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Abstract: The COVID-19 pandemic has significantly changed urban life and increased attention has
been paid to the pandemic in discussions of urban vulnerability. There is a lack of methods to incor-
porate dynamic indicators such as urban vitality into evaluations of urban pandemic vulnerability.
In this research, we use machine learning to establish an urban Pandemic Vulnerability Index (PVI)
that measures the city’s vulnerability to the pandemic and takes dynamic indicators as an important
aspect of this. The proposed PVI is constructed using 140 statistic variables and 10 dynamic variables,
using data from 47 prefectures of Japan. Factor Analysis is used to extract factors from variables
that may affect city vulnerability, and the LambdaMART algorithm is used to aggregate factors and
predict vulnerability. The results show that the proposed PVI can predict the relative seriousness of
the COVID-19 pandemic in two weeks with a precision of more than 0.71, which is meaningful for
taking controlling measures in advance and shaping the society’s response. Further analysis revealed
the key factors affecting urban pandemic vulnerability, including city size, transit station vitality, and
medical facilities, emphasizing precautions for public transport systems and new planning concepts
such as the compact city. This research explores the application of machine learning techniques in
the indicator establishment and incorporates dynamic factors into vulnerability assessments, which
contribute to improvements in urban vulnerability assessments and the planning of sustainable cities
while facing the challenges of the COVID-19 pandemic.

Keywords: urban vulnerability; pandemic vulnerability index; COVID-19; factor analysis;
LambdaMART

1. Introduction

Against the background of the COVID-19 pandemic, the concept of resistance and
vulnerability has drawn more and more attention [1]. Urban vulnerability represents a
state of being likely to be influenced by natural disasters, including earthquakes, typhoons,
and floods. When natural disasters strike, high-vulnerability cities and high-vulnerability
areas in the city will be more likely to be harmed, inflicting suffering on vulnerable groups
and exacerbating existing inequalities [2]. Recent studies show that pandemics such as
COVID-19 should also be regarded as natural disasters and be included in the discussion
of urban vulnerability [3,4].

In urban planning, many urban factors might affect urban vulnerability, such as exces-
sive population density, low-quality housing, inadequate infrastructure, and environmental
degradation [2,5]. The differences between urban factors bring different levels of urban
vulnerability, leading to different performances in response to natural disasters. For exam-
ple, income inequality will affect a region’s vulnerability to flooding [6]. The COVID-19
pandemic also shows regional differences in its spread, bringing more damage to vulnera-
ble countries and regions [7,8]. UN-Habitat pointed out that the Asia-Pacific region could
be the most susceptible due to its fast urbanization rate, with one-third of urban dwellers
in slums or slum-like conditions [9]. Given the still-raging pandemic, assessing urban
vulnerability to the pandemic is an urgent task.
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Urban vulnerability is usually defined as the degree to which a system is susceptible to,
and unable to cope with, hazards or stresses [2]. As an extension of urban vulnerability, we
define urban pandemic vulnerability as the extent to which an urban system is susceptible to
sustaining damage from the pandemic. Therefore, improving urban pandemic vulnerability
implies reducing exposure to pandemics and increasing the capacity to resist pandemic
damage. Assessing urban pandemic vulnerability will allow for planners and policymakers
to inspect the potential impact of the urban built environment on health and expose
inequalities between urban areas [10,11].

Although some related studies have assessed urban pandemic vulnerability [3,12,13],
there have not been suitable methods considering dynamic factors, such as urban vital-
ity and prevention measures. Additionally, the limited advances in urban dynamics in
urban vulnerability assessments are considered an important problem for urban strategic
planning [10]. Therefore, this research would like to build a Pandemic Vulnerability Index
(PVI) to evaluate an urban area’s vulnerability to the pandemic and consider the impacts
of dynamic factors, which can improve the capacity to capture the dynamic nature of the
urban vulnerability, advance research related to urban vulnerability dynamics, and benefit
assessment-based urban planning in the post-COVID-19 era.

2. Literature Review

Unlike natural disasters such as earthquakes and typhoons, which can suddenly wreak
havoc on urban facilities, pandemics such as COVID-19 threaten cities by harming residents’
health, stopping facilities from functioning, and disrupting daily urban life [14]. On the
one hand, the pressure brought on by the pandemic will be transmitted to all aspects of
urban life through various paths [15], making it more challenging to identify the possible
vulnerable link. On the other hand, the pandemic gradually causes damage as it spreads,
which is dynamic and occurs over a relatively long period [16]. This means that the risk of
exposure and damage also dynamically changes along with the pandemic spread and the
city’s reaction.

