
Citation: Zhou, Y.; Dong, Y.; Hou, F.;

Wu, J. Review on Millimeter-Wave

Radar and Camera Fusion

Technology. Sustainability 2022, 14,

5114. https://doi.org/10.3390/

su14095114

Academic Editor: Gwanggil Jeon

Received: 21 March 2022

Accepted: 19 April 2022

Published: 24 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Review

Review on Millimeter-Wave Radar and Camera
Fusion Technology
Yong Zhou 1, Yanyan Dong 2,*, Fujin Hou 1 and Jianqing Wu 3,*

1 Shandong Hi-Speed Construction Management Group Co., Ltd., Jinan 250100, China;
zy498589891@163.com (Y.Z.); hf1073107270@163.com (F.H.)

2 School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China
3 Suzhou Research Institute, Shandong University, Suzhou 250199, China
* Correspondence: 11200004@stu.lzjtu.edu.cn (Y.D.); jianqingwusdu@sdu.edu.cn (J.W.)

Abstract: Cameras allow for highly accurate identification of targets. However, it is difficult to obtain
spatial position and velocity information about a target by relying solely on images. The millimeter-
wave radar (MMW radar) sensor itself easily acquires spatial position and velocity information of
the target but cannot identify the shape of the target. MMW radar and camera, as two sensors with
complementary strengths, have been heavily researched in intelligent transportation. This article
examines and reviews domestic and international research techniques for the definition, process, and
data correlation of MMW radar and camera fusion. This article describes the structure and hierarchy
of MMW radar and camera fusion, it also presents its fusion process, including spatio-temporal
alignment, sensor calibration, and data information correlation methods. The data fusion algorithms
from MMW radar and camera are described separately from traditional fusion algorithms and deep
learning based algorithms, and their advantages and disadvantages are briefly evaluated.

Keywords: data fusion; spatio-temporal alignment; information correlation

1. Introduction

MMW radar corresponds to electromagnetic waves with a frequency range from
30~300 GHz and a vacuum wave length from 0.1~1.0 cm. Its unique frequency range gives it
better penetration in radar detection, allowing it to easily penetrate snow, smoke, dust, etc.,
with the ability to work all-weather in extreme environments. Based on its all-weather and
even space exploration applications and other reconnaissance advantages, scientists have
conducted a great deal of research into its application in the field of precision navigation,
particularly in military applications such as radar guidance heads for missiles [1] and
gunfire control and tracking of low-altitude targets [2]. Based on its good performance,
MMW radar is used in vehicle radar [3], intelligent robots [4], biological sign recognition [5],
gesture recognition [6], and so on. However, MMW radar also has some defects, firstly,
MMW radar is susceptible to interference from electromagnetic waves, detection is sparse,
and the density of detection is not sufficient to represent the physical characteristics of
the target, like lines and angles, it is also not to mention detecting lanes and pedestrians.
Secondly, the low accuracy of MMW radar leads to ambiguity in the manual interpretation
of measurement data, which makes the data tagging process become more difficult and
expensive. Finally, without large amounts of high-quality labelled training data, it is
difficult to ensure that supervised machine learning models can predict, classify or analyse
phenomena of interest with the required accuracy.

The camera has a good ability to discriminate the features of the target and is good at
identifying all stationary and moving objects such as pedestrians and vehicles and is good at
providing spatial information about the object. In the past few decades, computer vision has
combined computer, geometric, optical and psychological, etc., and has had a wide range of
applications in professions such as industry [7], agriculture [8], medicine [9], military [10],
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aerospace [11], public security [12] and transportation [13], and is still gradually expanding.
However, it has a short field of vision and is affected by extreme weather, dim light, and
other conditions. It can be “blind” in rain, fog, and darkness, and it does not work properly
in strong or low light.

In summary, MMW radar offers relatively high distance resolution, but it has a lower
resolution in terms of orientation (azimuth/elevation). Compared to MMW radar, the
camera offers high spatial resolution but is less accurate in estimating object distances. It
can be seen that MMW radar and camera sensors are complementary, and the fusion of
MMW radar data and camera data can make good use of the information provided by the
different sensors to complement each other, reducing the reliance on individual sensors and
making the fused information richer and more comprehensive. The fusion of MMW radar
and vision sensors facilitates image recognition by using MMW radar for accurate range
and angle measurement of targets and vision sensors for classification of targets detected
by MMW radar, improving the detection capability of the detection system under different
environmental and climatic conditions.

2. Materials and Methods
2.1. MMW Radar and Camera Information Fusion Technology
2.1.1. Definition of MMW Radar and Camera Information Fusion

MMW radar and camera information fusion is the fusion of MMW radar point cloud
information and image video information, from the fused information to obtain the point
cloud position of the object, the velocity and acceleration of the object, as well as the
shape and relative distance of the object. The fusion of MMW radar and camera mainly
consists of spatio-temporal fusion and velocity fusion. The accuracy of the fusion algorithm
determines the fusion result.

2.1.2. MMW Radar and Camera Information Fusion Architecture

Information fusion [14] as the integrated processing of multiple MMW radar and
camera information is intrinsically complex, currently, the main fusion structures for MMW
radar and cameras are divided into three types: centralized fusion, distributed fusion, and
hybrid fusion. Their main fusion structures, advantages and disadvantages are shown in
the following Table 1.

Table 1. Advantages and disadvantages of each fusion structure.

Fusion Structure Definition Advantages Disadvantages

Centralised
convergence

The centralised fusion
architecture means that the
raw data obtained by each
MMW radar and camera is
sent directly to the central

processor for fusion
processing, which allows for

real-time fusion.

The structure has a low information loss rate
and largely preserves the original data, it

has a simple structure, high data processing
accuracy, relatively flexible algorithms and

fast fusion.

Each MMW radar and camera is
independent of each other and the data

flows directly to the fusion centre without
the necessary connection; the method

requires a large communication bandwidth
for transmission and requires the fusion

centre to have a high information processing
computing power. The fusion centre is

overloaded with computing and
communication, the system is poorly fault

tolerant and less reliable.

Distributed
Convergence

In a distributed fusion
architecture, each MMW
radar and camera locally

processes the raw data, makes
an initial prediction and then
sends the results separately to

the fusion centre for fusion
and finally obtains the target

results.

Each MMW radar and camera in this
approach has the ability to estimate global

information, reducing the transmission and
computing pressure on the fusion centre.

Failure of any one MMW radar or camera
will not cause the system to crash, resulting
in high system reliability and fault tolerance.
And with its low communication bandwidth

requirements, fast computing speed,
reliability and continuity, this fusion

architecture has also become more popular
with researchers in recent years.

Each MMW radar and camera requires an
application processor, which is larger and

more power-efficient; and the central
processor can only access the processed

object data from the individual sensors, not
the raw data.
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Table 1. Cont.

Fusion Structure Definition Advantages Disadvantages

Hybrid
integration

A hybrid architecture, a
mixture of centralised and
distributed applications,

where some sensors use a
centralised fusion architecture

and the remaining sensors
use a distributed one.

Measurements from multiple
sensors for each target are

combined into a hybrid
measurement, and the hybrid
measurement is then used to

update the full data.

The hybrid converged architecture retains
the advantages of both centralised and
distributed architectures, allowing for

flexibility in fulfilling task requirements in
different situations and a high degree of

usability.

Hybrid sensor fusion has a more complex
structure, increasing the communication and

computational load, but it requires high
structural design requirements for

communication bandwidth and
computational power, and the system is

instable.

2.1.3. Layers of MMW Radar and Camera Data Fusion

The differences between radar fusion systems and visual fusion systems are mainly in
the level of fusion and the synchronous or asynchronous processing schemes. Alessandretti
et al. [15,16] have classified the level of fusion into three levels, including low, medium,
and high levels, and have achieved good results with all.

• The low level is data-level fusion, where low-level fusion combines several sources of
raw data to produce new raw data.

• Medium level fusion, which is target level fusion, which combines various features,
such as edges, corners, lines, texture parameters, etc., into a feature map that is then
further processed.

• Advanced fusion, also known as decision-level fusion, where each input source pro-
duces a decision and finally all decisions are combined.

Data Level Convergence

Data layer fusion of MMW radar data and camera data is the fusion of radar point
clouds and image pixels, sometimes called pixel-level fusion, where MMW radar and
camera observed data are fused directly without pre-processing. The aim of this method is
to fuse the original MMW radar data and camera data and then produce new raw data,
which contains more useful information within the new fused data. The specific operation
method is to project the coordinate of the radar data onto the image pixels and matching
them with the joint calibration of the image pixels. Feature extraction and classification is
then performed on the fused data. The process framework is shown in the Figure 1.

Figure 1. Data-level fusion architecture.

