

(4) Repeat the above steps with the remaining component r1(t) = X(t)− im f1 as a new
decomposition sequence until the component im fn or the remaining component was
less than the predetermined value or the remaining component became a monotonic
function. The final result was X(t) = ∑n

i=1 im fi + rn(t). The decomposition of the
original sequence X(t) was completed at this point.
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2.2. LSTM

LSTM has a long-term correlation learning ability, is improved compared with RNN,
and is suitable for processing time series problems. LSTM adds cell states or memory cells
on the basis of RNN to solve problems of traditional RNN [39]. It mainly includes the
forget, input, and output gates [40]. The state vector discards useless memories through
the forget gate, and the input gate adds the necessary information on the basis of the new
input and the previous output. Finally, the output gate determines the new output of the
corresponding unit. Figure 4 shows the single LSTM memory block.



Sustainability 2022, 14, 4889 6 of 18Sustainability 2022, 13, x FOR PEER REVIEW 6 of 18 
 

tanhσ σσ

tanhct 1

ht 1

xt

ht

ct

ht

Forget gate

Input gate Output gate

 

Figure 4. Single LSTM block. 

The process of updating the LSTM neurons was: 

(1) The output of ℎ𝑡−1 and the current input 𝑥𝑡 were used as the inputs of the forget-

ting gate to obtain the output value of the forgetting gate based on Equation (1). 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 

where 𝑊𝑓  and 𝑏𝑓  were the parameters of the forgetting gate, σ was the activation 

function which typically used the sigmoid function, and the value range of 𝑓𝑡 ranged 

between 0 and 1. After the forgetting gate, the state vector of the LSTM was 𝑓𝑡 ∙ 𝑐𝑡−1. 

(2) The output of ℎ𝑡−1 and the current input 𝑥𝑡 were transformed nonlinearly as the 

input of the input gate to obtain a new state vector �̃�𝑡. �̃�𝑡 controlled the amount of 

input through the input gate. The specific equations were Equations (2) and (3). 

�̃�𝑡 = tanh(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (2) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (3) 

where 𝑊𝑖  and 𝑏𝑖  were the parameters of the input gate, tanh  was the activation 

function, 𝑖𝑡 determined the acceptance of �̃�𝑡, and the value range of 𝑖𝑡 was between 0 

and 1. After the input gate, the state vector of the LSTM was 𝑖𝑡 ∙ �̃�𝑡. 

(3) Update the state vector 𝑐𝑡 based on Equation (4). 

𝑐𝑡 = 𝑖𝑡 ∙ �̃�𝑡 + 𝑓𝑡 ∙ 𝑐𝑡−1 (4) 

where the new state vector 𝑐𝑡 was obtained as the current state vector and the value 

range of 𝑐𝑡 was between 0 and 1. 

(4) The output of ℎ𝑡−1 and the current input 𝑥𝑡 were used as inputs of the output gate 

to obtain the output of the output gate; the specific equation was Equation (5). 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (5) 

Figure 4. Single LSTM block.

The process of updating the LSTM neurons was:

(1) The output of ht−1 and the current input xt were used as the inputs of the forgetting
gate to obtain the output value of the forgetting gate based on Equation (1).

ft = σ
(

W f ·[ht−1, xt] + b f

)
(1)

where W f and b f were the parameters of the forgetting gate, σ was the activation
function which typically used the sigmoid function, and the value range of ft ranged
between 0 and 1. After the forgetting gate, the state vector of the LSTM was ft·ct−1.

(2) The output of ht−1 and the current input xt were transformed nonlinearly as the input
of the input gate to obtain a new state vector c̃t. c̃t controlled the amount of input
through the input gate. The specific equations were Equations (2) and (3).

c̃t = tanh(Wc·[ht−1, xt] + bc) (2)

it = σ(Wi·[ht−1, xt] + bi) (3)

where Wi and bi were the parameters of the input gate, tanh was the activation
function, it determined the acceptance of c̃t, and the value range of it was between 0
and 1. After the input gate, the state vector of the LSTM was it·c̃t.

(3) Update the state vector ct based on Equation (4).

ct = it·c̃t + ft·ct−1 (4)

where the new state vector ct was obtained as the current state vector and the value
range of ct was between 0 and 1.

(4) The output of ht−1 and the current input xt were used as inputs of the output gate to
obtain the output of the output gate; the specific equation was Equation (5).

ot = σ(Wo·[ht−1, xt] + bo) (5)
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where Wo and bo were the parameters of the output gate, σ was the activation function
which typically used the sigmoid function. The value range of ot was between 0 and 1.