Since the COVID-19 outbreak in 2020, there has been some research on pandemic
vulnerabilities. Mishra, Gayen and Haque [3] examined four major cities of India, devised a
COVID Vulnerability Index with carefully selected indicators, and analyzed why social dis-
tancing and lockdowns failed in vulnerable slums. Prieto, Malagón, Gomez and León [12]
proposed an Urban Vulnerability Assessment methodology to investigate the various vul-
nerability factors related to pandemics and aggregate them into a vulnerability index using
the data from Bogotá, Colombia. Shi, Liao, Li and Su [13] employed the crisp-set qualitative
comparative analysis method to explore possible causal condition combination paths that
affect community resilience to the pandemic in Wuhan, China, showing three condition
configurations that were vulnerable to the pandemic, including communities populated
by disadvantaged populations. These pieces of research provide an essential analytical
framework for identifying possible vulnerability factors in cities, and validate the feasibility
of extracting vulnerability factors from qualitative or quantitative data using methods such
as Factor Analysis.

However, the dynamic pressure of the pandemic has created new difficulties for re-
searchers. Taking Japan as an example, in the third wave of the pandemic in January 2021,
the most densely populated Tokyo metropolitan area had the highest number of new infec-
tions [17]. However, in the fourth wave in June 2021, Okinawa, which performed relatively
better in the last wave, had the highest number of infections and was short of medical
resources [18]. This situation indicates that it is not enough to only focus on the inherent
factors of cities, which led to the examination of dynamic urban indicators [16]. Practical
methods that can investigate dynamic variables such as urban vitality and prevention
measures such as social distancing are needed when conducting an urban vulnerabil-
ity assessment. Machine learning techniques, which have gained popularity in recent
years, provide some proven approaches: Zawbaa, et al. [19] used t he Multi-Layer Percep-
tron to model the spread of COVID-19 and verified the impact of social distancing; and
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Pan, et al. [20] used Random Forest to capture pandemic dynamics and make time-series
predictions, and further offered optimal solutions to minimize the growth of confirmed
cases and deaths through NSGA-II. These pieces of research illustrate that machine learning
technology can capture the dynamic spread of the pandemic and use empirical data to
verify the results.

Therefore, this research aims to establish a composite index to evaluate urban vulner-
ability to the pandemic. The proposed composite index is innovative in considering the
impact of dynamic factors on urban vulnerability, which can make up for the insufficient
advances in the urban dynamics research line of urban vulnerability assessments [10]. The
Factor Analysis (FA) will extract essential factors from the available indicators, and a ma-
chine learning LambdaMART algorithm is used to combine these factors into a Pandemic
Vulnerability Index (PVI). PVI’s prediction ability will be verified on empirical data, and
the critical characteristics that influence urban pandemic vulnerability will be examined
through feature importance and dependence analysis. The proposed PVI is expected to
dynamically identify vulnerable regions and remind decision-makers in the corresponding
region to take preventive measures such as social distancing or expanding healthcare
capacity in advance. The corresponding analysis is expected to reveal the key influencing
factors, such as urban sprawl, that should be carefully considered in future urban planning.
We believe that a pandemic vulnerability index that includes dynamic factors can refine the
framework for urban vulnerability assessments and contribute to flexible and accurate city
planning and policies in the post-COVID-19 era. Machine learning techniques, including
FA or LambdaMART, are a promising method.

3. Materials and Methods
3.1. Situation of Japan

As a democratic government that emphasizes local autonomy, Japan’s prefectures
show significant differences among regions. From the urban foundation perspective, the
cities of the three major metropolitan areas around Tokyo, Osaka, and Nagoya have formed
a distinctive urban form with high population density and a relatively complete infrastruc-
ture, differing from other prefectures. Different prefectures have made different policies in
response to the pandemic due to their different pandemic situations and economic consid-
erations. For example, Hokkaido’s local government declared measures for the pandemic
as early as 28 February 2020, while the national state of emergency was declared on 7 April
2020. The differences in urban infrastructure, residents’ actions, and government policy
will affect the cities’ ability to counter the pandemic and become the basis for establishing
and verifying the cities’ vulnerability index.

3.2. Data Source and Software

The Japanese government has released various databases to fight the COVID-19
pandemic and support related research. In addition, many Internet service providers, such
as Google or NTT, have also released a series of data related to human activities during the
pandemic. The data used in this research are from the public database, including:

• Digital National Land Information; [21]
• COVID-19 Trends and Current Situation; [22]
• Status of Prefectural Medical Care Provision System; [23]
• Community Mobility Reports; [24]
• Coronavirus Support Site. [25]

These databases cover necessary information for each prefecture, such as population,
GDP, medical facilities, and the dynamic changes in the pandemic situation such as the
number of infections, providing the possibility of describing the differences between cities’
vulnerability levels. The data were from 1 March 2020, to 1 March 2022, and accessed on 8
March 2022.