The advantages of MMW radar and cameras fuse at the data level are that it ensures
data integrity, provides subtle information that is not available at other fusion levels, and
has a high correlation between data. However, no pre-processing of the raw data leads to
high data redundancy, poor real-time performance, poor interference immunity and high



Sustainability 2022, 14, 5114 4 of 32

bandwidth requirements during communication; on the other hand, fusion is carried out at
the lowest layer of information, which has high requirements for error correction ability.
The common fusion methods of pixel layer are weighted average method and Kalman filter
method. This technique is widely used in road traffic and has achieved corresponding
success.

As the fusion of the MMW radar data and the camera data is mostly asynchronous
at the data level, temporal data calibration using a set of filters for interpolating data is
required for data fusion, followed by correlating data from multiple sensors, associating
observations from MMW radar and vision sensors with different targets through a variety
of algorithms that are feasible for efficient classification. Finally dynamic target can be
tracked and estimated, at present, Kalman filter is widely used to estimate the target state.

Grover et al. [17] fused the low-level features which was detected in radar data and
visual data in 2001 using a single radar map and a single night vision image, the fusion was
in polar coordinates and based on angular position. Steux [18] developed a fusion system
that automatically combines the results of four different image processing algorithms
with 12 different features to fuse radar information and generates multiple possible target
location suggestions. In the same year, Fang and Masaki [19] proposed a target detection
method that fuses target depth information with binocular stereo images. Typically, radar
can provide the required target depth and information from the radar sensor (coarse depth)
is used to guide the processing (segmentation) of the video sensor. The reliability of the
algorithm is improved by decomposing the multi-target segmentation task into multiple
single-target segmentation tasks on a depth-based target feature layer. Shigeki et al. [20]
proposed a method to segment the radar-acquired data into clusters and visualise the
radar-acquired target information on image sequences using the single-strain nature of
the transformation between the radar plane and the image plane in 2004. In 2009, Wu
et al. [21] proposed a new algorithm to fuse the detected radar observation data with the
visual closest point to estimate the position, size, attitude, and motion information of the
target in the vehicle coordinate system. In 2011, Wang et al. [22] proposed a method that the
target points to be detected from the radar can be considered as clues to potential objects.
The original target data monitored by the radar is projected onto the image, and then the
image is divided into small blocks with the radar point as the reference centre and then
searched and tracked from each small block. In 2012, Garcia et al. [23] adopted a two-stage
method to fuse the original data of radar and camera, in the first stage, the radar is used
to output the detection range and detection object, and in the second stage, the camera is
used to output the detection position and shape of the target. In 2014, Ji and Prokhorov [24]
proposed a fused radar and camera classification system in which the radar selects a small
number of candidate images, passes the data directionally, provides the radar data to each
image frame, and then performs information processing to generate natural images applied
to the problem independently by an unsupervised algorithm. It can classify objects well
based on fusion algorithm.

Target-Level Fusion

MMW radar and camera target-level fusion [25,26] means that the MMW radar and
camera detect some of the features of the object separately, and then use a variety of
algorithms and techniques to match and fuse the detected features, and finally to classify
and process them, this fusion is mainly used for radar-aided imagery, and its principle is to
use the radar to detect the target, generally detecting the middle of the object, as is shown
in Figure 2, the detected target is projected on the image, a rectangular region of interest is
generated empirically, and then this region is searched only to achieve joint calibration of
the image and radar data.
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Figure 2. Target-level fusion structure.

The advantage of the method is that it can quickly exclude a large number of areas
where there will be no targets, greatly increasing the speed of identification. Additionally,
it can quickly exclude false targets detected by the radar, enhancing the reliability of the
results. However, because of the inaccurate lateral distance to the target provided by
the radar, combined with errors in camera calibration, the projection points of the MMW
radar can deviate from the target more severely, and when the area of interest setting areas
contains multiple targets, the targets are detected repeatedly, which can cause confusion in
target matching.

Richter et al. [27] proposed a data processing method that combines radar observations
with the results of contour-based image processing in 2008. Josip Ćesić and Marković
et al. [28] extended the Kalman filter on the Lie group algorithm within the framework
of modelling radar measurements and stereo camera measurements in polar coordinates
as members of the Lie group and estimating the target state as the product of two special
Euclidean motion groups for detecting and tracking moving data in 2016. Rong et al. [29]
used MMW radar in the direction of vehicle-road cooperation to detect objects by reflected
echoes, filtering the collected information for invalid signals and eliminating interference
noise to identify the unique ID of the target as well as position and velocity information in
2020. This is spatially and temporally fused with the target feature information from the
images identified by the camera.

In order to solve the data redundancy and errors of projecting radar data directly onto
images. Du [30] proposed a 3D target detection algorithm in 2021, which first extracts
image features from a single image while column expansion is performed on the radar
point cloud, and then combines the 3D information output by the algorithm to match the
corresponding radar point cloud columns. Radar features are constructed using the depth
and velocity information of the radar; followed by fusion of the image features and radar
features. An accurate 3D bounding box of the target is generated. In the same year, Nabati
et al. [31] proposed an intermediate fusion method for 3D target detection using radar and
camera data. A centroid detection network is first used to detect objects by identifying
centroids on the image to obtain information such as 3D coordinates, depth, and rotation
of the target. A new truncated cone based method is then used to correlate the radar
detected data with the detected target centroids, and the features of the correlated target
are concatenated with a feature map consisting of depth and velocity information detected
by the radar data to complement the image features and return to target attributes such as
depth, rotation, and velocity.

Decision-Level Integration

The decision level fusion of MMW radar data and camera data is a high level fusion. In
this case, both the MMW radar and the camera have the ability to sense independently. The
data detected by the MMW radar and the camera are first processed separately and both
get an initial sensing result, and finally the image detection target results and the MMW
radar detection results are effectively fused, which is shown in Figure 3. The advantages
of this hierarchical fusion strategy are the flexibility in selecting sensor results, increased
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fault tolerance of the system, increased ability to accommodate multi-source heterogeneous
sensors, improved real-time performance and smaller communication requirements in
terms of bandwidth. However, the high level of information compression reduces accuracy
and consumes too much pre-processing power. Commonly used fusion algorithms in the
decision layer include Bayesian estimation, D-S evidence theory method.

Figure 3. Decision-level fusion structure.

Liu and Sparbert et al. [32] used MMW radar and camera sensors to generate a
target decision separately and then combined their decisions to handle dynamic changes
using interactive multi-model Kalman filtering, through a probabilistic data correlation
scheme to achieve good object tracking. Amir Sole et al. [33] assume that both MMW
radar and the camera can independently localise and identify interesting targets. In this
case, when the radar target corresponds to the visual target, the target can be verified
without further processing. When the radar target does not correspond to the visual
target, several computational steps for non-matching radar target decisions are described in
combination with direct motion parallax measurements and indirect motion analysis and
pattern classification steps to cover cases where motion analysis is weakness or ineffective.

2.2. MMW Radars and Cameras Data Fusion Process
2.2.1. Spatial Fusion of MMW Radar and Vision Sensors

Spatial fusion of vision sensors and MMW radars is the conversion of acquired data
from different sensors coordinate systems into the same coordinate systems. Cao et al. [34,35]
investigated the spatial fusion technique of MMW radar and vision sensors. The millimetre
wave radar coordinate system, camera coordinate system, pixel coordinate system, and world
coordinate system between millimetre wave radar and visual sensor are researched as well as
the transformation relationship between the various coordinate systems.

The world coordinate system, which is generally seen as a reference coordinate system
for three-dimensional scenes, is an individually defined system of coordinates in three-
dimensional space. In vision-related research, the world coordinate system is commonly
used to describe the relationship between the transformation of an object’s position in
three-dimensional space and other coordinate systems.

In this case, both the radar coordinate system and the camera coordinate system are
defined by their mounting positions. The definition of the world coordinate system is
artificial, some scholars define the radar coordinate system as the world coordinate system
and some scholars define the camera coordinate as the world coordinate system. The
main thought process is to first convert the MMW radar coordinate system to the camera
coordinate system by rotation and translation, then from the camera coordinate system to
the image coordinate system, and finally from the image coordinate system to the pixel
coordinate system. The conversion of the coordinate system is therefore divided into three
parts.
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MMW Radar Coordinate System to Camera Coordinate System Conversion

The MMW radar coordinate system is converted to the camera coordinate system by
rotation and translation, it is a three-dimensional-to-three-dimensional conversion. The
conversion relationship between the two coordinates is shown in the following Equation (1)

XC

YC

ZC

1

 =


cos θ cos ω− sin θ sin ω sin ψ − sin θ cos ψ − cos θ sin ω + sin θ sin ω sin ψ X

sin θ cos ω− sin ω sin ψ cos θ cos θ cos ψ − sin θ sin ω + cos θ cos ω sin ψ Y

sin ω cos ψ − sin ψ cos ω sin ψ Z

0 0 0 1




XW

YW

ZW

1

 (1)

The equation can be simplified as Equation (2)
XC
YC
ZC
1

 =

[
R T
0T 1

]
Xw
Yw
Zw
1

 (2)

In Equations (1) and (2), the radar coordinate system is (X W , YW , ZW) and the coor-
dinates of the corresponding point under the camera coordinate system is (X C, YC, ZC).
Where θ is the angle of rotation about ZW axis, ψ is the angle of rotation about XW axis, ω
is the angle of rotation about YW axis, X is the translation value XW along the axis, Y is the
translation value YW along YW axis, and Z is the translation value ZW along ZW axis. R is
the rotation matrix, determined by the pitch and yaw angles of the camera, and T is the
translation array.

