
Citation: Liu, L.; Guo, K.; Gao, Z.; Li,

J.; Sun, J. Digital Twin-Driven

Adaptive Scheduling for Flexible Job

Shops. Sustainability 2022, 14, 5340.

https://doi.org/10.3390/su14095340

Academic Editors: Yoshiki

Shimomura and Shigeru Hosono

Received: 25 March 2022

Accepted: 27 April 2022

Published: 28 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Digital Twin-Driven Adaptive Scheduling for Flexible
Job Shops
Lilan Liu 1,2, Kai Guo 1,2, Zenggui Gao 1,2,* , Jiaying Li 1,2 and Jiachen Sun 1,2

1 School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China;
lancy@shu.edu.cn (L.L.); betta@shu.edu.com (K.G.); ljy1201@shu.edu.com (J.L.);
sunjiachen@shu.edu.com (J.S.)

2 Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University,
Shanghai 200444, China

* Correspondence: gaozg@shu.edu.cn

Abstract: The traditional shop floor scheduling problem mainly focuses on the static environment,
which is unrealistic in actual production. To solve this problem, this paper proposes a digital
twin-driven shop floor adaptive scheduling method. Firstly, a digital twin model of the actual
production line is established to monitor the operation of the actual production line in real time and
provide a real-time data source for subsequent scheduling; secondly, to address the problem that the
solution quality and efficiency of the traditional genetic algorithm cannot meet the actual production
demand, the key parameters in the genetic algorithm are dynamically adjusted using a reinforcement
learning enhanced genetic algorithm to improve the solution efficiency and quality. Finally, the digital
twin system captures dynamic events and issues warnings when dynamic events occur in the actual
production process, and adaptively optimizes the initial scheduling scheme. The effectiveness of the
proposed method is verified through the construction of the digital twin system, extensive dynamic
scheduling experiments, and validation in a laboratory environment. It achieves real-time monitoring
of the scheduling environment, accurately captures abnormal events in the production process, and
combines with the scheduling algorithm to effectively solve a key problem in smart manufacturing.

Keywords: digital twin; flexible job-shop scheduling problem (FJSSP); reinforcement learning
enhanced genetic algorithm (RLEGA); dynamic job-shop scheduling

1. Introduction

From the perspective of each country’s strategy, whether it is the “Industrial Internet”
strategy of the United States [1], the mechanization, electrification and informatization
of Germany to the latest “Industry 4.0” strategy [2] or China’s “informatization drives
industrialization, industrialization promotes informatization” to the deep integration of the
two, to the latest “Made in China 2025” manufacturing power development strategy [3], we
can see that intelligent manufacturing is the common development trend of all countries in
the world. How to achieve the integration of the physical world and the information world
is the key to realize intelligent manufacturing.

Digital twin (DT), as a bridge to realize the physical world and the information
world [4], is one of the key technologies to realize smart manufacturing. DT technology can
effectively perform real-time mapping and bidirectional interaction between the physical
world and the information world, thus deeply integrating operational data, environmental
changes, dynamic disturbances, and other information in the actual physical production
line with data in the virtual space, such as statistical analysis and optimal scheduling.
In recent years, scholars in various countries have conducted a lot of research on DT
technology, and both academia and industry have focused on digital twin technology as the
key to achieve intelligent manufacturing. Digital twin workshop is a new operation mode
of future workshop proposed by Professor Tao Fei [5] in 2017. Tao Fei put forward the
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concept of digital twin workshop and discussed the key technologies and implementation
methods of digital twin workshop. Milton et al. [6] applied digital twin technology to
the field of fault diagnosis and gave examples to verify the effectiveness of the method.
Shanghua Mi et al. [7] applied digital twin technology to predictive maintenance to improve
the accuracy of fault diagnosis and prediction. Song Yue et al. [8], in order to solve the
multifield coupling of optoelectronic detection system caused by performance degradation
problem, established a digital twin model, and the simulation verified that the digital twin
technique could better solve the performance prediction problem. Gabriel Fedorko et al. [9]
applied the finite element model to the digital twin technique to explore the possibility
of DT in the measurement field. Chunxia Lu et al. [10] constructed a digital twin model
of a gear measurement center twin model as a platform for the evaluation of various
measurement software, and the results show that the proposed method can effectively
identify errors in measurement software.