For the convenience of data processing, an evaluation system was developed with
Python (v3.7.9), ArcMap (v10.5), and Visual Studio Code (v1.52.1).
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3.3. Pandemic Vulnerability Index

This research used FA and LambdaMART to establish PVI through a typical machine
learning workflow. Sections 3.3.1–3.3.4 describe variable pre-processing, COVID-19 damage
representation, LambdaMART details, and training and validation settings, respectively.

Figure 1 shows the overall framework of this research. This includes four steps:

1. Extracting influential factors related to urban pandemic vulnerability through Factor
Analysis and calculating a Damage of COVID-19 Pandemic (DOP) score for the pandemic;

2. Using the urban factors and DOP score as data and labels, respectively, to supervise
the training of a LambdaMART model;

3. Using the trained LambdaMART model to establish the PVI, and evaluating the PVI’s
performance on the validation dataset;

4. Analyzing the PVI to reveal critical factors regarding urban pandemic vulnerability.
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3.3.1. Influential Variables on Vulnerability

Many variables may impact urban vulnerability, including population density, GDP,
medical facilities, etc. [26–30]. Specific to pandemic vulnerability, these variables can
roughly be divided into two groups: statistic variables that describe the static conditions
of a city over a relatively long period, such as population, industrial structure, medical
facilities; and dynamic variables that describe the dynamic status of a city during the
pandemic, such as the interim policies, urban vitality, and disease prevalence [12,13,16,19].

Dynamic variables represent the efforts made to fight the pandemic, which will change
over time. Although statistical variables will also change with the development of the
pandemic, it is difficult to obtain the latest information due to the statistical process.
Considering that changes in statistical variables are usually relatively slow, and PVI is more
concerned with relative differences, statistics variables before the outbreak were used.

Since there may be a strong correlation in variables, extracting interpretable factors
can effectively reduce the number of variables and facilitate subsequent calculations. A
widely used method is Factor Analysis (FA), which assumes that all observed correlated
variables are determined by orthogonal unobserved factors [31]. Researchers can locate a
set of factors that reveal a simple hidden structure without losing the information contained
in the original variables.
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The FA used in this research explains a set of m variables in each of n cities with a set
of k factors. There should be fewer factors than variables, so k < m, and these factors are
related to the variable via a factor-loading matrix L ∈ Rm×k. The model can be concluded
as follows:

X−M = LF + ε (1)

where observation matrix X ∈ Rm×n, factors matrix F ∈ Rk×n, error term matrix ε ∈ Rm×n

and mean matrix M ∈ Rm×n. By choosing appropriate constraints, the observation matrix
X can be transformed into the factor matrix F without losing too much information. The
resulting factors were used together with the dynamic variables as data for subsequent
model training and PVI establishment.

3.3.2. Damage of COVID-19 Pandemic

Cities’ vulnerability can be represented by the damage caused by COVID-19. The
greater the actual damage, the more vulnerable the city is to a pandemic. Here, we use
the total score for infection status and pressures on the medical care system to present the
Damage of COVID-19 Pandemic (DOP). According to the Ministry of Health, Labor, and
Welfare of Japan, six indicators were officially used to characterize the COVID-19 status
(see Table 1) [23].

Table 1. Status of medical care provision system in prefectures (6 indicators) Adapted from Ref. [23]
from the Ministry of Health, Labor, and Welfare of Japan.

Type Indicator Unit

Medical care provision
Secured bed usage rate %
Number of recuperates Per 100,000 people
Positive rate in PCR test Per 100,000 people

Monitoring system Number of new infection cases %

Infection status
Number of new infection cases; week-on-week ratio -

Unknown infection route rate %

These indicators are all critical descriptions of the COVID-19 pandemic and represent
its speed of spread, severity, and the stress on the healthcare system. A comprehensive
single metric is needed to capture the damage to cities caused by the pandemic. Due to the
method’s simplicity and limited compensability, the geometric mean after the min–max
normalization is used to aggregate these indicators [32]. A city’s DOP score will be set
based on the geometric mean of normalized indicators NI, and rescaled to between 0
and 10.