Conversion of Camera and Image Coordinate System

The camera coordinate system is converted from 3D to 2D by perspective projection
onto the image coordinate system, the image coordinate system is in millimetres. According
to the linear model of the camera, the camera coordinates are converted by similar triangles
to obtain the image coordinate system. This is shown in the following Figure 4, and the
point on the camera coordinates is converted to the coordinates on the image coordinate
system as following Equation (3).

ZC

 x
y
1

 =

 f 0 0 0
0 f 0 0
0 0 1 0




XC
YC
ZC
1

 (3)

Figure 4. Similar triangle transformation.

In Figure 4 and Equation (3), There is a point P(XC, YC, ZC) in the camera coordinate
system, the projection of the point P in the image coordinate system of xOy plane is p(x, y),
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the intersection of the line between the point P and p the point and the optical lens is OC,
that is, the lens optical centre. The distance between the imaging plane and the optical lens
is the focal length f of the camera.

Conversion of Image and Pixel Coordinate Systems

The units of the pixel coordinate system are pixels, and the units of the image coor-
dinate system are millimetres. The conversion is a two-dimensional-to-two-dimensional
conversion, so the conversion of the coordinate system is a conversion of the origin as well
as the units of measure. As is shown in Figure 5.

Figure 5. Coordinate system positions.

Where OO is the origin of the pixel coordinate system. The planes of uOOv coincide
with the plane of xOy, and the u-axis is parallel to the x-axis, the v-axis is parallel to the
y-axis. The pixel coordinates (u, v) represent the pixel points located in the uth column and
vth row of the image array. Thus, establishing the transformation equation for the above
two coordinates yields the position of a point (u, v) on the pixel coordinate system that lies
on the image coordinate system.

The centre of the image coordinate system is theoretically (u0, v0) located at the centre
of the captured image, but due to camera manufacturing errors, the centres often do not
overlap. Therefore, the equation for converting a point on the image coordinate system to a
pixel coordinate system is shown in Equation (4). u

v
1

 =

 1
dx 0 u0
0 1

dy v0

0 0 1


 x

y
1

 (4)

where (u0, v0) is the coordinates of the pixel coordinate system at the origin O, in the pixel
coordinate system dx and dy are the width and height of each pixel, the point (x, y) is the
coordinate of point p in the image coordinate system, and point (u, v) is the coordinate of
point p in the pixel coordinate system.

In summary, combining and organising all the above equations completes the conver-
sion equation from the MMW radar coordinate system to the camera coordinate system, to
the image coordinate system and finally to the pixel coordinate system, as shown in the
following Equation (5).

ZC

 u
v
1

 =


1

dx
0 u0

0 1
dy

v0

0 0 1


 f 0 0 0

0 f 0 0
0 0 1 0

[ R T
0T 1

]
Xw
Yw
Zw
1

 (5)
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The spatial fusion of the MMW radar and vision sensors is completed by converting
the target detected by the MMW radar to the pixel coordinate system, and then converting
the target detected by the camera to the pixel coordinate system, and then within the same
pixel coordinate system, screening the target and correlating the front and back frame data
to extract the target information. In addition to spatial fusion, the complete MMW radar
and camera fusion technique also includes temporal fusion.

2.2.2. Camera Calibration

Camera calibration techniques mainly include the camera geometry model and the
camera calibration method. The geometric model of the camera is used to find out the
correspondence between the three-dimensional space and the two-dimensional space, and
then the corresponding set of equations and constraints are established through the geo-
metric model to solve the parameters, in turn, the image information can be reconstructed
in three dimensions through the established geometric model, which is the calibration of
the camera.

The internal parameters of the camera depend on the inherent internal structure of the
camera and the external parameters of the camera depend on the information about the
position of the camera. Ideally, the camera calibration model is a pinhole model, while in
practice, the image captured by the camera will have some deviation from the actual image,
which is caused by a certain degree of aberration in the camera’s lens due to processing,
external forces and other factors. These include radial and centrifugal aberrations, thin lens
aberrations and total aberrations. Therefore, when determining the internal and external
parameters, the aberration parameters of the lens are also taken into account.

As the camera captures multiple pieces of information and each image contains a host
of information, it is inefficient to process a whole image, so image features are extracted to
process the points and areas of interest in the image. Image features are classified as edges,
contours, textures, corner points, etc.

According to the conversion of the coordinate systems above, the internal and external
parameters of the camera are used to obtain the specific values of the parameters according
to the visual calibration of the camera. There are three types of camera calibration [36], in-
cluding traditional camera calibration, camera self-calibration and active visual calibration
methods.

Traditional Camera Calibration

Traditional camera calibration is based on a specific camera model and specific ex-
perimental conditions, the choice of size and size of the appropriate calibration reference,
the use of a series of mathematical calculation methods, to find the camera internal and
external parameters. The different types of physical calibration objects can be divided into
three-dimensional physical calibration methods and flat-type physical calibration methods;
the most common calibration objects are corner reflectors and Zhang’s board. The 3D
calibration process is simple and can achieve good accuracy with only a single image, but
the process and maintenance of the calibration object is more complex; flat type calibration
cannot rely on a single image, it needs at least two images to support it, but the calibration
object is simple to produce compared to 3D calibration object under the premise of ensuring
calibration accuracy. The combined result is that the traditional camera calibration method
cannot leave the support of the calibrator, and it cannot use or place the calibrator in certain
specific environments, which has a large degree of scene limitation, and at the same time,
the calibration effect is affected by the accuracy of the calibrator production. At present,
the main calibration methods are as follows.

1. Direct linear calibration method

The Direct Linear Transformation (DLT) method belongs to the typical traditional cali-
bration, which can solve the calibration by direct linear transformation, it is first proposed
by Aziz and Karara [37] in 1971, the Direct Linear Transformation method is an algorithm
that directly establishes a linear relationship between the object position points in the
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three-dimensional world and the coordinate points in the image coordinate system. Since
the DLT algorithm ignores the factor of lens distortion in imaging, it has the advantage of
being a simple algorithm and easy to implement; the disadvantage is the lack of accuracy
and large errors.

The image coordinate system and the camera coordinate system are transformed as
follows Equation (6)

S

 x
y
1

 = P3∗4


XC
YC
ZC
1

 (6)

where P is the projection factor and S is the scale factor, then, eliminating S Equation (6).
After eliminating S, Equation (7) is obtained.

p11XC + p12YC + p13ZC + p14 − p31xXC − p32xYC − p33xZC − p34x = 0
p21XC + p22YC + p23ZC + p14 − p31xXC − p32xYC − p33xZC − p34x = 0

(7)

If there are n points with coordinates in the world and image coordinate systems,
respectively, then the system of linear equations containing the 2n equations, as shown in
Equation (8).

H = AL = 0 (8)

where A is a (2Nx12) matrix and L is the column vector of 11 dimensions, consisting of
the elements of the projection matrix. The camera calibration is achieved by the process of
finding the appropriate L to makes the ||H||minimum.

2. RAC two-step method

Tsai [38,39] established a RAC-based camera calibration algorithm in 1987, which uses
the constraint of radial consistency to obtain some of the external parameters of the camera.
As the method is often divided into two steps, it is also known as the RAC two-step method.
The first step is to solve for some of the camera parameters using radial consistency, and the
second step solves for the effective focal length, translational component, and aberration
parameters of the camera. The advantage of the Tasi algorithm is its high accuracy, but the
disadvantage is that it is complex and cumbersome to implement. Wu et al. [40] optimised
the DLT algorithm by adding constraints on the transfer matrix through the RAC model to
maintain the high real-time performance of the DLT algorithm itself and optimising the
accuracy of the bit-pose computation of the DLT algorithm to improve the noise immunity
and stability of the DLT algorithm.

In this method, the image coordinate system and the camera coordinate system are
transformed as follows Equation (9).

 x
y
1

 = K[R|T]


XC
YC
ZC
1

 (9)

Of which, R =

 r1 r2 r3
r4 r5 r6
r7 r8 r9

 and the K =

 f s 0 u0
0 f v0
0 0 1

 according to

Equation (9), Equation (10) is obtained by matrix transformation. x = f s(r1X+r2Y+r3Z+t1)
r7X+r8Y+r9Z+t3

+ u0

y = s(r4X+r5Y+r6Z+t2)
r7X+r8Y+r9Z+t3

+ u0
(10)
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Transformation of ideal image coordinates to actual image coordinates considering
only radial aberrations, like Equation (11).

