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Abstract: The growth in e-commerce that our society has faced in recent years is changing the view
companies have on last-mile logistics, due to its increasing impact on the whole supply chain. New
technologies are raising users’ expectations with the need to develop customized delivery experiences;
moreover, increasing pressure on supply chains has also created additional challenges for suppliers.
At the same time, this phenomenon generates an increase in the impact on the liveability of our
cities, due to traffic congestion, the occupation of public spaces, and the environmental and acoustic
pollution linked to urban logistics. In this context, the optimization of last-mile deliveries is an
imperative not only for companies with parcels that need to be delivered in the urban areas, but also
for public administrations that want to guarantee a good quality of life for citizens. In recent years,
many scholars have focused on the study of logistics optimization techniques and, in particular, the
last mile. In addition to traditional optimization techniques, linked to the disciplines of operations
research, the recent advances in the use of sensors and IoT, and the consequent large amount of data
that derives from it, are pushing towards a greater use of big data and analytics techniques—such as
machine learning and artificial intelligence—which are also in this sector. Based on this premise, the
aim of this work is to provide an overview of the most recent literature advances related to last-mile
delivery optimization techniques; this is to be used as a baseline for scholars who intend to explore
new approaches and techniques in the study of last-mile logistics optimization. A bibliometric
analysis and a critical review were conducted in order to highlight the main studied problems, the
algorithms used, and the case studies. The results from the analysis allow the studies to be clustered
into traditional optimization models, machine learning approaches, and mixed methods. The main
research gaps and limitations of the current literature are assessed in order to identify unaddressed
challenges and provide research suggestions for future approaches.

Keywords: city logistics; freight transport; vehicle routing problem

1. Introduction

Last-mile logistics is a steadily increasing phenomenon, mainly due to the ongoing
urbanization and changes in consumer habits, with the strong growth in online retailing
and the consequent increase in e-groceries and e-commerce activities. The most recent
figures show that in the EU the share of online shoppers equaled 64% of all individuals
aged 16–74 [1]. This growing pressure of freight traffic in urban areas brings with it a
series of externalities that undermine the sustainability and liveability of our cities. It
increases congestion and emissions in urban areas, due to the additional traffic generated
by vehicles for deliveries that often have overlapping routes (25% of CO2, and 30 to 50% of
PM and NOx); moreover, it reduces road safety due to the presence of heavy vehicles [2].

Sustainability 2022, 14, 5329. https://doi.org/10.3390/su14095329 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su14095329
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-4446-8292
https://orcid.org/0000-0002-9355-3610
https://orcid.org/0000-0001-7759-9072
https://orcid.org/0000-0002-1535-1239
https://doi.org/10.3390/su14095329
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su14095329?type=check_update&version=2


Sustainability 2022, 14, 5329 2 of 16

The restriction measures associated with the COVID-19 pandemic further accelerated the
increase in online purchasing, while being a “rare catalyst” for logistic innovations [3].
However, notwithstanding the recent efforts made to improve the sustainability of the
logistics, the issues related to the whole process are still debated. New technologies can
play a key role in improving the impact of last-mile deliveries in urban areas. Aside from
the already well-known smart technologies associated with online purchasing, the entire
logistics supply chain can also take advantage of innovative processes, being a fertile
ground for automation. More specifically, artificial intelligence (AI) and machine learning
(ML) approaches have become a hot topic in literature and practice, and they are interfacing
more and more with the traditional vehicle routing optimization (VRO) models present in
the literature; their algorithms are in fact able to give exact predictions—based on historic
data—on the efficiency problems common to supply chains, e.g., demand forecasting,
routing, and tracking, while being able to detect anomalies during the process [4]. These
algorithms are constantly evolving, and, thanks to recent disruptions, the last few years
have been crucial for this research field and its development.

Based on these premises, this study presents an overview of the most recent literature
advances in last-mile logistics optimization techniques, starting from the results of the
SENATOR project (www.senatorproject.eu (accessed on 15 March 2022)), whose aim is to
produce governance schemes on user-demand planning, transport planning, freight and
logistics planning, and city infrastructure. The overview includes a bibliometric analysis
and a critical review of the main studies and results presented by scholars on the subject
and considers traditional VRO models, ML models, and mixed approaches. The studies
were therefore classified according to the problem considered, the methodology adopted,
and the case study, and the main research gaps and limitations were assessed. The final
aim is to provide an overview of the topic to be considered, as a baseline for scholars
who intend to explore new topics in the study of last-mile logistics optimization. The
main research questions the paper is willing to answer are the following: (1) what are the
most authoritative academic works to refer to in the study of urban logistics operations?
(2) What problems have been investigated in the sector in recent years? (3) What are the
main methods and algorithms that emerge from the analysis of these studies and to which
problems are they applied?