NIs, d =
Is, d −minIs, d

maxIs, d −minIs, d
, DOPd = 6

√
∏

s
NIs,d × 10, d = date (2)

Subscript s denotes the six different indicators, and subscript d denotes the date. The
DOP score varies over time, representing the change in the damage to cities as the pandemic
spreads. Note that indicators are normalized according to maximum and minimum values
among cities, and a city will only receive a maximum score of 10 when all its indicators
are at a maximum among cities. This normalization means that the DOP score reflects
more relative disparities between cities, rather than the absolute severity of the pandemic.
As the pandemic spreads exponentially, unnormalized data will show exponential shifts,
obscuring the data characteristics at the beginning of the outbreak. Using normalized
data will allow for a focus on relative comparisons between cities, which is in line with
PVI’s attempt to characterize the relative ability of cities to counter the damage caused by
the pandemic.

Here, the DOP score only measures the pressure COVID-19 places on public health
and does not cover subsequent damages such as economic losses or mental harm. Since
research has shown that the more serious the damage to the public health system, the
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more serious the economic and social damage that follows [33], the DOP score can serve
as a simple, direct, and comprehensive measurement of the relative damage caused by
the pandemic.

3.3.3. LambdaMART Model

A city’s pandemic vulnerability depends on the impact factors F mentioned in Section 3.3.1.
The factors may have different weights and influence paths, represented by a set of param-
eters β. The pandemic vulnerability index PVI can be written as a function of factor vector
F and a set of parameters β.

PVI = f (F, β) (3)

Traditionally, the vulnerability index is a linear function with experts assigned as β.
Such a method is limited in its expressive ability and relies too much on prior knowledge
regarding data differences and regional differences [34]. Here, the supervised machine
learning algorithm is used to infer the f and β automatically. The machine learning algo-
rithm will first assume the function form f and provide an initial guess of the parameters β.
Then, the algorithm will compare the difference between the resulting PVI and the actual
damage caused by the COVID-19 pandemic (DOP score) and update the f and β based
on the differential gradient. Through iterations, the machine learning algorithm can infer
suitable a f and β that best fit the empirical DOP data, which means the resulting PVI can
reflect the damage and describe the urban vulnerability to the pandemic.

In this research, we chose LambdaMART due to the specificity of the PVI. Urban
pandemic vulnerability is a relative concept based on inter-city comparisons. Hence, the
constructed PVI should be a relative indicator that relative ranking among cities is more
important than the absolute score. Fortunately, the Learning to Ranking (LTR) technique
was designed to develop an optimal ordering of items and provide a ranking, which is
suitable for PVI. The LambdaMART algorithm was chosen from the LTR methods due to
its powerful expression ability and robustness [35].

The LambdaMART algorithm belongs to the family of decision tree algorithms, as-
suming the basic functional form is a decision tree [36]. For a typical decision tree, all
observations x are classified into p different regions Rp, and the average of label yp is used
as the predicted value in the region:

yp =
1

Np
∑

x∈Rp

yi, ŷ = T(x) = ∑
p

yp I
(
x ∈ Rp

)
(4)

Usually, a single decision tree will not produce a good prediction result. The Multiple
Additive Regression Tree (MART) will iteratively calculate the loss between observed DOP
score and predicted PVI, fit new decision trees along the differential gradient of previous
prediction loss, and the final result will be the sum of all decision trees. However, here the
DOP score and PVI represent a relative ranking, which makes it challenging to compute
a differentiable loss. Therefore, LambdaMART uses a pairwise method to transform the
DOP score into a partial order of pairwise comparisons. For city i and city j, the actual
probability of city i being more vulnerable than city j is denoted as Pij:

Pij =
1
2
(
1 + Sij

)
, Sij = Sgn

(
DOPj − DOPi

)
(5)

While the possibility given by the LambdaMART model is P̂ij:

PVIi = M(Fi), PVIj = M
(
Fj
)
, P̂ij ≡ P

(
PVIi > PVIj

)
≡ 1

1 + e−σ(PVIi−PVIj)
(6)

Therefore, the loss between observed and predicted can take the differentiable cross-
entropy form:
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C ≡ −Pij log P̂ij −
(
1− Pij

)
log
(
1− P̂ij

)
=

1
2
(
1− Sij

)
σ
(

PVIi − PVIj
)
+ log

(
1 + e−σ(PVIi−PVIj)

)
(7)

It should be noted that the loss function here treats all cities equally. However, we
are more concerned with those cities that are ranked higher and are more vulnerable.
LambdaMART introduced the Normalized Discounted Cumulative Gain (NDCG), which
emphasizes samples with high rankings. Therefore, gradient λ can be defined on the partial
derivative of loss C and NDCG measurements.