(x− uc)(1 + k1(u2 + v2)) = u− uc;
(y− vc)(1 + k1(u2 + v2)) = v− vc.

(11)

In the first step, the rotation matrix R and the translation matrix T of the external
parameters of the camera are found under the constraint of radial consistency; in the second
step, the focal length f , the aberration parameter k1 and the translation component t3 in the
z-axis direction of the camera are found by matrix transformation.

Using the resulting f , t3 and k1 = 0 as initial values, perform a nonlinear optimization
of the following Equation (12).

f s(r1X+r2Y+r3Z+t1)
r7X+r8Y+r9Z+t3

(1 + k1(u2 + v2)) = u− u0
s(r4X+r5Y+r6Z+t2)

r7X+r8Y+r9Z+t3
(1 + k1(u2 + v2)) = v− v0

(12)

Thus, the true value of f , t3, k1 is estimated, the internal and external parameters of
the camera can be gained.

3. Zhengyou Zhang plane calibration

In 1998, Zhang first proposed the Zhang’s planar calibration method [41]. This aimed
at addressing changes in the internal and external parameters of the camera by solving the
single-strain matrix. The calibration first requires the preparation of a template covered
with a dot matrix and then uses the camera to take multiple photos from different directions.
The single-strain matrix of each picture is calculated by the coordinates of the extracted
feature points in the image coordinate system and their coordinates in the world coordinate
system and is used to perform the camera calibration. The advantages of the Zhang’s
calibration method are its easy template production, ease of use, low cost, robustness,
and high accuracy. However, the process of the method is too complex and there is more
manual interaction, which is not conducive to the improvement of automation. At present,
the most widely used camera calibration is Zhang’s plane calibration.

According to Equation (12), assuming that the template is on a plane in ZC the world
coordinate system, the following Equation (13) is obtained.

S

 x
y
1

 = K[ r1 r2 r3 ]


X
Y
0
1

 = K[ r1 r2 T ]

 X
Y
0

 (13)

where K is the internal camera parameter matrix,
[

r1 r2 r3
]

is the rotation vector of
the external camera parameters.

Let M be the single strain matrix for each image, then we have Equation (14,15).

M =
[

h1 h2 h3
]
= λK

[
r1 r2 T

]
(14)

r1 =
1
λ

K−1h1, r2 =
1
λ

K−1h2 (15)

According to the orthogonality of the rotation vectors, then we have Equation (16).

rT
1 r2 = 0;

∣∣∣∣∣∣r1

∣∣∣∣∣∣ = ∣∣∣∣∣∣r2

∣∣∣∣∣∣ = 1 (16)

Equation (17) can be obtained for each image.{
hT

1 K−TK−1h2 = 0;
hT

1 K−TK−1h1 = hT
2 K−TK−1h2.

(17)
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There are five internal camera parameters, so when the number of images is greater
than or equal to 3, then K can be solved, then the external parameters and T for each image
can be found from the single-strain matrix M for each image.

Camera Self-Calibration

The camera self-calibration only uses the corresponding relationship among the images
obtained by the camera in the process of movement and does not depend on any calibration
reference in the calibration process, which is mainly due to the constraints of camera
movement. The most commonly used are extinction point theorems (also known as
vanishing point theorems), where parallel lines in space are represented as intersecting
in the camera image plane. This calibration method is very flexible and allows for online
calibration of the camera. The disadvantage is that it is based on absolute quadratic curves
and surfaces, which are less robust and unrealistic for practical use. Currently, the main self-
calibration methods [42] including self-calibration methods based on the Kruppa equation,
self-calibration methods based on absolute quadratic surfaces, and infinity planes. Some
scholars have also improved the existing methods.

Self-calibration based on absolute quadratic curves: Hartley and Faugeras et al. [43–45]
introduced the concept of self-calibration in 1992. Through the idea of mapping geometry
and according to the invariance of absolute quadratic curves, Faugeras obtains Kruppa
equations, and the relevant internal parameters can be solved by solving the Kruppa
equations. A series of refinements have since been developed [46,47], and the absolute
quadratic curve is a special class of quadratic curve: a curve in the infinity plane that is
strongly correlated with the geometric properties of Euclidean space. Moreover, the image
of an absolute quadratic curve is only related to the camera’s internal reference and is
independent of the camera’s motion and pose. Therefore, the constraints on the camera’s
internal reference can be established by determining the position of the absolute quadratic
curve in the image. Under the assumption that the internal reference of the camera is
constant, the geometry of the pair of poles based on the absolute quadratic curve can be
used to calibrate the internal parameters of the camera by solving the established Kruppa
equation for a given three images.

The absolute quadratic surfaces are tangent to a plane of space to which an absolute
quadratic curve is tangent is an absolute quadratic surface. The absolute quadric surface is
the dual of the absolute quadratic curve. Similarly, the value of absolute quadric surface
is only related to the internal parameters of the camera and irrelated to the motion of
the camera. The camera calibration using absolute quadric surface is also based on this
principle. In addition, the calibration method using absolute quadratic surfaces is more
robust than the calibration method using absolute quadratic curves because it also contains
information about the infinity plane. Before the camera is self-calibrated, it is assumed that
the correspondence between images is deterministic and that the internal parameters of the
camera do not change when different images are taken.

The preliminaries for the hierarchical stepwise calibration method [39] are the same
as for the quadratic surface self-calibration method, which involves the radiometric recon-
struction of a sequence of images and the Euclidean calibration, and then carry out the
radiometric calibration and reconstruct the image sequence. Based on the photographic
alignment of one image with all other images, which allows for a large reduction in the
number of unknown parameters, while relying on a non-linear optimization algorithm to
find all unknown quantities simultaneously. The disadvantage of such calibration methods
is that the initial parameter values are ambiguous, and the photographic alignments are
random, so different images are selected as references to obtain different camera parame-
ter calibration results, resulting in uncertain convergence of the optimization algorithm.
Xu et al. [48] proposed a new geometric method for camera self-calibration based on the
fading point properties of two sets of opposite sides of a rectangle and the implied aspect
ratio information. Using the property that the lines connecting finite-distance points in
space to the same infinity point are parallel to each other and the harmonic partitioning of
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perfect quadrilaterals, as well as the feature that rectangles being imaged multiple times
have the same aspect ratio, the constraint equations for the parameters within the camera
are established. By establishing the cost function associated with the imaging of a linear
segment, an aberration correction method is proposed that iterates between aberration
parameter finding and linear internal parameter calibration to obtain a self-calibration
accuracy comparable to that of the camera without aberrations. All external parameters
of the camera can be solved by determining the coordinates of any two vertices of the
rectangle.

Calibration methods using cooperative targets have been extensively investigated
by scholars. Self-calibration is mainly accomplished using targets of prescribed shape,
rectangular, linear, mathematical methods [49–51], or by using fading line features and can
also be achieved by solving the uncalibrated camera n-point perspective (pnp) problem [52].
Due to the widespread availability of fading lines or fading points, the application of related
methods is of high value. Existing methods for self-calibration using fading lines or fading
points are mainly based on solving the fundamental matrix via circular points followed by
a Cholesky decomposition to obtain the intra-camera parameter matrix.

Calibration Based on Active Vision

Active visual calibration method without relying on a calibrator, the camera is placed
on a precisely controllable motion platform. The method uses known motion information to
establish equations for the camera model parameters, which can usually be solved linearly
and therefore has the advantages of ease of operation, high accuracy, and robustness, and
is commonly used in active vision systems. It is only necessary to control the camera to
make certain specific movements for which the motion information is known. However,
the requirements for equipment and specific scenes are high, the equipment is expensive,
the motion parameters are unknown, and the scenes are not controllable.

The linear method based on two sets of triple orthogonal motions, proposed by Ma [53]
in 1996, is the best-known method for active visual calibration based on pure rotation of the
camera [54]. Subsequently, Hu et al. have proposed calibration based on triple orthogonal
translational motion and calibration based on a single strain matrix in the infinity plane [55],
which can find one more parameter than Massaud’s method.

Hu and other active visual calibration method is based on the principle of orthogonal
motion method of single response matrix in the plane [56], first assume that two vectors
respectively are a set of orthogonal translation vectors to describe the camera motion
information, according to these two vectors can get two corresponding single response
matrix. Then it is possible to find the five internal parameters of the camera.

2.2.3. Combined MMW Radar and Camera Calibration
Traditional Joint Calibrations

The traditional joint space calibration of MMW radar and camera is to construct
the radar coordinate system and camera coordinate system and establish the conversion
function of the two coordinate systems, so that the target corresponds one by one in the
radar coordinate system and image coordinate system. Traditional spatial transformation
includes geometric projection principle and four points calibration method.

1. Geometric projection

The calibration method of geometric projection converts a point from the radar co-
ordinate system to a point in the world coordinate system, and then converts a point in
the world coordinate system to the camera coordinate system i. The principle is shown in
Figure 6. Conventional joint calibration also has some limitations, such as dependence on
other sensors, low immunity to interference and distortion, and lack of self-calibration.
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Figure 6. Traditional calibration ideas.