The remainder of the paper is organized as follows. Section 2 describes the method-
ology adopted for the selection of the studies and their clustering. Section 3 presents the
results of the analysis, both in terms of the critical review and the bibliometric analysis,
and describes current limitations and gaps in the state of the art. Finally, Section 4 presents
the conclusions.

2. Methodology

The methodology is based on the following steps: (i) the selection of scientific studies
and clustering; (ii) the bibliometric analysis; (iii) the critical review; and (iv) the discussion.

The papers have been selected from the document “State of the art in optimization and
machine learning algorithms applied to last-mile logistics” [5] developed in the SENATOR
project. This analysis was published in June 2021; so, the papers published after that date
are not included in the analysis. The document included a total of 165 references; for the
purpose of this work, the selection of the studies was conducted considering only papers
published and indexed in the Scopus database. Moreover, we excluded references which
were not related to logistics. A classification of the resulting papers was conducted using
the VOSviewer software. VOSviewer is a software tool for constructing and visualizing
bibliometric networks, offering text mining functionality that can be used to construct and
visualize networks of words extracted from a body of scientific literature [6]. The software
allows the performance of a co-occurrence analysis, and this feature was used to cluster
the reviewed studies in different groups according to the main keywords indicated by
the authors.

www.senatorproject.eu
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The software VOSviewer was then used for a deeper bibliometric analysis of the stud-
ies, considering the citations for each document, in order to identify papers which might be
considered as cornerstones, and analysing co-authorship and the authors’ scientometrics
to highlight the role of the main scholars and experts in the field. A critical review was
then conducted on the topics dealt with in the selected papers, in order to analyse the
main problems in the studies, the methods applied, the case studies, and the efficiency
of the proposed approaches. The following section describes in detail the result of the
performed analyses.

3. Results
3.1. Selection of Papers

Of the 77 papers analysed, 17 are review papers, while the others are research articles.
The temporal analysis in Figure 1 shows that the literature on the subject began to flourish
in the early 2000s and has been growing in recent years; this is in line with the trend of
city logistics.
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Figure 1. Temporal analysis of publications (own elaboration).

3.2. Paper Clustering

The bibliometric network of the selected paper was then analysed through VOSviewer.
The software is able to use as input a Scopus list of papers, exported in csv format. Its
algorithm performs word mining of the keywords included by the authors and automat-
ically assigned by the indexing database with a procedure called “co-occurrence”. For
a first analysis, we decided to include as a unit only the authors’ keywords and set the
minimum number of occurrences of a keyword to five. Of the 240 keywords, only 5 met
this threshold. The five resulting words were city logistics, routing, vehicle routing, vehicle
routing problem, and machine learning. In order to create a keyword network, the software
computes for each keyword the total link strength, i.e., the number of publications in
which two keywords occur together. The results of the co-occurrence analysis are reported
in Table 1.

Table 1. Keywords co-occurrence analysis (own elaboration from VOSviewer software results).

Keyword Occurrences Total Link Strength

City logistics 5 3
Routing 5 2

Vehicle Routing Problem 14 2
Machine Learning 7 1

Vehicle Routing 10 0
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The results of the co-occurrence analysis allow the performance of some considerations:

1. The item vehicle routing has a total link strength equal to 0; this is probably due to the
presence of the full vehicle routing problem keyword.

2. For the purposes of our analysis, three of the five keywords may be considered as
synonyms, namely vehicle routing problem, vehicle routing, and routing.

3. This leads us to consider that the three main keywords that can be considered are: city
logistics, machine learning, and vehicle routing problem.

Based on these considerations, and on the fact that we are only considering papers in-
cluding considerations on city logistics, we decided to consider three clusters for our analysis:
Machine Learning Models, Vehicle Routing Optimization Models, and Mixed Approaches.

Citation analysis, i.e., the number of citations for each document and their related con-
nection, was conducted through the VOSviewer software. For this analysis, we considered
studies with at least 1 citation, resulting in a total of 72 papers. The citation values and
the links in the selected network for the first 10 papers are reported in Table 2. It is worth
noticing that, although predictable, the most cited studies are review papers.

Table 2. Citation analysis (own elaboration from VOSviewer software results).