λij ≡
∂C

∂PVIi
× |∆NDCG| = σ

(
1
2
(
1− Sij

)
− 1

1 + e−σ(PVIi−PVIj)

)
× |∆NDCG| (8)

where the |∆NDCG| represents the difference in NDCG after exchanging the positions of i
and j. A new decision tree Tl+1 now can be fit on gradient λl from the latest decision tree
Tl . After L iterations, the PVI given by the LambdaMART algorithm will be as follows:

PVI = M(F, β) = ∑
L

TL(x) (9)

In short, the LambdaMART model will repeat the cycle of “fitting a decision tree—obtaining
PVI—measuring the difference between PVI and DOP scores—calculating
gradient—fitting a new decision tree” until the difference between the observed DOP score and
predicted PVI is small enough in terms of the partial order of pairwise comparisons.

3.3.4. Training and Validation

For machine learning, overfitting is a critical problem, which means that the Lamb-
daMART model pays too much attention to the existing data and loses the ability to work
on unobserved data. In the context of this research, overfitting means that the established
PVI is consistent with the observed DOP score but cannot make a valid prediction for
the future.

A general solution is the train-test splitting technique. The dataset is divided into two
parts, the training dataset and the test dataset, and the model is trained using only the
training dataset. When the model achieves an excellent performance and the established
PVI is consistent with the observed DOP score, the model is then validated on the test
dataset to see if the resulting PVI reflects the “unobserved” DOP score.

This train–test splitting technique can help us evaluate how accurately the established
PVI measures urban pandemic vulnerability. In this research, the two-year dataset was
evenly split into training and test datasets according to time. The data from 1 March 2020
to 1 March 2021 formed the training set used to train the LambdaMART model. The the
data from 1 March 2021 to 1 March 2022 formed the test dataset, used to verify the model’s
performance. The data from the Diamond Princess cruise ship and imported cases were
omitted to focus on vulnerability in the urban area.

Another time-related problem is the lag in pandemic damage. At a given moment, the
pandemic vulnerability will not be immediately reflected in the DOP score at that exact
moment, but instead will be delayed for a while. Considering that the incubation period
of COVID-19 can extend up to 24 days, the PVI of cities at a specific moment should be
able to predict the DOP score of the next period. According to Lauer, et al. [37], 99% of
patients will develop symptoms in 14 days. Therefore, the time lag for the DOP score is set
to 14 days, which means that PVI at day d is used to characterize the pandemic damage at
day d + 14.

4. Results
4.1. Variables Selection

Aiming to explore the possible relevant variables that affect urban pandemic vulnera-
bility, this research referred to the variables included in previous research [12,13,16,19]. This
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research used 140 variables from the Digital National Land Database, 6 variables from the
Google Community Mobility Report, and 10 variables from the Ministry of Health, Labor,
and Welfare. The complete variable list is given in Table S1 in the Supplementary Materials.

These variables include statistic variables that describe the static conditions over a
period and dynamic variables that change over time. The statistic variables involved in this
research can be divided into the following five aspects:

• Demographic Variables. Intuitively, the scale of a city is closely related to the spread
of infectious diseases, and overpopulated cities are more vulnerable to a pandemic.
Variables such as urban built-up area population density are included.

• Economic Variables. Active economic activity means that more urban resources can
be mobilized to counter pandemics, and diseases are more easily spread. Fiscal
expenditures closely related to economic activities contribute to improved medical
and public facilities.

• Mobility indicators. Population movement between different regions provides con-
ditions for the pandemic, including the inflow and outflow of the population, the
proportion of the daytime population, etc.

• Spatial Variables. The spatial structure of different cities is the most important factor
that constitutes the difference in urban internal spatial activities. The proportions of
various land-use types are included.

• Medical Variables. Medical and health services will also affect the spread of infectious
diseases in cities. This includes the number of service facilities, the number of medical
practitioners and related financial expenditures, etc.

Figure 2 visualizes some statistical variables, and the differences between regions can be
seen. The number of employees and commuters is mainly concentrated around large cities,
while the number of beds, as essential medical resources, is relatively evenly distributed.
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• Vitality Variables. The number of people active in different urban areas is compared
with the baseline value of February 2020, which can help characterize the urban vitality
changes that reflect residents’ reactions to the pandemic. Urban functioning areas is
classified into six types: retail and recreation, grocery and pharmacy, parks, transit
stations, workplaces, and residential areas.

• Policy Variables. Whether a prefecture announces Emergency Status (Japanese: 緊急
事態宣言) or takes Key Measures for Spread Prevention (Japanese: まん延防止等重点
措置) are used as binary variables to describe the policy reaction. Whether the day is a
holiday or weekend is also included.

• Pandemic variables. The six indicators mentioned in Section 3.3.2 are included when
calculating the DOP score.