Gaoet al. [57] considered the non-linear distortion of the camera. Taking the non-linear
distortion of the camera as the constraint condition, the coordinate transformation between
radar correlation coordinates and camera correlation coordinates was introduced. After a
characteristic transformation of the image-related coordinates to the radar-relative coor-
dinates, a least-square method is used to determine the calibration parameters. Song [58]
proposed a new method for the spatial calibration of a single camera and a two-dimensional
radar. Using a marker, the position of the marker is measured simultaneously in the camera
and radar coordinate systems. The marker position data is obtained by multiple measure-
ments of the marker position. By aligning the points, the transformation between the radar
coordinate system and the camera coordinate system is obtained and the accuracy of the
marker is improved.

2. Four-point calibration method

Guo et al. [59] proposed a four-point calibration method for the spatial synchronization
of two sensors. On the basis of establishing the relationship between the coordinate systems
of the two sensors, the method selects a 10 m area in front of the car as the calibration area,
and uses two sets of point pairs on the ground in the area parallel to the radar centre axis
to calibrate the horizontal angle of the vertical axis of the two sensor coordinate systems
and the pitch angle of the camera. The improved four-point calibration method constructs
a mapping function from the radar coordinate system to the camera coordinate system.
It requires at least corresponding four pairs of points in the radar and camera coordinate
systems, and the mapping function is easily obtained based on these four points. However,
it is difficult to find the perfect four pairs of points for three reasons:

• The detection range of radar is generally larger than 100 m, so more points are needed
to solve the mapping function;

• Any significant target in the camera image should occupy a certain area, so choosing a
point in that area will create an error, and to reduce the error we need more pairs of
points;

• If the devices are moved, they must be recalibrated.

Direct Calibration

Shigeki et al. [20] first proposed the spatial calibration of radar and vision without
calibrating the internal and external parameters of the camera, using the single-strain
matrix and the reflection intensity of the radar. Based on this, Liu [60] proposed a single-
strain-based method for calibrating Millimetre-wave radar data and CCD camera data.
The method does not require manual operation for calibration. Wang et al. [61] proposed
a single-strain point alignment method. An autonomous mobile vehicle experimental
platform with radar and camera sensors was used to achieve point alignment between the
MMW radar and the CCD camera. We assume that the radar is scanning and detecting on
a flat surface, called the “MMW Radar plane”, as shown in Figure 7.
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Figure 7. Radar scan plane.

According to Equation (2), Equation (18) can be gained.

ω

 u
v
1

 = P


XC
YC
ZC
1

, P =
[

R T
]

(18)

where ω is a constant. Considering that all the radar data comes from within the radar
plane (y = 0), the above equation converts to Equation (19)

ω

 u
v
1

 = H

 XC
YC
1

 (19)

where H is a 3 × 3 single-strain matrix. Instead of estimating R and T, the interconversion
of the MMW radar plane and the camera plane can be achieved by simply asking for H.
The joint calibration of the MMW radar and camera is completed.

Intelligent Calibration

Most traditional calibration methods involve the conversion of coordinates to the
internal and external parameters of the camera, in recent years, a series of intelligent joint
calibration methods have been proposed. The most obvious feature of intelligent calibration
is that the joint calibration of MMW radar and camera can be achieved without converting
coordinates.

Liu [62] used online intelligent calibration to divide the road into three different areas,
areas detectable only by cameras, areas detectable by both radar and cameras, and areas
detectable only by radar, as shown in Equation (20).

PR = [Xt1, Xt2, . . . , Xtn], X = [x, y]T

PC = [Uk1, Uk2, . . . , Ukn], U = [u, v]T

SRC =

[[
Xt1
Ut1

]
,
[

Xt1
Ut1

]
. . .
[

Xtj
Utj

]] (20)

where PR is the sequences monitored by radar, PC is the sequences monitored by the
camera, and SRC is the joint monitoring sequence by the MMW radar and the camera. The
neural network is then used to construct the mapping function. Both the input and output
layers of the neural network contain two nodes. Finally the collected data are used to train
and test the neural network iteratively. Special weighting is given to the online acquisition
of data and the online training and testing of the neural network. Online intelligent spatial
calibration is completed, as shown in Figure 8.
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Figure 8. On-line intelligent calibration.

Gao et al. [63] used a curve fitting method for joint calibration of camera and MMW
radar for objects, with the main vehicle was stationary, driving a target vehicle in the danger
area from near to far, starting the camera vehicle recognition algorithm to identify the target
vehicle, recording the image coordinates of the target vehicle detection centre and radar
data information, removing the abnormal points in the data, and then using software to
fit, and through experimental testing, the error is smaller and more robust than traditional
joint calibration.

2.2.4. Temporal Fusion of MMW Radar and Vision Sensors

Due to the transmission frequency or sampling frequency of the MMW radar data
processing and image data processing is different. The data collected by both the MMW
radar and the camera are not at the same moment, resulting in a temporal bias in the
data. The radar sampling frequency is generally lower than the video data. Therefore, it
is necessary to detect objects dynamically in real time. Currently, there are two types of
temporal fusion of MMW radar data and camera data, a hardware-based and a software-
based synchronisation.

Hardware Synchronisation

Hardware synchronisation mainly involves setting up a hardware multi-thread trigger
that triggers the camera to take a picture when the MMW radar captures the target infor-
mation. Zhai et al. [64] used the camera data with low sampling frequency as a benchmark
and used multi-thread synchronisation to achieve data time synchronisation. When each
time the camera receives an image frame, the radar data corresponding to the current time
of the image is acquired, as shown in Figure 9.

Figure 9. Multi-threaded time alignment.

In order to achieve time synchronisation, a radar thread, a camera thread and a data
fusion processing thread are created in the program. The radar thread is used to receive
and process the radar data and the camera thread is used to receive and process the camera
image data. When the data fusion processing thread is triggered, the system fetches the
radar data in the radar data cache queue at the same moment as the image data for data
fusion processing. The MMW radar and machine vision temporal fusion model. There
is an initial time difference between the radar data and the image data due to the time
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difference between the moment of radar and camera activation, and this error is always
less than the time it takes to refresh the radar data, so it does not affect the correctness of
the time synchronisation.

Time synchronisation of multiple sensors mainly refers to processing data from sensors
of different frequencies at the same moment. Qin [65] used a multi-threaded approach
for time synchronisation, using QWaitCondition and QMutex in QT to achieve time syn-
chronisation. The MMW radar data reception thread, the camera data reception thread
and the main thread are set separately. Since the sampling frequency of the radar is lower
than the sampling frequency of the camera, the sampling time node of the radar thread
is used to trigger the sampling of the camera thread, the radar thread is always open, the
camera data reception thread uses thread locking to keep it in a constant blocking state,
and the camera data reception thread is triggered when the data reception of the radar data
reception thread is completed. When the camera data receiving thread captures the image,
the radar data receiving thread is closed. Through this method, the sensor data is captured
at approximately the same moment, and the captured data is sent to the main thread for
data processing, which runs in a loop to perform target detection, data correlation, and
data output.

Software Synchronisation

At present, software synchronisation is the most commonly used solution, where a
timestamp is added to the GPS. For example, MMW radar and camera acquired data have
a GPS timestamp, then the data is compensated according to the nearest match or through
interpolation methods, which are used in linear difference and Lagrangian interpolation.

Liu et al. [66] chose the Cubic Spline Interpolation to synchronize the information
between sensors, if a sensor has checked n times in a certain sampling period, its time point
can be reduced to (t0, t1, t2, . . . tn), let f (ti) as sensor’s measurement value of the ti moment,
to satisfy f (ti) = yi(i = 1, 2, . . . , n) the combination of it into the fitting interpolation
function S(t). As the radar has a relatively stable sampling frequency, fixed at 20 Hz, and
the camera sampling frequency varies according to the number of samples, this paper sets
the frequency of the radar as the reference and establishes a Cubic Spline Interpolation
function for the camera measurements, synchronising the radar and camera data in time.

In order to make the data time synchronization of MMW radar and camera more
accurate and fresher. Liu et al. [67] received the latest data of MMW radar in the current
processing cycle of the control unit, and it is converted to the same timestamp as the most
recent data from the camera using a uniform acceleration model The time synchronisation
of the MMW radar and camera data is completed, as shown in Figure 10.

Figure 10. Uniformly accelerated fusion model.

Ma et al. [68] used the camera data time as the standard to extrapolate the radar output
to the target for the purpose of synchronisation with time. The specific implementation
process is shown in Figure 11, where Tr(n− 2) and Tr(n− 1) are the timestamps of two
consecutive radar data frames, Tf (n) is the timestamp of the next data frame predicted
by the radar tracking algorithm, with the same time difference between these three data
frames.
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Figure 11. Time Difference Time Alignment Model.