The flexible job-shop scheduling problem (FJSSP) is an extension of the traditional clas-
sical job-shop scheduling problem (JSSP), which has proven to be the well-known NP-hard
problem (nondeterministic polynomial time hard). The traditional job-shop scheduling is to
arrange the processing sequence of workpieces on the machine under certain optimization
objectives. The processing path of workpieces is determined, and the processing machine
of each process is unique. The flexible job-shop scheduling of a processing machine can
often process multiple workpieces; the processing path of workpieces is uncertain, and the
processing machine of each process is not unique, which makes the enterprise have higher
flexibility and wider adaptability and increases the difficulty of solving it. The flexible
job-shop scheduling problem was first proposed by Brucker and Schile in 1990 [11]. Subse-
quently, more and more researchers started to study this problem. Shopfloor scheduling
plays an important role in the field of intelligent manufacturing to allocate tasks effec-
tively and improve productivity. Tian Songling et al. [12] proposed a shopfloor adaptive
scheduling method for the dynamic events of machine failures that may occur in FJSSP.
M.B.S. Sreekara Reddy et al. [13] studied the FJSSP multiobjective model of FJSSP and
discussed the system performance when machine failure occurs. Yu Tianbiao et al. [14]
designed a new genetic algorithm coding method for solving the dynamic scheduling
problem of FJSSP. Hao Chinchang et al. [15] proposed a hybrid genetic algorithm for
distributed FJSSP, and experiments showed that the proposed method was successful.
Dolgui Alexandre et al. [16] investigated the application of optimal control to the schedul-
ing problem in an Industry 4.0 environment. Wang jin [17] proposed a multi-intelligent
IoT FJSSP real-time scheduling architecture and verified that the method outperforms the
traditional dynamic scheduling strategy through simulation. Yilin Fang et al. [18] made a
preliminary exploration of the role of the digital twin in JSSP, proposed a new working prin-
ciple of job shop, considered the dynamic events that may occur in the actual production
process, and finally verified the feasibility of this new model through a prototype. Zhifeng
Liu et al. [19], combined with digital twin and super network, developed a new intelligent
scheduling method for multivariety and small-batch production workshops and simulated
and optimized the initial scheduling scheme by using virtual workshop. Shu Luo [20]
used reinforcement learning to simulate and solve for the dynamic events of new order
insertion that may occur during the actual production process. Meng Zhang et al. [21] pro-
posed a dynamic scheduling method enhanced by DT to predict the machine and trigger
rescheduling in advance and verified the effectiveness of the method with an example.

In general, digital twin technology can deeply integrate the physical world and in-
formation world of the actual production workshop. By collecting the data in the actual
production process and mapping the data to the virtual workshop, the virtual workshop
can be optimized through the data, and finally fed back to the actual workshop to form
a closed loop. However, there are few works of literature on the combination of digital
twinning and job-shop scheduling. Several research attempted to combine digital twinning
technology with optimization function to realize data-driven job-shop adaptive scheduling.
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The overall framework of this paper is shown in Figure 1. According to the
five-dimensional model proposed by Tao et al. [5], we establish the framework of digi-
tal twin workshop, including physical entity layer, simulation application layer, service
layer (workshop scheduling system), data, and the connection between various layers.
This paper proposes a digital twin-driven workshop adaptive scheduling method. Firstly,
the digital twin workshop is established to realize the real-time mapping of the physical
workshop. Then, FJSSP is modeled, and the results are obtained by reinforcement learning
enhanced genetic algorithm (RLEGA). The possible dynamic events in the workshop are
simulated. Finally, based on the digital twin system, the dynamic events of new order
arrival and machine failure in the actual production process of the workshop are captured
to trigger rescheduling. The feasibility of digital twin technology in job-shop scheduling
is verified. Figure 1 includes physical entity layer, simulation application layer, and ser-
vice layer (job-shop scheduling system). The physical entity layer mainly includes robot
arm, materials, suction cup, table, manufacturing environment, automated guided vehicle,
3D printing fixed table, 3D printing car model, and automated unloading device. The
simulation application layer mainly includes using a 3D modeling tool and weighting
tool to model the actual production line and visualize the final results. In the intelligent
production line, we can use sensor networks and MES (manufacturing execution system) to
obtain real-time dynamic data (such as equipment data, logistics data, production progress
data, order data, etc.) so as to establish a stable and real-time digital twin system. The
service layer senses the dynamic events in the production process in real time through
the obtained data. The dotted line in Figure 1 indicates that it can be skipped if there are
no dynamic events. Every time an abnormal event occurs, it triggers rescheduling, and
re-executes the algorithm to obtain the latest results.