(5) Calculate the ultimate output value of the LSTM neurons based on Equation (6).

ht = ot·tanh(ct) (6)

That is, ct interacted with the input gate after tan h to obtain the final output ht of the
LSTM. The value range of ht was between −1 and 1.

2.3. IPSO

The PSO algorithm is used frequently to optimize complex numerical functions [41].
It originated from the study of the predatory behavior of bird flocks. In the PSO algorithm,
there were several particles in the search space, wherein the algorithm attempted to opti-
mize fitness functions. Every particle calculated its own fitness value based on its position
in the search space. By combining information about its current position and its previous
optimal position, the direction along which it would move was chosen. To obtain the final
answer, these steps were repeated several times until the end condition was met [42–44].
Figure 5 shows the search process of the standard PSO.
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In the case of the PSO algorithm, it was easy to fall into a local minimum value and
fail to identify the global maximum value [45]. Based on various improvement experiences
associated with the PSO, the learning factor and inertia weight were improved here.
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(1) Improvement in the inertia weight

When the inertia weight was large, the global search capability of the particle was
enhanced and the local search capability was weakened. Conversely, when the inertia
weight was small, the local search capability of the particle was enhanced and the global
search capability was weakened. Proper adjustment of the inertia weight facilitated the
rapid search of particles and improved the global search ability, but also facilitated local
refinement and obtained a better global optimal solution in the shortest time. It was
observed that selecting appropriate parameters was the key to the study and improved the
capability of the PSO algorithm. The improvement equation was Equation (7).

w = wmax − (wmax − wmin)× 2(
t

tmax ×2−2) ×
(

t
tmax

)
(7)

where t was the current number of iterations, tmax the maximum number of iterations, and
wmax and wmin were the maximum and minimum values of the inertia weights. Appropriate
inertia weight played an important role in the search ability of IPSO. Combining previous
research and real experimental results, we found that wmax of 0.9 and wmin of 0.3 were
the most suitable for this model, which could achieve a balance between local search and
global search.

(2) Improvement of learning factors

Symbols c1 and c2 denoted the cognitive and social learning factors of the particles.
Cognitive factors affected the local search performance and social factors affected the global
search performance. Choosing appropriate learning factors was beneficial as they increased
the convergence speed and avoided local extreme values. Equations (8) and (9) express the
improvement formulas.

c1 = 0.6 + w (8)

c2 = 2.4− c1 (9)

2.4. Model Evaluation Metrics

The model was validated with AQI index prediction experiments to evaluate the
capability of the model and verify the effectiveness of the method. Training the model
with excess training sets leads to the overfitting of the model, and training with insufficient
training sets leads to the underfitting of the model. Therefore, selecting an appropriate
data division method is vital for the accuracy of the model. Here, 8784 pieces of data were
normalized, then 95% were selected as the training set and the remaining as the test set.
Compared with BP, linear regression (LR), LSTM, EMD–LSTM, and EMD–IPSO–LSTM
networks, the mean absolute error (MAE), root-mean-square error (RMSE), mean absolute
percentage error (MAPE), and R-square (R2) were selected to evaluate the prediction
performance of the model. Equations (10)–(13) express the relevant formulas.

MAE =
1
n

n

∑
i=1
|ŷi − yi| (10)

RMSE =

√
1
n ∑n

i=1(ŷi − yi)
2 (11)

MAPE =
100%

n ∑n
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (12)

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − yi)

2 (13)

where ŷi represented the predicted value, yi the true value, and yi the mean value. As the
values of MAE, RMSE, and MAPE became smaller, the model fitting effect was improved.
Furthermore, as the value of R2 came closer to 1, the model fitting effect was also improved.
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3. Experiments
3.1. Data Sources and Preprocessing

This study selected 8784 pieces of historical monitoring information from three
representative meteorological monitoring stations in Beijing from 1 January 2020 to 31
December 2020 as the experimental dataset. The dataset was obtained from the https:
//quotsoft.net/air/website accessed on 12 June 2021. Table 2 shows some of the data sets.

Table 2. AQI data of Dongsi in 2020.