Figure 3 shows the daily new COVID-19 infections per 100,000 people and the urban
vitality in Tokyo, Osaka, and Ishikawa. The red bars represent daily new COVID-19
infections on the log scale, showing six pandemic waves. The solid lines represent the
vitality of urban functional areas compared to before the pandemic: residential (red), retail
(blue), transit (yellow), and workplace (green). The lower horizontal bar represents the
status of the city. The red means the city declared an Emergency Status in that period, the
orange means the city took Key Measures for Spread Prevention, and the black line means
that this was a nationwide holiday.
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It can be seen from Figure 3 that urban life gradually returned to a new balance after
the initial shock of the pandemic in early 2020, with the apparent fluctuations all being
holiday-related. The urban vitality in the residential area increased by about 15% compared
to before the pandemic, which may be related to the work-from-home trend. The urban
vitality of workplaces, transit, and retail significantly decreased, with Tokyo down by about
30%, Osaka by 20%, and Ishikawa by 10%, showing that the impact of the pandemic varied
depending on city size. The urban vitality of the transit area was comparatively the most
affected, followed by the retail area. On the other hand, the pandemic waves appear to
be linked to holidays and the associated urban vitality changes. In all three areas, the
declaration of an emergency status and measures for spread prevention seem to be helpful
to control the pandemic.

4.2. Factor Analysis

The Factor Analysis method mentioned in Section 3.3.1 was used to extract factors
due to the strong correlation between the statistical variables.

The oblimin rotation method was adopted, and 85% of the variance was retained.
Finally, nine factors were selected to characterize these 140 indicators, retaining 86.8%
variation. Figure 4 shows the correlation matrix after the oblimin rotation with a correlation
between factors lower than 0.32, which means that there is less than a 10% overlap in
variance among factors [38]. The complete loading matrix is shown in Figure S1 in the
Supplementary Materials.
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For these nine factors, the variable with the most considerable load was extracted.
This can be named according to the direction of its main load concentration (see Table 2).
According to their eigenvalues, these factors were named city size, medical facilities, age
structure, unemployment, cultural facilities, precipitation, industry, decentralization, and
commerce. These factors and dynamic variables constitute the data in the subsequent
LambdaMART model.

Table 2. The most extensive load description of factors and the name of each factor.

Factor Describe Name

0 Positive load on the number of households and population density City Size
1 Positive load on the number of medical facilities and medical staff Medical Facilities

2 Positive load of the proportion of the adolescent population
Negative load of death Age Structure

3 Positive load of the complete unemployment rate
Negative load of employment rate Unemployment

4 Positive load of the number of cultural facilities such as museums Cultural
Facilities

5 Negative load of sunshine time,
Positive load of annual precipitation Precipitation

6 Negative load of population exodus
Positive load of industrial land ration Industry

7 Negative load of population ratio in densely populated areas Decentralization
8 Negative load of the commercial land ratio Commerce

Figure 5 reveals the difference in several factors in Japan. Large cities are concentrated
around Tokyo, Osaka, and Nagoya, metropolitan areas, while the medical facility factor is
highest in South Tohoku and South Kyushu. There is a relatively large aging population
in Hokkaido and the Tohoku region, and cultural facilities are concentrated in the Kinki
region. These differences represent the differences in regions and may affect the urban
pandemic vulnerability.
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4.3. Model Performance

The LambdaMART model described in Section 3.3.4 was implemented in Python with
the LightGBM package, and its hyperparameters were set as shown in Table 3.

Table 3. Hyperparameters of LambdaMART Model.

Hyperparameters Value

Boosting type GBDT
Number of leaves 15

Learning rate 0.05
N estimators 100
Subsample 0.8

After training, the PVI established by the LambdaMART model can be matched with
the DOP score in the training dataset.

Figure 6 shows two example results in the training set. The red bars show the actual
DOP score after 14 days, while the blue bars show the PVI that was learned in the training
set. In the first pandemic wave on 16 May 2020, the three most vulnerable regions were
Fukuoka, Ishikawa, and Hokkaido, with the highest DOP score obtained after 14 days.
Similarly, on 6 February 2021, in the third pandemic wave, the three areas with the highest
PVI became Tokyo, Chiba, and Kanagawa as the situation changed, and the DOP score
after 14 days also changed. Noticed that the accuracy is lower for regions with a lower PVI,
which is related to the NDCG metric used in the LambdaMART model. The NDCG metric
assigns a higher weight to the top-ranked predictions limits model performance in less
vulnerable area predictions.

Overall, the PVI and the DOP score fit perfectly, with an average NDCG@10 = 0.9411
and Pecision@10 = 0.7591 in the entire training dataset. The PVI ranking is validated in
the test dataset based on the learned model.