The position and velocity parameters of the radar target at Tr(n− 1) and Tf (n) can be
used to perform a linear interpolation operation to estimate the parameters of the radar
target at the moment of Te(n), which can be expressed as Equation (21).

k =
∆Te(n)

∆t
(21)

2.2.5. MMW Radar and Image Data Information Correlation

An important component of the fusion of MMW radar data and camera data is data
correlation, and the correctness of the data correlation is directly related to the effective-
ness of the fusion. Therefore, the evaluation of information association algorithms and
information correlation algorithms is also crucial.

IOU Discriminations

A typical decision-level information fusion approach [69] is to calculate the intersection
ratio (IOU) of the detection frames obtained from the MMW radar and the camera for
decision-level judgments. The IOU calculation equation is (22).

IOU =
SV ∩ SR
SV ∪ SR

(22)

where SV is the depth vision detection rectangular frame area, SR is the MMW radar detec-
tion tracking rectangular frame area. When IOU ∈ [0.5, 1], output visual detection category
and position information; when IOU ∈ [0, 0.5], output visual detection category with the
target position and status information detected by the MMW radar; when IOU = 0, no
detection results are output, for SV 6= 0 SR = 0 and SV 6= 0, SR 6= 0, SR 6= 0 only the radar
detection target position and status information is output when SV = 0, SR 6= 0, until
IOU 6= 0, as is shown in Figure 12.

Figure 12. IOU discriminant model.
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Based on the Dichotomous Map Matching Principle

As the distance and velocity information given by the vision sensor is inaccurate and
cannot be used directly for the final obstacle position and velocity output; meanwhile,
the radar is characterised by a more accurate distance but lower resolution and poorer
recognition performance, it needs to be matched with the radar clustering cluster using the
position information from the matched radar as the output of the whole obstacle in order
to achieve the complementary performance of the two sensors.

A data association algorithm based on the bipartite graph matching principle is
proposed [70–72], mainly for solving the case of incorrect matching caused by a relatively
large error in one of the sensors.

Use the set X = { x1, x2, x3, . . . xm} to represent the full set of visual obstructions, and
additionally use the set Y = {y1, y2, y3, . . . xn} to represent the full set of radar clusters,
through abstracting the full set into a bipartite graph G = 〈X, E, Y〉 where the edges of E
is 〈x, y〉 which represent that visual obstacle; it x can be matched to the y.

Qin [66] proposed an algorithm for target association in 3D space, where both MMW
radar and camera can provide relative distance information of the target, and co-associate
the distance information of both with the coordinate information of the centroid in the
image, defining the cost function as f , when f the minimum is determined that the target
in the MMW radar sequence and the target in the camera sequence are the same target.
Then we have Equation (23).

f = wu|uc − ur|+ wv|vc − vr|+ wdist|dc − dr| (23)

where uc is the horizontal coordinate of the pixel coordinate system of the centre point of the
vehicle detected by the camera, vc is the vertical coordinate of the pixel coordinate system
of the centre point of the vehicle detected by the camera; ur is the horizontal coordinate of
the pixel coordinate system of the centre point of the vehicle detected by the radar, vr is the
vertical coordinate of the pixel coordinate system of the centre point of the vehicle detected
by the radar.

Lastly, dc, dr are the distances detected by the camera and the radar for the vehicle
ahead, respectively.

Typical Data Association Algorithms

1. Joint Probabilistic Data Association (JPDA)

The JPDA [73–75] is one of the data association algorithms corresponding to the
case where observations fall into the intersection region of a tracking gate, which may
originate from multiple targets. The JPDA aims to calculate the probability of association
between the observations and each target and considers that all valid echoes may originate
from each particular target, only the probability that they originate from different targets.
The advantage of the JPDA algorithm is that it can track and recognize multiple targets
without being affected by clutter. However, when the number of targets and measurements
increases, the JPDA algorithm will experience a combinatorial explosion in computational
effort, which results in computational complexity. After acquiring the target sequence,
Sun et al. [76] introduced the Marxian distance for observation matching based on the
target-level fusion method. Then the JPDA was applied for data fusion to establish the
system observation model and state model, thus realizing the target recognition based on
information fusion.

2. Multiple Hypothesis Tracking (MHT)

MHT [77–80] is another algorithm for data association. Unlike JPDA, the MHT algo-
rithm retains all hypotheses of the real target and lets them continue to be passed, then to
remove the uncertainty of the current scan cycle from the subsequent observations. Under
ideal conditions, MHT is the optimal algorithm for handling data correlation, it can detect
the end of a target and the generation of a new target. However, when the clutter density
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increases, the computational complexity increases exponentially, and it is also difficult to
achieve target-measurement pairing in practice.

2.3. MMW Radar and Camera Information Fusion Algorithm
2.3.1. Traditional Information Fusion Algorithms
Weighted Average Method

Weighted averaging method is the process of matching the target results from each
sensor and then weighting the results according to the weights accounted for by each
MMW radar and camera sensor, with the weighted average being used as the result of the
fusion. If the signal from one sensor is more plausible than the others, a higher weight is
assigned to that sensor to increase its contribution to the fused signal.

Advantage: it is the simplest and most straightforward method, practically efficient
and has a code-easy to implement approach to real-time information processing fusion
methods.

Disadvantage: This method is more suitable for dynamic environments but requires
detailed analysis of sensor results and performance to obtain accurate weights.

Chen [81] used radar depth-of-field information to acquire regions of interest quickly
and with high accuracy. The unification of time and space in radar and camera was accom-
plished through the ADTF software platform, and the acquisition of data was completed
by selecting a weighted average information fusion algorithm to fuse the MMW radar
and camera information. According to the advantages of the two sensors, Xu et al. [82]
used a fusion method including, longitudinal distance using only the detection results
of the MMW radar, lateral distance using the detection results of the camera and MMW
radar weighted by the camera, the camera accounted for a larger proportion of the target
type using only the classification results of the camera. Wang et al. [83] used a weighted
averaging algorithm to fuse the MMW radar and camera data, putting a certain sensor
will reduce the weight to 0 when the target is judged to be non-normal by its own marker
position or target location, it will not participate in the fusion at the non-normal point,
in order to avoid accidental errors substantially reducing the post-fusion accuracy at this
point.

Least Squares Method

The Least squares method is the approximate fitting of target observations from
different sensors that the sum of squares of the errors in the fitting function for the target
observations from different sensors is minimised. The Least squares method is generally
not used alone but is used together with other fusion methods, or to verify the quality of
other fusion methods. The least squares method is needed to fit points and compare the
functions to minimise the sum of squares of the errors for each point to obtain the final
coefficients. The resulting curve is then the fused trajectory points.

Kalman Filtering Algorithm and Its Variants

The Kalman filtering algorithm can be divided into standard Kalman filtering [84],
interval Kalman filtering [85] and two-stage Kalman filtering [86]. The method uses
recursion of the statistical properties of the measurement model to determine the optimal
fusion and data estimation in a statistical sense. If the system has a linear dynamics model
and the system-sensor error fits a Gaussian white noise model, the Kalman filter will
provide the only statistically significant optimal estimate of the fused data. MMW radar
and camera fusion is a smooth stochastic process, which has a linear dynamic model and
the system noise conforms to a Gaussian distributed white noise model and is sensitive to
error information, hence a number of studies have been carried out by many experts and
scholars.

Kalman filtering is mainly used to fuse low-level real-time dynamic multi-sensor
redundant data, where the data received by the sensors generally has a large error when
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fused at the pixel level. The Kalman filtering method can effectively reduce the error
between the data and thus improve the fusion effect.

Advantage: the system processes without the need for powerful data storage and
computing power and is suitable for fusion between different levels of raw data with little
loss of information.

Disadvantages: a need to build an accurate model of the observed object, the data
requirements are also large, and the scope of application is relatively narrow. With a
large amount of redundancy in the combined information, the amount of computation
will increase dramatically by three times the filter dimension which is difficult to meet in
real-time. The increase in sensor subsystems increases the probability of failure, and in the
event of a failure in one system that is not detected in time, the failure can contaminate the
entire system, making it less reliable.

Liu et al. [87] designed a traffic flow data acquisition system based on the radar
and vision camera. In order to make the vehicle operation data measured by the sensor
more accurate, the optimal estimation algorithm based on Kalman filter can be used to
optimally estimate the vehicle transverse and longitudinal speed, acceleration, and head-to-
tail spacing measured by the radar and vision camera, which improves the measurement
accuracy. Liu [88] pre-processed the collected camera and MMW radar raw data to obtain
the target data from the camera and MMW radar, and then judged whether the camera
and MMW radar detected the target, when both detected the target at the same time,
firstly Kalman filtering was performed, secondly through the strong tracking Kalman
filter algorithm STF (Strong Tracking Filter) fusion algorithm processing to obtain more
accurate target information, when one of the sensors detects a target, the data detected by
the corresponding sensor is output, and when neither sensor detects a target, there is no
target in the area, thus completing the target detection based on data fusion and storing it.