Date Hour AQI PM2.5 PM10 SO2 NO2 O3 CO

1 January 2020 0 58 37 66 6 62 2 0.9
1 January 2020 1 52 34 53 3 55 2 0.9
1 January 2020 2 41 28 41 3 51 2 0.7

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . .
31 December 2020 21 51 24 51 3 56 4 0.4
31 December 2020 22 47 22 47 3 48 9 0.4
31 December 2020 23 46 21 46 3 55 4 0.4

The collected data had to be preprocessed before being input in the model for training
mainly owing to the following two aspects: first, there were missing values in the collected
data which would influence the model predictive accuracy. Thus, before inputting the
data into the model for training, the missing values needed to be filled. Given that the
air pollutant concentration was influenced by the previous moment, the average of both
previous values and the value of the next moment were used to deal with the missing
values. Second, the different magnitudes made the prediction error larger. To reduce the
large error where results were based on different types of data, the original data needed to
be standardized, and the transformation function was Equation (14).

x∗ =
x− µ

σ
(14)

where µ was the mean of all data and σ the standard deviation of all data. This was by far
the most common method of data standardization.

3.2. Predictive Modeling

First, EMD was used to decompose the AQI sequence, and the AQI data were de-
composed to the components of multiple IMF and to a residual component, which were
respectively used as input variables of the EMD–LSTM model. Taking the Dongsi site as an
example, the AQI values of the preceding 4 h period were used to predict the AQI value in
the subsequent 1 h period. The AQI time series was decomposed in 11 IMF components
and a RES component. Using the Dongsi station as an example, Figure 6 shows the EMD
decomposition results.

It can be observed that the frequency of IMF1 is the highest; the frequencies of IMF2,
IMF3, and IMF4 gradually decrease; and RES is the residual component. It is generally
believed that the noise is mainly concentrated in the high-frequency IMF components
and the low-frequency IMF components are less affected by the noise. However, deletion
of the noise would reduce the prediction accuracy greatly. Hence, we retained all the
IMF components.

Second, the EMD–LSTM prediction model was used to obtain the prediction value
of each component. Third, the predictive results of each component were summarized to
obtain the final prediction result.

https://quotsoft.net/air/website
https://quotsoft.net/air/website
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Because fewer neural network layers are difficult to fit complex data, more neural
network layers lead to the complexity of the model. After repeated comparative exper-
iments, we find that the two-layer neural network was sufficient to fit the training data,
which can reduce the complexity of the model while ensuring the prediction accuracy. As
Figure 7 shows, we chose a LSTM neural network with two hidden layers and used the
PSO algorithm to find the optimal number of neurons L1 in the first layer and L2 in the
second layer of the LSTM. To reach the global optimal value faster, an IPSO algorithm was
designed to correct global optimal value here, and Figure 8 shows the algorithm compari-
son outcomes. When the results tend to converge, the fitness value of IPSO is smaller than
that of PSO, indicating that the parameters found by IPSO are better than PSO and have
higher prediction accuracy.
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The output of each hidden layer of LSTM was used as the input of next layer, and the
data were finally output through the fully connected layer. Figure 9 shows the architecture
of the model. The specific steps were:

(1) Normalize the AQI sequence and perform EMD decomposition to obtain multiple
IMF and RES components. Then, 95% of the training set samples and 5% of the test set
samples were selected and the raw data were transformed into supervised learning to
predict the AQI for the future 1 h using data from the past 4 h.
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(2) After normalizing the original data, the normalized data were transformed into the
data format required for LSTM, then the LSTM neural network was built. Due to
the long training time of the LSTM neural network and the low efficiency of the
multi-layer network, this experiment set up a two-layer LSTM which obtained better
experimental results in the shortest time. Table 3 shows the main parameters of LSTM.
Then, obtained components of IMF and the RES component were input into the LSTM
neural network.

Table 3. Parameter description of LSTM.

Parameter Interpretation Value

Batch_size Number of samples per training 32
Lr Learning rate 0.01

Optimizer Optimizer Adam
Epochs Number of iterations 50

Loss Loss function MSE
Activation Activation function Tanh
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(3) Based on the multiple iterations of the training set, various parameters of the LSTM
model network were trained. After the training set was trained, the prediction
was performed on the test set and the components of the IMF prediction results
were obtained.

(4) Steps 2 and 3 were repeated to obtain the prediction results of the other components
of the IMF and RES.

(5) The predicted values of each IMF component and the remaining components were
added, and inverse normalization was performed to obtain the final prediction results.
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(6) To initialize the IPSO parameters, we set the population size to 50 and the maximum
number of iterations to 100. Taking the number of neurons in the two hidden layers
of LSTM as the optimization goal, the optimization range is L1, L2 ∈ [1, 64]. MAE is
selected as the objective function of the EMD–LSTM neural network, that is, the fitness
of the IPSO algorithm function. Finally, through the IPSO algorithm, the optimal
number of neurons in LSTM are L1 = 24 and L2 = 16. The number of hidden layer
neurons obtained by IPSO is brought into EMD–LSTM, and we find that the model
has higher prediction accuracy.