Figure 1. The framework of the proposed method.
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The rest of the paper is organized as follows. In Section 2, the digital twin workshop is
modeled. Section 3 describes and models the FJSSP problem. Section 4 presents a dynamic
scheduling method based on RLEGA. Experimental verification is carried out in Section 5.
Finally, Section 6 gives the conclusion and future work.

2. Digital Twin Workshop Modelling
2.1. Data Acquisition and Processing

The real-time acquisition and processing of relevant data in a physical workshop is
an important prerequisite for establishing high-quality digital twin models. The digital
twin model is established with reference to the digital twin model construction theory and
the digital twin model evaluation index system proposed by Tao Fei [22,23]. The digital
twin model is shown in the simulation application layer of Figure 1. Through the collection
and processing of all multisource heterogeneous data involved in the real-time scheduling
system, it provides data support for the digital twin-driven intelligent workshop scheduling.
Based on RFID (radio frequency identification), sensors, manipulators, and the secondary
development interface and communication module provided by AGV (automated guided
vehicle), the data of the physical workshop is collected. Due to the complexity of the
workshop production environment, the collected data often inevitably have null values,
error values, or abnormal values, which are collectively referred to as noise data. Noise
data seriously affects the synchronous simulation effect of a digital twin system, so it is
necessary to filter the collected data to make the digital twin system achieve the ideal effect.
In this paper, fuzzy c-means clustering algorithm (FCM) is used for data filtering, and the
noise-filtering method based on Euclidean distance is used.

2.2. Data Modelling for Job-Shop Scheduling

The digital twin shop uses data collected in real time on the physical shop floor to
drive 3D models that map the physical shop floor in real time. Data modelling refers to
the classification, association, and aggregation of various multisource heterogeneous data
collected from the shop floor to clarify the relationships between the data in a graphical
way [24]. Data modelling provides the data basis for real-time monitoring of the physical
shop floor and adaptive scheduling of the shop floor. In this paper, as shown in Figure 2,
we build a data model for digital twin shop floor adaptive scheduling that drives the 3D
model to run and perform solving. The solid diamond arrow in the figure represents the
aggregation relationship, which is used to describe the relationship between “part and
subject”, and the arrow points from the part to the subject. 1 and * in the figure represent
the association relationship, indicating that the properties of one class save a reference to
one or more instances of another class. 1 and * represent the number of objects of another
corresponding class, 1 represents one, and * represents multiple. In this paper, we divide
the data into three parts according to “modelling-monitoring-task scheduling”: static
model of virtual workshop, dynamic monitoring information of virtual workshop, and task
scheduling solution system. In Figure 2, there are three classes pointing to the digital twin
workshop model. Among them, the static model of the virtual workshop mainly includes
the geometric and logical information of the workshop, which is not changed during
the actual operation of the production line, such as “equipment-product-environment”
information. The dynamic monitoring information of the virtual workshop mainly includes
the data collected in real time during the operation of the physical production line, which
is the core of the data model. All kinds of dynamic information collected in real time
can be referred to the class of dynamic monitoring information of the virtual shop floor
with arrows in Figure 2. The workshop scheduling system optimizes the scheduling of
tasks based on the real-time data collected by the data twin workshop and capture various
abnormal events occurring in the physical production line in real time, mainly including
new order insertion and equipment failure.



Sustainability 2022, 14, 5340 5 of 17

Figure 2. Data model for job-shop scheduling system.

2.3. Synchronous Mapping of Digital Twin Workshop

After completing the two steps, the last step is to realize the synchronous mapping of
the digital twin workshop. By programming, the collected data is assigned to the 3D model
in the virtual scene, and the mapping relationship between the 3D model and real-time
data in the virtual scene is established so as to drive the behavior of the virtual object.