Rank Document Citations Links Type

1 Pillac et al., 2013 [7] 688 10 Review
2 Braekers et al., 2016 [8] 464 10 Review
3 Golden et al., 2008 [9] 312 0 Review
4 Jozefowiez et al., 2008 [10] 304 5 Review
5 Baldacci et al., 2012 [11] 280 8 Review
6 Psaraftis et al., 2016 [12] 179 5 Review
7 Lahyani et al., 2015 [13] 165 10 Review
8 Caceres-Cruz et al., 2014 [14] 162 2 Review
9 Cattaruzza et al., 2014 [15] 113 4 Article
10 Grangier et al., 2016 [16] 109 0 Article

The largest set of connected papers in the selected network resulted in 40 items. The
network of citations is reported in Figure 2; it is interesting to notice that although Figure 1
showed that the literature on the topic has been increasing in the last few years, the most
cited papers within the network are the reviews dating back to before 2016. This justifies
the need for a more recent study of the state of the art on the subject.
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The software also allows the performance of a co-authorship analysis. For this analysis,
we included the authors who wrote at least two of the documents in the network and were
cited at least once; of the 253 authors, 17 met the threshold. In particular, only three authors
have three documents within the network, and, among them, Semet F. is the most cited.
Only 5 out of the 17 authors are connected to each other; the resulting network is shown in
Figure 3 and Table 3. It is worth noticing that the connected authors are the most cited.
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Table 3. Co-authorship analysis (own elaboration from VOSviewer software results).

Rank Author Documents Citations

1 Semet, F. 3 486
2 Cattaruzza, D. 3 191
3 Zhang, Z. 3 78
4 Gendreau, M. 2 797
5 Absi, N. 2 174
6 Feillet, D. 2 174
7 Vidal, T. 2 172
8 Wang, J. 2 111
9 Zhou, Y. 2 111
10 Demir, E. 2 98

In the following, a critical review of the selected papers, according to the three clusters,
is proposed.

3.3. Critical Review
3.3.1. Machine Learning Models

ML algorithms find several research applications in logistics; the main topics that are
drawn from the literature analysis are: warehouse issues, the predictions of traffic flows
and demand, the supply chain process, and customer satisfaction.

Self-learning ML techniques are common in the case of the warehouse cluster. The
algorithms are used to read handwritten documents and to detect frequent events. In this
respect, Guermazi et al. [17] propose an entity-matching approach to validate logistics
entities by matching names and addresses, using word embedding and supervised learning
techniques, with good accuracy results. More recently, Bricher and Müller [18] trained
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deep neural networks to fully automate the control process for container logistics, allowing
operators to add new container types with automatically labelled images from the observed
container-routing workflow. Wojtusiak et al. [19] apply the Inferential Theory of Learning
in multiagent-based simulation environments in the case of autonomous logistics to predict
future traffic flows, showing that agents with learning abilities are more efficient than
inexperienced agents in their tasks.

One of the applications of ML that is spreading the most in logistics is the one related
to the forecasting of demand trends. This is important and needed for manufacturers (to
predict production levels, e.g., [20]), transport operators (for vehicle capacity optimization),
and retailers (to plan their stock) to reduce risks at an early stage of the supply chain. In
2009, Gao and Feng [21] developed a model based on support vector machine regression
with a self-adaptive parameter-adjust iterative algorithm, enhancing the convergence rate
and the forecasting accuracy. More recently Hess et al. [22] tested both classical forecasting
and machine learning methods, adapting the models to the typical demand (intermittent
with a double-seasonal pattern). With the results from the case study with a limited demand
history (less than 2 months), machine learning performs better than traditional methods.
Albadrani et al. [23] explored the use of k-nearest neighbours together with random forests
(RF) and support vector machine (SVM) to support inbound logistics planning. Another
recent work is the one by Lickert et al. [24], who proposed a set of criteria to compare
supervised learning algorithms for classification tasks in reverse logistics.

Another debated issue is the one of customer satisfaction. Tamayo et al. [25] used social
media content to test the public perception of city logistics, using unsupervised learning and
natural language processing to perform content and sentiment analysis. The results showed
that the overall view of city logistics is more positive than negative. Tian et al. [26] propose
a blockchain-based evaluation approach, using the long short-term memory algorithm,
with four criteria affecting customer satisfaction in urban logistics: the cargo damages rate;
the on-time delivery rate; cost performance; and information transparency.