Lu [89] designed and developed a Kalman filter module, a Munkres matching algo-
rithm module and other fusion aid modules using the global nearest neighbour idea. Wu
et al. [90] used distributed sensor fusion to carry out target tracking research using Kalman
filtering. Amditis [91] proposed a new Kalman filter-based method with a measurement
space that includes data from radar and vision systems, which is robust during vehicle
manoeuvres and turns.

Cluster Analysis

After obtaining the agreement of the individual MMW radar and camera data, it is
easy to cluster the data points based on the agreement, which collect similar points. The
formula for agreement shows that points with a distance less than a threshold have a high
degree of agreement, and points with a large distance have a low degree of agreement.
Typical clustering analysis algorithms include Marxian distance, Euclidean distance, and
global nearest neighbour (GNN) [92,93].

The clustering presupposes is to discuss consistency, where cluster analysis fuses
data with a high degree of consistency, and individual data that are ‘inconsistent’ may be
considered to be ‘singularities’ caused by chance under adverse circumstances. If a cluster
analysis appears as multiple classes that are distantly distributed, then the overall data is
highly inconsistent and reflects different system characteristics that cannot be simply fused.

Consistency is a potential function K(X, Y) which requires several conditions to be
satisfied:

• The output of the function is between 0 and 1, when the two points X, Y are very
close to the output value, when the two points are very far away to the output value is
small;

• A progressive decline in the trend of the function;
• When the two points X, Y coincide (distance is 0), the output is 1, when the distance

between the two points is infinite, the output is 0;
• K(X, Y) = K(Y, X) is a continuous function.
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Typical cluster analysis refers to the Marxist distance [94] and is widely used in the
fusion detection process of MMW radar and cameras [95,96]. The martingale distance is
a method proposed by Indian statisticians to calculate the covariance distance between
two points. The Marcian distance between the predicted and observed values is defined as
Equation (24)

dM =
√
(zi − zk|k−1)

TS−1
k (zi − zk|k−1) (24)

where Zi is the ith target observation of the current cycle; Zk|k−1 is the target prediction of
the current cycle based on the previous k− 1 moments; and S−1

k is the covariance matrix
between the two samples, whose mth row and nth column elements are defined as the
covariance of the mth and nth elements of the two samples. In [77], the method acquires the
target sequence and then introduces the Marcian distance for matching the observations.
Thus, information fusion-based target recognition is achieved.

In the past few decades, various experts and scholars have applied GNN algorithms
to MMW radar and camera data fusion well; Zhang et al. [97] used the target detection
intersection and ratio and GNN data association algorithm to achieve multiple MMW radar
and camera sensor data fusion, which selected the association scheme with the lowest total
cost after comprehensive consideration of the overall association cost, which is more in
line with the actual working conditions, and less computationally intensive. Liu [66] and
Jia [98] used the GNN to match the vehicle information data collected by MMW radar and
camera with the target source.

Fuzzy Theory

Fuzzy theory [99,100] is based on human thinking patterns, and the basic idea is to use
machines to simulate human control of the system, according to the unified characteristics
of the cognition of objective things, it summarizes, extracts, abstracts and summarizes, and
finally evolves into fuzzy rules to help the corresponding function make the result judgment.
Fuzzy theory can work with different algorithms depending on the specific situation to
solve the problem of uncertainty. Currently, fuzzy theory is widely used in MMW radar
and camera fusion technology. Firstly, based on fuzzy logic, the data collected by each
sensor is fuzzified and transformed into a fuzzy concept that represents the characteristics
of the object; then, the processed data is evaluated in a comprehensive manner to determine
the state of the current environment. Its main applications are the processing of MMW
radar data and image data [101–103].

Strengths: using a linguistic approach, precise mathematical models of the process
are not required, the system is robust and can solve non-linear problems in the fusion
process. It can adapt to changes in the dynamics of the monitored object, changes in
environmental characteristics and changes in operational conditions, and is highly fault
tolerant. The operator can easily communicate with the human-machine interface through
natural human language.

Disadvantages: the fuzzy processing of the original data will lead to lower control
accuracy and poorer dynamic quality of the system. The design of fuzzy control still
lacks systematicity and cannot define the control objectives. In the feature layer, suitable
algorithms need to be selected contacted the actual situation and combined with fuzzy
theory to make them work together effectively to improve the melting effect. However, the
difficulty of fuzzy theory lies in how to construct reasonable rules for judging indicators
and affiliation functions.

Neural Network-Based Algorithms

The neural network-based algorithm is a method that has been established in recent
years based on the continuous development and maturity of neural network technology. It
makes use of the properties of neural networks and can better solve the error problem of
sensor systems. The basic information processing unit of a neural network is the neuron.
Using different forms of connections between neurons and choosing different functions,
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different learning rules and final results can be obtained. This enriches the diversity of
fusion algorithms. Furthermore, differences in the chosen learning databases lead to
different effects in the fusion results. There are good results in the processing of radar data
and in the association of two sensors data [104,105].

Bayesian Approach

The Bayesian approach is to treat each sensor as a Bayesian estimate. Liu et al. [106]
used a Bayesian formulation to calculate the state estimate of the target to obtain suboptimal
solutions, for the radar and camera, and subsequently combined the local estimates of the
sensors in a distributed fusion structure to obtain global estimates. Cou [107] obtained
good data correlation based on Bayesian programming for multi-sensor data fusion of
LIDAR, MMW radar, and camera.

D-S Method

Evidence-theoretic algorithm, also known as the Dempster-Shafer algorithm, or the
D-S algorithm [108]. This method is an expansion of Bayesian inference and can be used for
decision inference using a statistically based data fusion algorithm, evidence theory, when
the verdict derived from multiple MMW radar and camera information is not 100% confi-
dent. The algorithm can fuse the knowledge acquired by multiple sensors and finally find
the intersection of the respective knowledge and the corresponding probability assignment
value. A wide range of applications are available for multi-sensor fusion.

D-S algorithm includes three basic points: basic probability assignment function,
trust function and likelihood function. The inference structure of the D-S method is from
top to bottom which is divided into three levels: the first level is goal synthesis, where
data information from multiple sensors is pre-processed to calculate the basic probability
distribution function, confidence, and release of each piece of evidence; the second level is
inference, where the basic probability distribution function, confidence, and release of all
the data from the same sensor are calculated according to the D-S synthesis rules. The third
level is updating, where each sensor is generally subject to random error, so that a set of
consecutive reports (reports are the processed probability distribution function, credibility,
release, etc.) from the same sensor sufficiently independently in time is more reliable than
any single report. Thus, the observations from the sensors are combined (updated) before
inference and multi-sensor synthesis.

Advantage: the a priori data is more intuitive and easier to obtain than in probabilistic
inference theory. D-S formula can synthesise knowledge or data from different experts or
data sources, and it makes evidence theory widely used in areas such as expert systems
and information fusion. Areas of application of the algorithm include information fusion,
expert systems, intelligence analysis, legal case analysis, multi-attribute decision analysis,
etc.

Disadvantage: requires the evidence to be independent, a condition that is sometimes
not easily met. In addition, the evidence synthesis rule does not have solid theoretical
support, and its soundness and validity are still highly controversial. The theory of evidence
suffers from a potential exponential explosion in computation.

The block diagram of MMW radar and CCD camera information fusion, proposed
by Luo et al. [109], based on the D-S evidence method is shown in Figure 13. Firstly, the
identification framework is established, then the basic probability distribution function of
each evidence is calculated for the information obtained from each sensor and the basic
probability distribution function under the combined action of all the evidence is calculated
according to the combination rules of the D-S evidence method, and finally according to
the given judgment criterion the hypothesis with the highest confidence level is selected as
the fusion result.
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Figure 13. Block diagram for fusion of MMW radar and CCD camera information.

The confidence function based on different evidence on the same recognition frame of
the MMW radar and CCD camera is given as the confidence function resulting from their
joint action. This function is a sum of their confidence functions. Let ml (Xi) and mc (Xi)
functions as the confidence functions on the same recognition frame for the MMW radar
and the CCD camera, respectively. The fusion results of the MMW radar and the CCD
camera are obtained according to Dempster’s rule.

Jin et al. [110] used the D-S algorithm to fuse the data features after MMW radar and
camera feature extraction for detecting the safety of night-time driving. Converting the
world coordinates of the radar target to image coordinates, forming a region of interest on
the image, using image processing methods to reduce interference points, and applying D-S
evidence theory to fuse feature information to obtain a total confidence value to examine
vehicles in the region of interest. Liu et al. [111] obtained from four typical maritime
obstacle scenarios 3D LIDAR, MMW radar and stereo vision perception data, and each grid
is assigned a corresponding weight according to the detection accuracy of different sensors
in different perception areas. Integration of grid attributes using D-S combination rules
This results in a fused USV obstacle representation.