4. Results and Discussion

LSTM neural network was suitable for time series forecasting. However, although
LSTM has achieved good results in handling time series problems, it did not achieve ideal
results when applied to complex air quality data. Therefore, we summarize the main
advantages and limitations of our proposed model according to the real datasets and use
EMD combined with decomposition and reconstruction. For the decomposed components,
the prediction accuracy is improved. The experimental results verify our hypothesis.

This paper chose the LSTM neural network as the core, which solved the long-term
dependence problem of RNN. Simultaneously, EMD performed sequence decomposition
according to the time scale characteristics of the sequence and had obvious advantages in
processing nonlinear and nonstationary data. Finally, the particle swarm algorithm was
proposed to improve the search speed. Considering the above reasons, we combined EMD
and LSTM and used an IPSO to find the optimal solution for the number of neural units
in LSTM.

To prove the effectiveness of the proposed model, we performed comparative experi-
ments. The input characteristics of each model are seven-dimensional sequence data, and
the output are one-dimensional data. We selected the data from the Dongsi monitoring
station and used the five models of BP, LR, LSTM, EMD–LSTM and EMD–IPSO–LSTM to
obtain the predicted values. Accordingly, the predicted values were compared with the
true values. Then, the error was calculated to obtain the experimental result. Figure 10
shows the results of the Dongsi site. The results show that the EMD–IPSO–LSTM can better
extract the potential characteristics of air quality data and has certain advantages in the
prediction of AQI.

Sustainability 2022, 13, x FOR PEER REVIEW 14 of 18 
 

prediction, it can effectively improve the prediction accuracy. In addition, the improved 
PSO accurately extracts the best parameters of the model and improves the prediction 
performance of the LSTM, which further improves the accuracy of the proposed model. 

 
Figure 10. Different model results of the Dongsi station. 

Next, to make the results of the model more convincing, we tested the stability of 
the model. We conducted the same comparative experiment on Guanyuan and Tiantan 
(see Figures 11 and 12). The experimental results showed that the improved model had 
the highest prediction accuracy in the comparative experiment. The model was also 
suitable for Guanyuan and Tiantan, which further verified the model’s effectiveness. 

 
Figure 11. Different model results of the Guanyuan station. 

 
Figure 12. Different model results of the Tiantan station. 

To make the performance of the model more intuitive, Table 4 shows the evaluation 
indices of the BP, LR, LSTM, EMD–LSTM, and EMD–IPSO–LSTM models of the three 

O
ut

pu
t  

va
lu

e
O

ut
pu

t  
va

lu
e

O
ut

pu
t  

va
lu

e

Figure 10. Different model results of the Dongsi station.

Notably, in the comparative experiment, it is apparent that the prediction accuracy
of LR is the worst, indicating that complex air quality data cannot be fitted using LR.
Compared with other comparison models, the prediction performance of the proposed
method is the best. In short, there are several reasons for this result. First, EMD decomposes
the complex air quality data into multiple components; then, using only LSTM prediction,
it can effectively improve the prediction accuracy. In addition, the improved PSO accurately
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extracts the best parameters of the model and improves the prediction performance of the
LSTM, which further improves the accuracy of the proposed model.

Next, to make the results of the model more convincing, we tested the stability of the
model. We conducted the same comparative experiment on Guanyuan and Tiantan (see
Figures 11 and 12). The experimental results showed that the improved model had the
highest prediction accuracy in the comparative experiment. The model was also suitable
for Guanyuan and Tiantan, which further verified the model’s effectiveness.
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Figure 12. Different model results of the Tiantan station.

To make the performance of the model more intuitive, Table 4 shows the evaluation
indices of the BP, LR, LSTM, EMD–LSTM, and EMD–IPSO–LSTM models of the three sites
of Dongsi, Guanyuan, and Tiantan. The errors and stability of the MAE, RMSE, MAPE, and
R2 of the EMD–IPSO–LSTM model at the three stations were significantly improved, which
provided more accurate air quality prediction accuracy than other models. The fluctuation
trend of the predicted value was basically consistent with the actual value, which was used
as a reference method for AQI prediction.
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Table 4. Air quality prediction performance index.