Several studies address the topic of anomaly detection (AD) in logistics. Rosen and
Medvedev [27] developed an algorithm for AD in vehicle trajectories and proved its
effectiveness with an application on a real dataset containing the trajectories of cargo
vessels. Feng and Timmermans [28] dealt with the use of three ML algorithms (Bayesian
belief network, decision tree, and random forest) to analyse anomalies in GPS traces. In 2018,
Sarikan and Ozbayoglu [29] applied the k-nearest neighbour algorithm for unsupervised
learning and image processing to detect vehicular flow directions; the method proved to be
reliable in the case of a single-lane road. Recently, Savic et al. [30] embedded autoencoder-
based AD modules into the 3GPP mobile cellular IoT architecture; they custom-designed a
novel NB-IoT device platform for a smart logistics case study, where the NB-IoT devices
were connected to shipping containers in a factory supply chain to collect data and deploy
and test the modules, with successful AD results.

A growing demand leads to a growing request of spaces for urban logistics; a solution
is the locating of consolidation centres outside the urban area to ensure the readiness
of the delivery while reducing the impact of the heavy vehicle presence inside the city.
El Ouadi et al. [31] developed an ML algorithm for the dimensioning of the centre, con-
sidering the proximity and logistics-demand behaviour; they applied the algorithm to
experimental data, showing its usefulness.

The topic of safety and security has been addressed using ML algorithms by
Zhao et al. [32], who used the generalized regression neural network (GRNN) combined
with particle swarm optimization (PSO) to predict accidents and the a priori algorithm to
analyse the combination of high-frequency risk factors in the whole process, including pick
up, warehouse storage, transport, and the end distribution.

ML algorithms can play a key role when it comes to innovative technological solutions.
In their study, Marcucci et al. [33] discussed the digital twin concept, suggesting the joint use
of behavioral and simulation models within a living lab approach so as to stimulate effective,
well-informed, and participated planning processes; they also forecast both behaviour
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and reactions to structural changes and policy measure implementations. The use of
electric vehicles has been investigated by Kretzschmar et al. [34] using an ML-based range
prediction model, including routing, traffic, and weather data, which is able to reproduce
consumption levels (with an error level below 10%). Another explanatory example is the
study of Sindhwani et al. [35], which proposes an anomaly-detection framework for a fleet
of drones to perform parcel pickup and delivery tasks. The unsupervised algorithm can
fit predictive flight dynamics models while identifying and discarding abnormal flight
missions from the training set, outperforming alternative robust detection methods on
synthetic benchmark problems.

3.3.2. Vehicle Routing Optimization Models

Optimization models have long been used in operational research and, consequently,
in logistics in the travelling salesman problem (TSP) and the vehicle routing problem
(VRP) [9]. The objective of the TSP is to find a route that, starting and ending at the same
point, visits once every node, minimizing the total cost of the trip [36]. In addition, in the
VRP the total demand of customers visited on a route should not exceed the capacity of
the vehicle that performs it. Both problems are combinatorial optimization and NP-hard
problems, whose optimal solution becomes computationally intractable to obtain once the
size of the graph increases [8,37].

More recently, several variants of the VRP have been studied. A first class of variants
is the one of the rich vehicle routing problems (RVRPs) [13], which deal with realistic
optimization functions, uncertainty, dynamism, and other real-life constraints related to
time, distances, and fleet size. Other models considering demand uncertainty are the
ones developed by Sumalee et al. [38] and Chu et al. [39], where the actual demand is
revealed at the customer location and sometimes cannot be met, so that the vehicles have
to return to the depot for replenishment. These types of models are also known as VRP
with split deliveries [40]. Another variant of the VRP, quite common in last-mile logistics,
is the one where pick-up and delivery happen both at the depot and at the customer
location [41]. Pick-up and deliveries can also be simultaneous, i.e., they are served with a
single stop by the supplier [42] or through cross-dock facilities or intermediate depots [43].
In particular, last-mile logistics have increased the interest towards outsourcing and split
deliveries [44,45], with the birth of VRP with outsourcing, in which a customer can be
served using the owned facilities and fleet or by an external (outsourced) carrier.

Last-mile logistics usually needs a heterogeneous fleet; the heterogeneous VRP
(HVRP) [46] assumes that a mixed fleet of vehicles, having distinct capacities, fixed costs,
and travel costs, is used to serve a set of customers, minimizing the total costs or VRP with
load-specific capacity [47], which can only accommodate one or more specific loads (e.g.,
multi-compartment vehicles where each compartment is dedicated to a specific type of
freight). More recently, variants of the HVRP that incorporate these greener vehicles have
been studied [48,49].

The stochastic VRP (SVRP) is a variant of the VRP where one or more parameters
are stochastic, i.e., it incorporates uncertainty in some parameters whose value is not
known, using random variables with a known probability distribution [50]. This means
that routes cannot always be followed as planned and the solution cost must be minimized
by taking into account an expected value. Among the SVRPs, we can find the VRP with
stochastic demand, the VRP with stochastic customers, the VRP with stochastic demands
and customers, and the VRP with stochastic travel and service times [50–53].