Figure 7 shows the two example results in the test set on 15 May 2021, and 8 January
2022. The DOP score in the test dataset is “unseen” for the LambdaMART model, so the
result represents the model’s predictive ability. On 15 May 2021, the three regions with the
highest PVI reported by the model were Okinawa, Osaka, and Hokkaido. The actual DOP
score obtained 14 days later shows Okinawa, Hokkaido, and Osaka, the same regions, with
slightly different rankings. The results for 8 January 2022 also show correct predictions but
slightly different rankings, with only one wrong prediction in the top-10 PVI areas. Overall,
the model is accurate, reporting an average NDCG = 0.9149 and Pecision@10 = 0.7189 in
the whole test dataset. Despite the slight drop, the model can still effectively reflect the
severity of the pandemic.

Figure 8 takes three typical regions, namely Tokyo, Osaka, and Ishikawa, to represent
the results in both datasets. The red line shows the actual DOP scores with a 14 day lag.
The solid blue line shows the PVI in the training phase, and the blue dashed line shows the
prediction of PVI. In Tokyo, the PVI effectively reflects the damage caused by COVID-19
predictions, except from October 2021 to December 2021. The calculated PVI appears to
overestimate the vulnerability of Tokyo during this period. Osaka’s PVI performance is
generally excellent, with occasional deviations in the test dataset. In Ishikawa, the predicted
PVI appears to underestimate vulnerability between October and December 2021.
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Since PVI is a relative indicator, the cessation of the pandemic in metropolitan areas
between October and December 2021 makes the model simultaneously “overestimate” the
risk in the metropolitan area and “underestimate” the risk in the non-metropolitan area.
However, the rapid spread of the Omicron variant in Tokyo in January 2022 (see Figure 3)
shows that such a deviation is only temporary, and the metropolitan area is still vulnerable
to a pandemic.

Generally, these results show that the LambdaMART model has a good generalization
ability, proving that the PVI can effectively predict the damage caused by the COVID-
19 pandemic in the city with an overall 0.7198 top-10 accuracy. Since PVI can forecast
vulnerable regions in two weeks given real-time data, the possibility of preventive measures
in advance is opened up. Such measures include, but are not limited to, social distancing,
supporting healthcare needs, expanding healthcare facilities, and framing strategies to
mitigate the infection. Society can also reorganize smoothly without sudden changes
by managing inventory, facilitating working from home, and preparing supplies [39].
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Therefore, the proposed PVI is meaningful in controlling the pandemic and shaping the
response in advance.

4.4. Feature Importance and Dependence

It would be more helpful to look into the features that influenced PVI, which can
guide the subsequent policy formulation and urban planning process. In this research, the
Permutation Importance Analysis and Partial Dependence Analysis were carried out to
examine further the obtained model.

The permutation importance analysis can evaluate each feature’s importance by ran-
domly shuffling a single feature value [40]. Figure 9 shows the permutation feature im-
portance of PVI, where the city size and the vitality of transit stations have the highest
permutation importance, about 0.31 and 0.22, respectively. A metropolitan area’s city-scale
and population density create sufficient conditions for a pandemic. At the same time, the
dynamism of a transit station is somewhat representative of whether there is rapid popula-
tion mobility and is also essential for assessing a region’s urban pandemic vulnerability.
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It can be seen that most dynamic variables have relatively high levels of importance,
which confirms the view that it is difficult to assess urban pandemic vulnerability by
relying only on static statistics. In addition to city size, the critical static factors include
cultural facilities, weather, and medical facilities. Note that neither emergency status nor
key measures of spread prevention seem to be important, possibly because these tend to be
remedial measures, while the PVI emphasizes vulnerability before the pandemic hits.

Figure 10 further reveals the partial dependence of the critical features of PVI. The
partial dependence is the expected response as a function of the input features, assuming
other conditions remain unchanged, shown as the thick blue line. The light blue line
indicates the individual conditional expectation separately, with one line per sample. These
features show different patterns. The increase in city-scale and transit station vitality will
lead to an increase in PVI, showing that cities with large populations and high mobility
will have high pandemic vulnerability. The increase in parks’ vitality and medical facilities
leads to a decrease in pandemic vulnerability.
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As Figures 9 and 10 indicate, city-scale and transit station vitality are the two most
important factors. The city’s expansion has a relationship with the city’s ability to resist
the risk of infectious diseases and increase the city’s vulnerability. For Japan, the three
major metropolitan areas are at the core of social and economic development, meaning that
metropolitan pandemic risk will be an essential issue for future planning. The vitality of
the transit station is both a factor affecting urban vulnerability and a target of pandemic
impact, making causality more challenging to analyze. However, in any case, the public
transport system will be a weak link for cities when facing the epidemic. In addition, the
PVI drops when medical facilities feature increases, showing that medical infrastructure
investment might provide advantages in fighting COVID-19.