3. Problem Description and Modeling

In the flexible job-shop scheduling problem, each process can be selected to process
on multiple machines, and the processing time on different machines is different. Flexible
job-shop scheduling problems reduce machine constraints, expand the search range of
feasible solutions, and increase the complexity of the problem. The description of flexible
job-shop scheduling problems is as follows: there are m machines {M1, M2, · · · , Mm} in a
workshop system and n jobs {J1, J2, · · · , Jn} need to be processed. The processing of each
job needs to go through one or more processes, and the process sequence is determined in
advance. Each process can be processed on different machines, and the processing time of
the process varies according to the performance of the machine. According to the process
path of the workpiece and the optional processing equipment of each process, each process
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is assigned to the machine that meets the processing conditions. At the same time, on the
premise of meeting the process constraints and equipment processing conditions, sort the
operation sets assigned to each processing equipment.

This paper considers the evaluation index commonly used in actual production:
maximum completion time Cmax (makespan) is the smallest. Completion time is the time
for each job to complete all its processes, and the longest time is the maximum completion
time. The maximum completion time is the most fundamental index to measure the
scheduling scheme, which mainly reflects the production efficiency of the workshop. The
objective function is shown in Equation (1). Where Cj is the completion time of job j.
Equations (2) and (3) represent the process sequence constraints of each job; Equation (4)
represents the constraint of the completion time of the job, that is, the completion time of
each job cannot exceed the total completion time; Equations (5) and (6) means that only one
process can be processed by the same machine at the same time; Equation (7) represents
machine constraints, that is, the same process can only be processed by one machine at the
same time; Equations (8) and (9) indicate that there can be cyclic operation on each machine;
and Equation (10) indicates that each parameter variable must be a positive number. The
parameters are described in Table 1.

Table 1. Meaning of parameters.

Parameters Descriptions

n The total number of jobs

m The total number of machines

i, e The number of machines

j, k The number of jobs

hj The total number of operations of job j

h, l The number of operations

mjh The number of optional processing machines for the h operation of the job j

Ojh The hth operation of the jth job

pijh The time of operation h of job j on machine i

sjh The start time of the h operation of the job j

cjh The completion time of the h operation of the job j

L A positive number large enough

xijh When machine i is selected for operation Ojh, the value is 1, otherwise 0

yijhkl When operation Oij is preceded by operation Ohk, the value is 1, otherwise 0

f = min
(

max
1≤j≤n

(Cj)

)
j = 1, . . . , n (1)

sjh + xijh × pijh ≤ cjh i = 1, . . . , m; j = 1, . . . , n; h = 1, . . . , hj (2)

cjh ≤ sj(h+1) j = 1, . . . , n; h = 1, . . . , hj − 1 (3)

cjhj
≤ Cmax j = 1, . . . , n (4)

sjh + pijh ≤ skl + L
(

1− yijhkl

)
j = 0, . . . , n; k = 1, . . . , n; h = 1, . . . , hj; l = 1, . . . , hk; i = 1, . . . , m (5)

cjh ≤ sj(h+1) + L
(

1− yikj(h+1)

)
j = 1, . . . , n; k = 0, . . . , n; h = 1, . . . , hj − 1; l = 1, . . . , hk; i = 1, . . . , m (6)
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mjh

∑
i=1

xijh = 1 h = 1, . . . , hj; j = 1, . . . , n (7)

n

∑
j=1

hj

∑
h=1

yijhkl = xikl i = 1, . . . , m; k = 1, . . . , n; l = 1, . . . , hk (8)

n

∑
k=1

hk

∑
l=1

yijhkl = xijh i = 1, . . . , m; j = 1, . . . , n; h = 1, . . . , hk (9)

sjh ≥ 0, cjh ≥ 0 j = 0, 1, . . . , n; h = 1, . . . , hj (10)

4. Reinforcement Learning Enhanced Genetic Algorithm
4.1. Genetic Algorithm

A genetic algorithm is designed and proposed according to the evolution law of
organisms in nature. It is one of the most classical algorithms in the field of job-shop
scheduling. The main parameters of genetic algorithms are as follows:

1. Population size NP. Population size affects the final result of genetic optimization
and the execution efficiency of genetic algorithm. When the population size NP is
too small, the performance of genetic optimization is generally not very good. Larger
population size can reduce the chance of genetic algorithm falling into local optimal
solution, but larger population size means higher computational complexity.