The dynamic routing of vehicles comes into play in different situations occurring in
last-mile logistics (e.g., vehicle accidents and re-scheduling), and it may reduce operational
costs, environmental impact, and improve customer satisfaction. The family of problems
called the dynamic VRP (DVRP) takes into account the time factor, i.e., variations in
services and travel times [7]; travel time is a dynamic component of most real-world
applications [7,54]. The most common issue in the DVRP is the online customer requests
during the operation; the DVRP models are gaining popularity due to their ability to model
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just-in-time supply systems and to the diffusion of recent technological advancements, such
as mobile devices or sensors, that allow drivers to dynamically change their routing [54].
An interesting example is the emergence of new customers at an unknown location when
the vehicles are already on route; the objective in this case is to maximize the probability
that these additional customers can be served without violating time constraints [54]. A
dynamism in service times is commonly related to the variation in demand [55], but it can
also be attributed to the availability of resources in the customer premises [56]. A very
recent, similar issue in last-mile logistics is the one related to the delivery or pick-up of
small parcels in the so-called parcel locker system; examples of these types of problems can
be found in Grabenschweiger et al. [57] and Orenstein et al. [58].

When solving the VRP in real-world last-mile logistics, there are several objective
or performance measures which are often conflicting; in some sectors, (e.g., delivery
of perishable foods) customer satisfaction and timely delivery are more important than
minimizing the distance travelled. The multi-objective VRP (MOVRP) deals with these
real-life instances [10,59]. Some of examples of performance measures can be the driver
workload, customer satisfaction, GHG emissions, etc. [15,60]. An important difference with
the classic VRP is that this family of problems has several optimal solutions, i.e., a set of
non-dominated solutions called the Pareto set or Pareto front. The Pareto front is a set of non-
dominated solutions which fulfil the Pareto optimality property, i.e., no individual objective
can be better off without making at least one individual objective worse. Some examples of
the objectives used in the MOVRP are those which are [61] tour-related, expressed in terms
of total travel distance, the number of customers visited, and time needed [59,62]; resource-
related, with both economic and sustainability meaning [63,64]; and node/arc-related,
which imply the minimization of the violated time window constraints [65,66].

The class of algorithms used to solve the VRP variants varies with their degree of
realism [14,37,67]. The classical VRP and all the subvariants are NP-hard, i.e., there is no de-
terministic algorithm that ensures the finding of the optimal solution for big size instances.

Several authors [11,68] used the branch-and-cut method to solve the VRPs; this is a
more detailed [69], defined set of partitioning formulations that are exact methods to solve
VRPs, associating a binary variable with each feasible route to search for optimal solutions.
Another simple algorithm used to solve the TSP and VRPs is 2-opt, which takes a route that
crosses over itself and reorders the sequence of nodes so that it avoids crossing, comparing
every possible valid combination of the swapping mechanism [11].

Metaheuristics are among the most efficient approaches for VRPs, and they are strongly
used in large-scale, real-life applications. Some examples of the use of metaheuristics in
VRPs are reported in the following. Simulated annealing (SA) is often used when the search
space is discrete (e.g., all tours that visit a given set of cities). The variable neighbourhood
search is used when a change of the neighbourhood structure is needed within the search
to find a local minimum [54,67]. In the ant colony optimization (ACO), a population-based
metaheuristic approach, agents build solutions by moving on a graph-based representation
of the problem, with a probabilistic model [70]. One of the metaheuristic approaches most
commonly implemented in software libraries for the VRP is the large neighbourhood Search
(LNS), in which the neighbourhood of a solution is built by “destroying and repairing” part
of the solution (usually with a randomness component); the opportunity to enlarge the
neighbourhoods to be visited made this method very popular in VRP solving [12,33,70,71].