Changes in urban vitality also have significant impacts. The rise of urban vitality
in transit leads to an increase in PVI, which verifies the necessity of the social distancing
policy. On the other hand, the park’s vitality helps urban vulnerability, suggesting that
public open spaces such as parks should attract more attention from urban planners in the
post-COVID era.

5. Conclusions and Discussion

COVID-19 has completely changed urban life and brought new problems and chal-
lenges to urban vulnerability research. In response to these challenges, this research
proposed the concept of urban pandemic vulnerability as the first step to supplementing
the urban vulnerability research and providing a Pandemic Vulnerability Index, using
Japan as an example.

In this research, we took a series of statistic variables and dynamic variables of the
city as a base, used the Factor Analysis to reduce the dimension, calculated the Damage
of COVID-19 Pandemic Score to evaluate the damage caused by the pandemic, and used
the LambdaMART algorithm to establish a Pandemic Vulnerability Index that targets the
critical characteristics regarding pandemic vulnerability. The results indicate that the PVI
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proposed can effectively predict the damage caused by the COVID-19 pandemic, and
further analysis revealed the key features that should be focused on to reduce pandemic
vulnerability. This method could be applied to flexible data and different regions.

The main contributions of this research are:

• This research established a Pandemic Vulnerability Index that can indicate relative
urban vulnerability and incorporate dynamic factors into indicator construction.

• LambdaMART is efficient in constructing a relative ranking index for urban vulnera-
bility and can predict infection development with high precision. Accurate short-term
forecasts help to take advance measures and help with preparation.

• Feature importance and dependence analysis emphasize city-scale and transit station
vitality when evaluating urban pandemic vulnerability.

Compared with related studies, this research has made significant improvements.
The Urban Vulnerability Assessment proposed by Prieto, Malagón, Gomez and León [12]
combines information on demographic factors, work styles, and transportation through
Borda Counting. However, the variables used in [12] come from surveys taken before the
pandemic, and the method is designed to respond to static geographic data; therefore, it
cannot reflect urban dynamics during the development of the pandemic and is struggles
to guide timely action through analysis. Our research has included dynamic factors such
as urban vitality in addition static data, demonstrated dynamic factors’ importance in
evaluating urban pandemic vulnerability, and provided a reference for preventive measures
in advance by forecasting two weeks in advance. Jardim, Castro Neto, Alpalhão and
Calçada [16] presented an Urban Dynamic Indicator through time series decomposition
and factor analysis. However, the proposed indicator aims to provide an alternative
reference for urban vitality and cannot be directly applied to vulnerability assessments of
the COVID-19 pandemic. The PVI proposed in our research is also a dynamic indicator
and can reflect the damage to the city in two weeks, which is beyond simple descriptions of
urban vitality. Overall, this research responds to the limited advances in urban dynamics
in urban vulnerability assessments [10] and improves the capacity to capture the dynamic
nature of urban vulnerability.

There are still some limitations to this research. Due to a lack of data, some important
indicators, such as vaccination status, are not covered. Although the method does not
depend on specific indicators, the lack of essential indicators may impact the model’s
performance and interpretation. Although PCA can retain critical information from original
variables, the PVI’s robustness to variable selection still needs further study. Additionally,
this research is based on COVID-19 target data, which puts forward higher requirements for
the data collection process in developing countries. When discussing inequality issues in
small regions, such as a city block, such data requirements may pose certain obstacles, while
looking into the vulnerable regions in the city is critical to deepening the understanding of
urban vulnerability. Although a DOP Score is proposed as a reference, the damage to cities
caused by the COVID-19 pandemic is complex, comprehensive, and has not been fully
assessed to date. In the absence of a rational justification for assigning weights, which needs
to be developed in future research, the proposed DOP scores assumed equal importance for
all involved indicators. The relative importance of variables in building such a composite
indicator calls for further in-depth analysis [12,41].

The analysis shows that the public transportation system is the weak link in the city’s
response to the pandemic, so we recommend paying attention to the density of the public
transportation system when facing a pandemic and encouraging response measures such
as wearing masks. Excessive city size can also make cities more vulnerable to pandemics,
so we suggest that new urban planning ideas such as compact cities should be examined
carefully in future urban planning. COVID-19 will permanently change our world, but
a healthy, livable city will be the constant pursuit. The development of new technology
will be our continuous progress in dealing with urban vulnerability and proposing proper
urban planning based on facts.
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