Site Model MAE RMSE MAPE R2

DONGSI

BP 11.02 14.15 22.64 0.71
LR 17.11 23.22 32.37 0.32

LSTM 7.62 10.21 22.87 0.85
EMD–LSTM 6.04 7.46 14.13 0.89

EMD–IPSO–LSTM 4.02 7.11 8.07 0.97

GUANYUAN

BP 10.11 13.25 21.02 0.73
LR 19.35 26.25 42.11 0.13

LSTM 7.65 10.25 22.85 0.85
EMD–LSTM 6.05 8.32 14.21 0.89

EMD–IPSO–LSTM 4.05 6.25 8.05 0.97

TIANTAN

BP 8.65 13.02 20.53 0.78
LR 20.95 27.90 37.62 0.11

LSTM 8.87 11.21 25.12 0.81
EMD–LSTM 6.05 9.43 14.25 0.89

EMD–IPSO–LSTM 4.42 9.12 10.05 0.96

BP and LR are time series prediction models. The experimental results shows that
the LSTM achieves a better fit of the data than the traditional ML model. Figures 10–12
show that the fitting curve of the EMD–IPSO–LSTM model was smoother than those of
the LSTM and the EMD–LSTM models (see Table 4). MAE, RMSE, and MAPE of the
EMD–IPSO–LSTM model were all improved, and the R2 was closer to one. These findings
proved that the long-term memory capability of the LSTM network optimized by the EMD
decomposition and IPSO could have a better fitting effect on air-quality data. From an
overall perspective, the combined EMD–IPSO–LSTM model was better in each index and
had a better R2 fit.

The results showed that LSTM had long-term memory ability and high prediction
accuracy. However, it was difficult to achieve the best performance with a single LSTM
model for complex AQI data. After adding EMD, the prediction accuracy of the three
stations was improved, which showed that EMD improved the prediction accuracy by
decomposing complex time series data into time series with different frequencies. Similarly,
in the comparative experiment of the three stations, it was seen that not selecting the
appropriate parameters had a great impact on LSTM, worse than the BP neural network.
Therefore, it was necessary to use a particle swarm optimization algorithm to find the
optimal number of neural units of LSTM, which further improved the prediction accuracy
of the model. Here, the EMD–IPSO–LSTM model was superior to other models in short-
term air quality prediction and had practical application value.

Although this method accurately predicted AQI, the experimental data here was
not sufficient due to experimental conditions. The results of this study can be further
improved. Owing to the limitations of the air quality monitoring station data, we did
not have information regarding the meteorological factors near the monitoring stations.
Information regarding these factors would likely further improve the performance of our
model and should be considered in future work. For example, temperature and wind
would affect the diffusion of air pollutants. Future research should consider meteorological
factors, vehicle emissions, and the interactions between different monitoring stations in
the city, which would predict air quality more accurately. In addition, more advanced data
interpolation technology could be used to replace cubic spline interpolation in EMD to
reduce the error caused by fitting the envelope of each extreme point of the signal and
improve the quality of signal decomposition.

5. Conclusions

Recently, air quality problems have seriously affected people’s health and daily life.
Consequently, the prevention and control of air pollution has attracted public attention.
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Owing to the complex factors affecting air quality, AQI concentration series are complex
and nonstationary. Therefore, accurate prediction of pollution is challenging. Traditional
LSTM is a widely-used time series prediction method and an improvement of RNN. In
addition, the LSTM can process data with long-term dependence and has a fast convergence
speed. However, with the increase in complexity, it is difficult to provide accurate data to
predict the AQI.

Here, a combined prediction model based on EMD–IPSO–LSTM was proposed. Based
on the analysis of the AQI data of the three stations in Beijing in 2020, the following
conclusions were drawn:

(1) The decomposition of the data into multiple components of different frequencies
through EMD decomposition and incorporating them into the LSTM model improved
the accuracy of AQI prediction effectively.

(2) The neural units in the hidden layer of LSTM were often determined themselves
based on historical experience. Here, the PSO algorithm was selected for optimization
and the optimal numbers of neurons in each layer were obtained.

(3) Based on the slow convergence speed of the PSO, the problem of local optimization
was easily countered; accordingly, a nonlinear decreasing inertia weight and a learning
factor that changed with the inertia weight were proposed. These changes reduced the
optimization time and led to a faster convergence toward the global optimum value.

(4) Based on comparative experiments, it was observed that the EMD–IPSO–LSTM hybrid
model proposed here had the best prediction performance, and the true and the
predicted values had a high degree of fitting. These findings proved that the hybrid
prediction method proposed here was effective for future AQI predictions. Therefore,
this method has practical application value.
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