More recently, hybrid metaheuristics have emerged as efficient methods to solve VRPs
and the complex variants [67,72]; hybridization can be performed with metaheuristics or
with other operational research or artificial intelligence techniques. Several authors used
hybrid metaheuristics to solve VRP problems. In their study, [73] proposed a hybrid of meta-
heuristics combining simulated annealing and tabu search; the resulting effect allows move-
ment in the solution space, which results in increasing objective function. Vidal et al. [74]
combined a genetic search metaheuristic with three components of assignment, sequencing,
and route evaluation. Cattaruzza et al. [60] presented a route decomposition technique for
chromosome decoding and a local search to solve the multi-trip VRP with time windows
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and release dates. Liu et al. [75] proposed an iteration of the particle swarm algorithm and
the large Neighbourhood search to escape from local optima. Avci et al. [76] developed a
hybrid local search algorithm in which a non-monotone threshold adjusting strategy was
integrated with tabu search. Jabir et al. [77] used ant colony optimization (ACO) integrated
with the variable neighbourhood search for solving large scale instances and proposed
integer linear programming models for a multi-depot vehicle routing problem. Later in
2018, Liu et al. [78] presented the hybridization of ant colony optimization and tabu search;
ant colony optimization is used to search for a globally promising area, and then tabu
search continues to optimize it to obtain a high-quality solution, with the initial solution
of tabu search being provided by the final solution of ant colony optimization. In 2019,
Hosseinabadi et al. [79] proposed a hybridization of gravitational emulation local search
and the genetic algorithm (GA), using three standard benchmarks found in the literature
and comparing the results with other metaheuristic algorithms, with competitive results.
Lin et al. [80] created an initialization algorithm solution that combines a genetic algorithm
with random components; they propose a specific crossover operator that generates feasible
solutions, checks the constraints of the problem, and integrates with a neighbourhood
search heuristic.

3.3.3. Mixed Approaches

A particular mention is deserved by the class of hybrid algorithms which combine
metaheuristics with operational research or artificial intelligence methods. Yet, in 2009,
Kheirkhahzadeh and Barforoush [81] combined a hybrid ACO algorithm for solving vehicle
routing problems heuristically with an exact algorithm to improve both the performance
and the quality of the solutions. Euchi et al. [82] developed an artificial ant colony based on
the 2-opt to solve dynamic pickup and delivery VRPs; the success of this combination is due
to the intelligent exploitation of the problem structure and in an effective interplay between
the search space and the solution space, elaborating with the local search. More recently,
Gutierrez-Rodríguez et al. [83] presented a method to solve VRPs with time windows, based
on selecting metaheuristics via meta-learning, using a multilayer perceptron classifier for
the prediction task; the experimental results show that this approach can effectively predict
the best metaheuristics for each problem type.

3.4. Discussion and Lessons Learnt

Of the 77 papers analysed, 19 belong to the cluster of machine learning models and 56
to the one related to vehicle routing optimization models, and 3 propose mixed approaches.
This is mainly due to the novelty of the ML approaches. More specifically, all the papers
belonging to the ML cluster and to the mixed cluster can be classified as research articles,
while 17 studies of the VRO cluster can be classified as review papers.

A schematization of the papers belonging to the ML cluster can be found in Table 4.
In particular, it is interesting to see that the main problems analysed through the ML
techniques are related to anomaly detection, forecasting, and planning. The studies mainly
adopt supervised learning techniques, while only Tamayo et al. [25] and Tian et al. [26]
adopt unsupervised algorithms; the case studies treated are varied, and this might be
due to the novelty of the approach. There is not always a verification of the accuracy of
the algorithm, which is essential as it justifies the relationship between the variables of
the input data. Low accuracy is often due to the lack of additional data, the unwanted
presences of outliers in the training samples, or the wrong selection of features. Industrial
AI applications today yield accuracy values of 99% and above to meet especially high
safety demands.

Table 5 shows the articles belonging to the VRO cluster. The methods used are mostly
metaheuristics, often of their own elaboration, or well-known optimization algorithms,
in particular PSO, ACO, LNS, MIP, and GA. The case studies are mainly the synthetic
ones, which are usually analysed in the traditional literature on the VRP. The innovative
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use of algorithms or their own ones are often compared with the existing ones to verify
their effectiveness.

The three articles proposing hybrid approaches [81–83] all deal with variants of the
VRP problem and analyse synthetic case studies.

Finally, as already mentioned, the 17 review papers all deal with the topic of the VRP.
While some articles provide an overview of the generic approach [8,9,67], others deal with
specific problems. Some examples are those of Baldacci et al. [11], who analyse the variants
of the VRP under capacity and time-window constraints; Costa et al. [68], who focus on
branch-price-and-cut algorithms; and Jozefowiez et al. [1], who focus on MOVRP. The
literature on the DVRP is reviewed by Pillac et al. [7] and Psaraftis et al. [12], while the
SVRP is the core of the overviews conducted by Berhan et al. [50] and Oyola et al. [45,46];
finally, Caceres-Cruz et al. [14], Goel et al. [72], and Lahyani et al. [13] conduct a deep
analysis of the RVRP studies.

Table 4. Articles belonging to the ML cluster (source: own elaboration).