Each of the above traditional information fusion algorithms is not only limited to use
alone, but scholars have also used a mixture of each algorithm in order to expect the best
MMW radar and camera information fusion results. For example, in the literature [68]
used algorithms such as Kalman filtering and weighted fusion to achieve 1R1V (1 Radar
1 Vision) sensory information fusion.

2.3.2. Deep Learning Based on Information Fusion Algorithms

Deep Learning, also known as Deep Neural Network, is the result of continuous
research and development of artificial neural networks. Through decades of experience, it
has become clear that the expressive power of neural network systems tends to increase as
the number of implicit layers increases, allowing them to perform more complex classifica-
tion tasks and to approximate more complex mathematical function models. The features
or information obtained after the network model has been ‘learned’ are then stored in a
distributed connection matrix, and the ‘learned’ neural network is then capable of feature
extraction, learning and knowledge memory. Due to the more significant ‘intelligence’ of
deep learning, there have been many scholars attempts to apply it to MMW radar and
camera fusion algorithms to improve the accuracy of multi-sensor data fusion.

In the data fusion process of MMW radar and camera, deep learning is mainly used
for feature extraction of camera features before fusion, and Mon [112] proposed a vehicle
front target detection and recognition method. The method performs target detection
and recognition of the obtained visual information through the deep learning algorithm
which is named YOLO-v2, and then further improves the reliability of target detection by
processing, analysing, and projecting the MMW radar data and correlating the radar point
cloud data and images in the fusion process sheet, as well as testing and training the fused
data after the fusion. Wang et al. [113] mapped the MMW radar detected forward obstacle
information onto the image to form regions of interest in the image, each region of interest
was passed to a nested cascaded Adaboost classifier to detect whether the forward obstacle
was a vehicle. Zhang et al. [114] used the wraparound box regression algorithm to analysis.
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CNN-Based Multi-Sensor Data Fusion Model

Currently, Convolutional Neural Network (CNN) is one of the most important meth-
ods in the field of intelligent image and video processing. Convolutional operations are
the most important operations in CNN. The features extracted are theoretically invariant
to image translation, rotation and scaling, and have two features of local perception and
weight sharing, which makes the CNN more closely resemble the perceptual properties
of real creatures and reduces a large number of weight learning parameters compared to
global connections.

CNN can be seen as a combination of feature extraction and classifier, from the
mapping of each layer, it is similar to extracting features at different levels. Neural networks
are highly fault tolerant and can be used in complex non-linear mapping environments. The
strong fault tolerance and the self-learning, self-organising and self-adaptive capabilities of
neural networks meet the requirements of multi-sensor data fusion technology processing.
Neural networks determine the classification criteria in the data model primarily based on
the similarity of the samples accepted by the current system, a process characterised as the
distribution of weights in the network. The signal processing capabilities and automatic
inference functions of neural networks can achieve multi-sensor data fusion. As is shown
in Figure 14.

Figure 14. MMW radar and camera data fusion in CNN mode.

Traditional neural networks map images layer by layer and then extracts the features
in it. Currently, CNN are mostly used for fusion. Some scholars [63,115] used Kalman
filtering to process radar data, generate regions of interest in the images, and detect vehicles
in the regions by an improved deep vehicle recognition algorithm. Jiang [116] used an
information fusion association algorithm to determine the association between the radar
and the ROI region detected by machine vision: if the two ROI regions are successfully
associated, the same target is considered to be detected and the output is used as the
final detection target. If the association fails, the ROI region that failed to be associated is
detected again using an Adaboost classifier. After the fusion of MMW radar and vision
to obtain the region of interest of the image, Wu [117] used CNN to identify the image to
determine whether there was a person or a car in the ROI region to achieve the predefined
target of MMW radar for verification and achieve the fusion of MMW radar and vision
in terms of information. Lekic and Babic [118] proposed a fully unsupervised machine
learning algorithm for fusing radar sensor measurements and camera images in 2019.

The spatial information grid modelling of radar sensor data of evidence, and the whole
set of occupancy state estimation is called grid layer. By combining the network layer
and camera image into the network, under the condition of radar data, multiple network
generate image like camera, so as to realize the feature fusion of radar and camera data.
This contains all the environmental features detected by the radar sensors. The algorithm
converts the radar sensor data into an artificial, camera-like image of the environment.
Through this data fusion, the algorithm produces information that is more consistent,
accurate and useful than that provided by radar or cameras alone.

The convolutional neural network, proposed by Kim et al. [119], uses a modified
VGG16 model and a feature pyramid network two-stage architecture, combined with radar
and image feature representation, to provide good accuracy and robustness for target
detection and localization.
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Meyer [120] used manually labelled bounding boxes to train deep convolutional neural
networks to detect vehicles. The results show that deep learning is often a suitable method
for target detection from radar data.

Chadwick [121] designed and trained a detector that operates using monocular images
and radar scans to perform robust vehicle detection in a variety of settings. The overall
framework uses the SSD algorithm to include radar data using image features, and the
use of a branching structure also provides the potential flexibility of using weights from
different radar representations of the RGB branches. As with standard SSD, features at
different scales are convolved by classification and regression to produce dense predictions
on a predefined default set of boxes.

Lim [122] proposed a new deep learning architecture fusing radar signals and cam-
era images, in which the radar and camera branches are tested, trained, and extracted
separately.

DLSTM-Based Data Fusion Model

The structure of the Deep Long Short Time Memory (DLSTM) data fusion prediction
model [123,124], as is shown in Figure 15. The prediction accuracy and reliability can be
improved by using multiple sensor data as compared to single sensor data. Multiple LSTM
layers are stacked to form a DLSTM model to fuse multi-sensor data and extract deep
features, with different LSTM layers connected spatially and data input from upper layer
neurons to lower layer neurons, with information exchanged between the LSTM neurons
in each LSTM layer.

Figure 15. Structure of the DLSMT data fusion model.

Advantages: deep neural networks that have a powerful non-linear representation
ability which enables them to fully explore the deep abstract features between multiple
sources of data, avoiding the problem of reducing the accuracy of model output due to
insufficient feature extraction; deep learning has self-learning ability, which enables them
to obtain the correlation between multiple sources of information on their own and fully
fuse them according to the correlation; data fusion methods based on deep learning have
good real-time performance when running on equipment with strong computing power
which can meet the real-time requirements in related fields. Deep learning-based data
fusion methods have good real-time performance when running on devices with strong
computing power and can meet the real-time requirements of related fields. Therefore,
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deep learning-based data fusion methods have better performance compared to traditional
data fusion methods.

Disadvantages: the characteristics of deep learning models also limit their application
to a certain extent. Currently, most deep learning algorithms increase the depth and
network complexity of the model in order to improve the non-linear representation of the
network, but they also increase the parameters of the model and the difficulty of training
the model, and further increase the consumption of computing resources. Therefore, deep
learning-based data fusion methods are not applicable in small devices such as sensor
network nodes and removable terminals.

3. Results

This paper reviews the key techniques of MMW radar and camera fusion, including
the definition, layers, and structures of MMW radar and camera fusion, and reviews the
advantages and disadvantages of each layer and structure. Since the fusion of MMW radar
and camera involves only two different sensors, more distributed fusion structures are
used, and since MMW radar generates a large number of false targets and invalid data,
more scholars choose to fuse pairs at the feature layer. The MMW radar and camera fusion
process is briefly described, including spatial and temporal fusion, and the widely used
calibration method in spatial fusion is “Zhang” calibration, as well as some new online
intelligent calibration methods. Online intelligent calibration methods can achieve rapid
calibration to a certain extent on different websites, but the accuracy of calibration and the
stability of calibration system cannot be guaranteed. In the future, we need to improve the
traditional calibration, and research and develop a more stable online calibration system.
Finally, the algorithms for information fusion are described, where deep learning based on
fusion algorithms achieve faster speeds and better data correlation than traditional fusion
algorithms and may become mainstream in the near future. However, deep learning still
has its limitations, including large amount of calculation, high hardware requirements,
complex model design, and inability to judge the right or wrong of low-level data. In future
development, it would be very important to overcome the difficulties of deep learning
in fusion with two complementary sensors, due to the low accuracy of MMW radar and
camera fusion. Thus, MMW radar and camera fusion are not widely used. Discovering an
appropriate fusion algorithm to realize its fusion would be very important.

At present in the field of transportation, the fusion of MMW radar and camera is mostly
used for vehicle automatic driving and assisted driving. With the development of intelligent
transportation, the fusion technology of MMW radar and camera can be gradually used
on the intelligent roadside. Through the acquisition, analysis, and application of roadside
data, traffic conflicts would be effectively reduced and vehicle road coordination would
be realized. Some high-speed highways in China have begun to use MMW radars and
cameras on the roadside. In the future, according to the good properties of these devices,
more roads will use these two sensors to make traffic more intelligent.

The technology of MMW radar and camera fusion will be a research field with rapid
technology update frequency and various blooming industries.
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