2. Crossover probability Pc. The crossover probability Pc controls the frequency with
which the crossover operation is used. Larger crossover probability can enhance the
ability of genetic algorithm to open up new search areas, but the possibility of the
high-performance mode being destroyed increases. If the crossover probability is too
low, the genetic algorithm search may fall into a slow state.

3. Mutation probability Pm. Mutation is an auxiliary search operation in genetic algo-
rithms. Its main purpose is to maintain the diversity of the population. Generally,
low-frequency mutation can prevent the possible loss of important genes in the
population. High-frequency mutation makes the genetic algorithm tend to pure
random search.

4. Termination evolution algebra G of genetic operation. The terminating evolution
algebra G is a parameter representing the end condition of the genetic algorithm.

The flow chart of solving the flexible job-shop production scheduling problem is
shown in Figure 3.

When using genetic algorithms to solve flexible job-shop scheduling problems, it
is necessary to encode the chromosome. The purpose of coding is to realize crossover,
mutation, and other operations. The legitimacy and feasibility of chromosomes must be
considered. FJSP includes two parts: machine selection and process selection. Machine
selection is to solve which machine each process is processed on, while process selection is to
solve all processes and determine the sequencing and start time after processing machines.
To solve the above problems, the chromosome coding is in the form of segmented coding,
which is composed of machines selection (MS) and operations selection (OS), as shown
in Figure 4. Taking Table 2 as an example, in the upper-left corner of the figure are all
processes of job 1 and job 2. The optional machine of process O11 is 5, and the number
4 corresponds to the optional fourth machine M4. The optional machine of process O12
is 2, and the number 1 corresponds to the optional first machine M2. The order in which
the part number of the operation code appears indicates the processing order between the
parts. As shown in Figure 4, assuming that the chromosome of the process is [2,2,1,1,2], the
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first 2 represents the first process of job 2, and the second 2 represents the second process of
job 2. By analogy, the final processing sequence is O21 −O22 −O11 −O12 −O23.

Figure 3. Flow chart of genetic algorithm.

Figure 4. Chromosome coding.
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Table 2. 2 × 5 flexible job shop example.

Jobs Operation
Optional Processing Machine

M1 M2 M3 M4 M5

J1
O11 2 6 5 3 4
O12 − 8 − 4 −

J2

O21 3 − 6 − 5
O22 4 6 5 − −
O23 − 7 11 5 8

4.2. State, Action, and Reward

Crossover probability Pc and mutation probability Pm are the most critical parts of
the algorithm, which directly affect the performance of the algorithm. The greater the
crossover probability, the easier it is to produce new individuals. However, if it is too large,
it destroys the structure of individuals. If the crossover probability is too small, the search
efficiency of the algorithm is greatly reduced. For the mutation probability, if the value
is too small, it is not easy to produce new individuals. If the mutation probability is too
large, the genetic algorithm becomes a random search algorithm, and the efficiency of the
algorithm is greatly reduced. Therefore, it is necessary to use some methods to make us
choose the crossover rate and mutation rate better. In this paper, reinforcement learning is
used to adaptively adjust the key parameters in the genetic algorithm.

Markov property means that the state of the current time is only related to the state and
action of the previous time and has nothing to do with the actions and states of other times.
Set ht = {s1, s2, s3, . . . , st} (ht includes all states before time t), then the Markov property
can be expressed by mathematical formula as shown in Equation (11). If the state transition
of the multistage decision problem satisfies the Markov property, the decision problem is a
Markov decision problem (MDPs). Markov decision process can be described as 5 tuples,
as shown in Equation (12). Where S represents the state space and is a description of the
environment. A(s) represents the action space that can be selected in state s. The R agent
represents the reward given by the environment after making the action. π(a | s) represents
the probability distribution of output action a at state s.

p(st+1 | st, at) = p(st+1 | ht, at) (11)