Problem Author Method/Algorithm Case Study Efficiency Highlights

Anomaly
Detection

Feng and Timmermans,
2015 [28]

Bayesian belief network,
Decision Tree, RF

Trip purposes by GPS
traces Accuracy >96%

Rosen and Medvedev,
2012 [27] Own elaboration Trajectories of freight

ships -

Sarikan and Ozbayoglu,
2018 [29] K-nearest neighbour Vehicular flow

directions
Reliable in the case of a

single- lane road

Savic et al., 2021 [30] Deep Learning Container-carrying
vehicles

Autoencoders are adequate
for IoT

Sindhwani et al.,
2020 [35] Own elaboration Drones flight

Successfully filters out
anomalies from the

training set
Classification

Tasks Lickert et al., 2021 [24] Supervised Learning Reverse Logistics -

Demand
Forecasting

Gao and Feng, 2009 [21] SVM and Radial Basis
Function Neural Network Synthetic SVM has higher stability

Hess et al., 2021 [22] RF and Support Vector
Regression

Urban delivery
platform Min accuracy >70%

Wojtusiak et al.,
2012 [19]

Inferential Theory of
Learning Autonomous logistics -

Entity matching

Bricher and Müller,
2020 [18] Deep Neural Network Container labelling -

Guermazi et al.,
2020 [7]

Word Embedding and
Supervised Learning

Validate logistics
entities -

Forecasting

Albadrani et al.,
2021 [23]

K-nearest neighbours, RF,
SVM Inbound logistics Accuracy >96%

Kretzschmar et al.,
2016 [34] Own elaboration E-vehicles -

Multicriteria
analysis Tian et al., 2021 [26] Long Short-Term Memory Customer satisfaction

Blockchain into
sustainability in urban

logistics

Planning

Knoll et al., 2016 [20] Framework Inbound logistics -
Marcucci et al.,

2020 [33] Framework Digital Twins -

El Ouadi et al.,
2020 [31] Hybrid ML Dimensioning of UCC Close to 100%

Risk analysis Zhao et al., 2020 [32] GRNN, PSO Safe operation of urban
logistics Accuracy = 80%

Sentiment
analysis Tamayo et al., 2020 [25]

Unsupervised Learning,
Natural Language

Processing

Opinions on city
logistics Positive feelings
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Table 5. Articles belonging to the VRO cluster (source: own elaboration).

Problem Author Method/Algorithm Case Study Efficiency Highlights

Capacitated VRP Hosseinabadi et al.,
2019 [79]

Gravitational Emulation Local
Search and GA Synthetic Competitive with existing

algorithms

DVRP

Grabenschweiger et al.,
2021 [57] Own elaboration Parcel locker -

Liu et al., 2019 [55] Stochastic predictive control Demand uncertainty Small- up to medium-scale
real-world routing problems

Okulewicz and Mańdziuk,
2019 [54]

PSO and Differential
Evolution (DE), discrete
encoding utilizing GA

Demand uncertainty Both PSO and DE outperform
GA

Orenstein et al., 2019 [58] Savings heuristic, petal
method and tabu search Parcel locker Outperforms existing

algorithms

Yan et al., 2019 [56] MIP and dynamic
neighbourhood search Variation in supply -

MOVRP

Cattaruzza et al., 2016 [60] Hybrid metaheuristics City distribution centres Competitive with existing
algorithms

Cattaruzza et al., 2014 [15] Memetic algorithm Synthetic Outperforms existing
algorithms

Ganji et al., 2020 [63] PSO, Non-dominated Sorting
GA II, and ACO Supply chain scheduling NSGAII outperforms PSO and

ACO
Hassanzadeh and

Rasti-Barzoki, 2017 [64] Own elaboration Supply chain scheduling Outperforms other algorithms

Qin et al., 2019 [66] Own elaboration Cold chain logistics -
Sivaram Kumar et al.,

2018 [62]
Fitness Aggregated Genetic

Algorithm (FAGA) Synthetic -

Wang et al., 2016 [42]
Multi-objective local search
(MOLS) and multi-objective
memetic algorithm (MOMA)

Reverse logistics MOLS outperforms MOMA

Wang et al., 2020 [59] Own elaboration Synthetic Outperforms existing
algorithms

Zhang et al., 2019 [65] ACO
Synthetic and real case

(food distribution
logistics)

Competitive with existing
algorithms

Periodic
inventory RP Liu et al., 2016 [75] PSO and LNS Synthetic Outperforms existing

algorithms

RVRP

Alcaraz et al., 2019 [44] Own elaboration Synthetic -
Ancele et al., 2021 [43] SA Synthetic -