E = {S,A(s), R, P, π(a | s)} (12)

State. In order to use reinforcement learning to realize the adaptive adjustment of
key parameters of genetic algorithm, the setting of state should accurately represent the
current state of genetic algorithm. The average fitness of the population, the diversity of
the population, and the fitness of the optimal individual are used to represent the current
state of the genetic algorithm, as shown in Equations (13)–(15).

f ∗ =
∑N

i=1 f
(
xt

i
)

∑N
i=1 f

(
x1

i
) (13)

d∗ =
∑N

i=1

∣∣∣∣ f (xt
i )−

∑N
i=1 f (xt

i )
N

∣∣∣∣
∑N

j=1

∣∣∣∣ f (x1
j )−

∑N
j=1 f (x1

j )

N

∣∣∣∣ (14)

p∗ =
max f

(
xt)

max f (x1)
(15)

S∗ = w1 f ∗ + w2d∗ + w3m∗ (16)
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where f
(

xt
i
)

represents the fitness of the ith individual in generation t, N represents the
size of the population, and max f

(
xt) represents the individual with the largest fitness

value in generation t. w1, w2, and w3 represents weight, w1 + w2 + w3 = 1, initially 0.3, 0.3,
and 0.4, respectively.

Action. The selection of action is Pc and Pm. The common value of Pc is between
0.4 and 0.9. Set the interval between each action to 0.05. For example, when the action is
selected as a1, Pc ∈ (0.4 , 0.45), Randomly select a number in the interval as the value of Pc.
Similarly, the common value of Pm is between 0.01 and 0.31. Set the interval between each
action to 0.03. For example, when the action is selected as a1, Pm ∈ [0.01 , 0.04), randomly
select a number in the interval as the value of Pm. There are 10 actions in total.

Reward. The reward function is set to be related to the selection of Pc and Pm. As
shown in Equations (17) and (18). Equation (17) indicates that if the optimal individual
of the new generation has higher fitness than the optimal individual of the previous
generation, they are rewarded. Equation (18) shows that the average individual fitness of
the new generation is rewarded if it is higher than that of the previous generation.

rc =
max f

(
xt

i
)
−max f

(
xt−1

i

)
max f

(
xt−1

i

) (17)

rm =
∑N

i=1 f (xt
i )−∑N

i=1 f (xt−1
i )

∑N
i=1 f (xt−1

i )
(18)

4.3. Training Process

Deep Q network (DQN) is a method combining deep learning and reinforcement
learning proposed by the DeepMind team [25]. A neural network is used to replace the
table of the traditional Q learning algorithm to fit the Q value of state action value function.
See Equation (19) for details. rt+1 is the reward obtained at t + 1, γ is the discount factor,
θ− is the parameter of the target network, and argmax

a′
Q(st+1, a′; θ−) indicates the action of

selecting the maximum Q value.

QDQN
t = rt+1 + γQ

(
st+1, argmax

a′
Q
(
st+1, a′; θ−

)
; θ−

)
(19)

In the process of using DQN, using a neural network to select the maximum Q value
leads to overestimation, and the estimated value is greater than the real value, which affects
the effect of the algorithm. To solve the problem of overestimation, the DeepMind team
proposed a double deep Q network (DDQN) [26]. The specific calculation of Q value is
shown in Equation (20). θ is the main network parameter. The main network is used to
select the action, and the target network estimates the Q value, which effectively avoids the
problem of overestimation [27].

QDDQN
t = rt+1 + γQ

(
st+1, argmax

a′
Q
(
st+1, a′; θ

)
; θ−

)
(20)

Based on DQN and DDQN, a dueling double deep Q network (D3QN) introduces
a dueling network, improves the structure of a neural network, and adds an advantage
function, as shown in Equation (21) [28]. θ is the shared network parameter, θA and θV

represent separate network parameters, V
(
s; θV) is the state value function, and A

(
s, a; θA)

is the advantage function. Through the advantage function, we can judge the good or bad
degree of the action, which effectively increases the effect of the algorithm.

Q(s, a; θ) = V(s; θV) +

(
A(s, a; θA)− 1

|A|∑a A(s, a′; θA)

)
(21)
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Based on the above theory, the pseudocode of the algorithm training process is shown
in Algorithm 1.

Algorithm 1 Pseudocode of the RLEGA Algorithm

1: Initialize the GA: population size N, maximum iterations T
2: Initialize the RL: replay memory D, initialize action-value function Q with random weights θ,
and initialize target action-value function Q̂ with weights θ− = θ

3. for t = 1, 2, . . . , T do
4. Calculate status value st = [ f ∗, d∗, p∗, S∗ ]
5. Randomly select action at with probability ε

6. Otherwise, choose at = argmax
a

Q(st, a; θ) with 1− ε probability

7. Observe state st+1 and reward rt
8. store (st, at, rt, st+1) in D
9. Randomly sample a batch of data from D

10. Set yi =


rj if episode terminates at step j + 1

rj + γQ̂

(
st+1, argmax

a′
Q(st+1, a′; θ); θ−

)
otherwise

11. Compute
(

yi −Q(sj, aj; θ)
)2

12. Update weights θ using gradient descent
12. every C steps reset Q̂ = Q
13. end

5. Experiment and Analysis
5.1. Simulation Results

In order to verify the feasibility and effectiveness of the above algorithm in solving
the dynamic flexible job shop, this section designs experiments to solve the dynamic
scheduling problem of flexible job shop with random arrival of jobs. Because the dynamic
scheduling problem has no benchmark similar to the traditional scheduling problem, this
experiment constructs test cases suitable for this algorithm according to the characteristics
of the problem.

In order to fully verify the rationality and effectiveness of the algorithm, this experi-
ment generates test examples of different sizes. The number of processing jobs is divided
into 20 and 100 jobs, and the corresponding number of processing machines is 10 and 20,
respectively. For the number of jobs of different sizes, the number of processes also obey
the discrete uniform distribution of [1, 10]. The processing time of each job follows the
uniform distribution of [1, 100]. Since the job arrives randomly, assuming that the arrival
of the jobs is a Poisson process, the arrival time interval of the job follows the exponential
distribution, and the average arrival time interval is shown in Equation (22):

λ =
∑n

p=1 ∑
op
q=1 Ppq

mnη
(22)

In the above formula, λ Represents the average interval between the arrival of jobs, Ppq
represents the processing time of the qth operation of job p, op is the number of operations
of job p, m represents the number of machines, n represents the number of jobs, and
η represents machine utilization. In this experiment, the machine utilization rate is 75%
and 90%. There are three kinds of flexibility: 20%, 50%, and 100%

In order to better compare the effect of RLEGA, ordinary GA, tabu search (TS), a
commonly used heuristic algorithm, and some scheduling rules are selected for comparison
in flexible job shop, machine design selection, and job selection rules. In this experiment,
we select the machine selection rule as LWT (least waiting time), which means we select
the machine with the smallest total processing time waiting for the processing process.
In terms of job selection, we have selected SPT (shortest processing time)—the shortest
process processing time; LPT (longest processing time)—the longest process time; SSO
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(shortest processing time of subsequence operation)—the processing time of the remaining
processes is the shortest; LSO (longest processing time of subsequence operation)—four
different scheduling rules with the longest processing time of the remaining operation are
combined. Through comparison, the effectiveness of RLEGA is fully verified.

The parameters set by each algorithm are shown in Table 3. On the generated test cases,
the operation results of each algorithm are shown in Table 4. Taking S1_20_10_75%_20% as
an example, the number of test case_jobs_machines_ machine utilization_ flexibility. Each
algorithm runs 10 times, and the average value, maximum value, and minimum value are
shown in the table. According to the operation results, the box diagram can be obtained, as
shown in Figure 5. It can be seen from the results that the results of RLEGA on each test case
are better than ordinary GA, TS algorithm and various scheduling rules. The minimum,
maximum and average values of only one test case are slightly larger than ordinary genetic
algorithm. Therefore, we can conclude that using the reinforcement learning enhanced
genetic algorithm has a good effect in solving the dynamic scheduling problem of flexible
job shop.

Figure 5. Box diagram.

Table 3. The parameters of algorithm.