Chu et al., 2017 [39] Two-stage heuristic solution Demand uncertainty -

Gu et al., 2019 [40] LNS Split deliveries Competitive with existing
algorithms

Jabir et al., 2017 [77]
ACO, Variable

Neighbourhood Search, and
Integer Linear Programming

Multi-depot
Solves both small- and

large-scale problem instances
in reasonable amount of time

Sumalee et al., 2011 [38] Stochastic multi-modal
network model Demand uncertainty -

SVRP Bernardo et al., 2018 [51] Sampling strategies Synthetic -

Two-echelon VRP
Caggiani et al., 2021 [49] MILP model Use of green modes -
Grangier, et al., 2016 [16] LNS Synthetic -

VRP Andelmin and Bartolini,
2017 [69] Own elaboration Synthetic Instances with up to ∼110

customers

Avci et al., 2016 [76] Hybrid metaheuristics Reverse logistics Competitive with existing
algorithms

Baller et al., 2020 [45] Own elaboration Synthetic -

Ghilas et al., 2016 [71] LNS Pickup and delivery with
time windows

High-quality routing solutions
for relatively large instances in
a reasonable amount of time

Lagos et al., 2018 PSO Reverse logistics Competitive with existing
algorithms

Lin et al., 2009 [73] SA and Tabu Search Synthetic Competitive with existing
algorithms

Lin et al., 2019 [80] Hybrid metaheuristics Synthetic -

Liu et al., 2018 [78] ACO and Tabu Search Cold-chain products
(compatibility constraints)

Instances with up to 80
customers and 10 good types

Mavrovouniotis and Yang,
2015 [70] ACO Synthetic Immigrants schemes improve

the performance of ACO
Sivaram Kumar et al.,

2014 [61]
Fitness Aggregated Genetic

Algorithm (FAGA) Synthetic Competitive with existing
algorithms

Vidal et al., 2015 [74] Hybrid metaheuristics Synthetic
Pre-processing phase may

become time-consuming for
instances with large clusters
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4. Limitation of the Study and Future Research

The analysis conducted does not claim to be fully inclusive of all the studies relating to
urban logistics in recent years; it gives, rather, a baseline for the definition of the state of the
art on operations relating to urban logistics, with the aim of answering the three research
questions defined in Section 1. The study, therefore, has some unavoidable limitations. The
most evident is related to the need to refer only to works already published and indexed, in
particular those on the Scopus database. As already detailed in Section 2, the analysis refers
to studies published and indexed before June 2021. This does not exclude the potential
existence of new authoritative studies that can be identified in subsequent analyses (see,
e.g., [84,85]), bearing in mind the rapid evolution of the scientific publications related to this
topic. From the analysis conducted, it emerges that future research still has room to focus
on improving the efficiency of existing algorithms but, above all, on the application of the
methods based on artificial intelligence and machine learning to improve the automation
of logistics operation.

5. Conclusions

In recent years, we have been witnessing an increase in the phenomenon of urban
logistics, mainly due to the digitization of purchases and the consequent increase in online
sales. However, last-mile logistics brings with it various externalities, and scholars and
companies are always looking for solutions to improve their efficiency, both by relying
on traditional methods and by resorting to recently developed methodologies, linked to
artificial intelligence. This study offers an overview of the main scientific approaches
proposed by scholars in recent years for improving the performance of urban logistics,
focusing, on the one hand, on traditional techniques related to operational research and, on
the other, on new methodologies related to machine learning.

The results of the review of the main published and indexed articles show an increase
in research in the sector in the last few years. In particular, the main techniques used in
the case of the ML approaches include supervised learning, with a variety of case studies
analysed. Particular attention is paid to the problems of demand forecasting and anomaly
detection. The analysis paves the way for the development and testing of innovative
unsupervised learning techniques for last-mile logistics.

The classic optimization techniques linked to operational research focus on the VRP
and its variants, with particular attention to the issues of demand forecasting, reverse
logistics, and the multimodal fleet. Moreover, the review shows that new models have
been developed that adapt the classic models to real problems and that most of the case
studies focus on urban last-mile logistics. It can be seen that due to high customer demand
and the need to improve environmental quality in cities, there is a tendency to create
collaborative models between logistics operators, which is one of the main challenges in
last-mile logistics today.

Although the manuscript cannot be considered a systematic literature review as it
does not include all the potential sources, it can be considered a baseline publication for
other authors who want to further develop research on the topic.

In summary, the analysis conducted can help to identify the best methods and algo-
rithms to be applied for each problem and case study and can serve as a basis for future
studies aiming at developing innovative solutions in last-mile logistics.
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