Parameter Value

RLEGA
Number of iterations 1000
Learning rate 10−3

Discount rate 0.95
Batch size 128
Buffer size 100,000
Greedy rate 0.9

TS
Number of iterations 500
Preset probability 0.5
Taboo table length 10



Sustainability 2022, 14, 5340 13 of 17

Table 4. Operation results.

RLEGA GA TS LWT +
SPT

LWT +
LPT

LWT +
SSO

LWT +
LSO

Test Case Avg Max Min Avg Max Min Avg Max Min − − − −

S1_20_10_75%_20% 1411.50 1429.79 1395.49 1437.32 1464.59 1421.19 1464.63 1479.95 1445.47 1575.62 1602.94 1557.72 1620.02
S2_20_10_75%_50% 1249.41 1259.43 1234.84 1261.00 1267.74 1250.62 1280.08 1296.46 1266.64 1520.51 1480.45 1540.22 1534.42
S3_20_10_90%_20% 1213.56 1228.29 1198.31 1220.30 1236.31 1202.35 1245.30 1264.03 1225.31 1402.51 1450.21 1395.66 1380.61
S4_20_10_90%_50% 993.15 1036.82 971.48 1075.19 1099.60 1061.45 1178.12 1242.36 1085.55 1320.94 1360.73 1376.72 1342.61
S5_100_20_75%_20% 4036.58 4044.01 4026.97 4103.53 4133.43 4090.29 4142.77 4158.52 4128.5 4755.28 4757.21 4927.13 4838.95
S6_100_20_75%_50% 3688.92 3698.43 3681.02 3829.52 3849.34 3810.76 3839.14 3866.76 3820.79 4668.86 4681.28 4601.55 4797.52
S7_100_20_90%_20% 3391.53 3402.65 3382.3 3538.60 3593.95 3453.70 3565.44 3621.85 3498.41 4396.96 4273.13 4029.85 4341.45
S8_100_20_90%_50% 3154.40 3167.56 3142.88 3247.31 3299.77 3206.68 3266.01 3287.50 3245.60 4164.51 4033.08 4166.68 4013.11

S9_100_20_90%_100% 3423.31 3439.81 3403.85 3415.46 3442.91 3391.76 3502.81 3517.72 3479.84 4287.91 4213.23 4333.08 4233.95

5.2. Case Study

Finally, taking the production content of the laboratory as an example. Our laboratory
is a workshop for producing personalized customized cars, which includes eight models.
Each model includes five processes: chassis, frame, left door, right door, and front cover.
Each process can be processed in different machines at different times, which is in line with
the flexible job-shop scheduling problem. The available machines and corresponding time
for the assembly of various models are shown in Tables 5 and 6.

Table 5. Machines available for each model.

Job O1 O2 O3 O4 O5

J1 [3,8] [1,7] [1,4] [2,8] [6,7]
J2 [2,8] [4,7] [3,5] [1,3] [2,3]
J3 [1,4,6] [4,5] [2,5] [3,8] [7]
J4 [4,8] [1,2] [6,8] [6] [6,7]
J5 [1,6] [2,5] [1,4] [2,7] [3,8]
J6 [1,2,4,7] [1,6] [4,8] [1,3] [6]
J7 [1,6] [2,5] [1,4] [7,8] [3,7]
J8 [2,5,7] [2,4] [5,8] [1,3] [3,8]

Table 6. Time required for assembly of each model.

Job O1 O2 O3 O4 O5

J1 [38,49] [72,54] [49,65] [76,59] [73,43]
J2 [50,49] [53,41] [62,66] [51,42] [49,70]
J3 [48,60,68] [53,59] [61,66] [42,59] [43]
J4 [60,49] [72,85] [59,66] [30] [73,69]
J5 [35,68] [42,69] [67,49] [42,30] [70,88]
J6 [43,35,32,57] [68,67] [56,93] [68,105] [79]
J7 [48,32] [85,66] [49,43] [51,73] [102,52]
J8 [50,43,57] [85,53] [66,60] [94,100] [90,71]

The results of running with different algorithms are shown in Table 7. Each algorithm
runs 5 times to obtain the maximum, minimum, and average values. As shown in Table 7,
the minimum and average values of the results obtained by RLEGA algorithm are better
than GA and TS. The parameter settings of each algorithm are shown in Section 5.1.
Therefore, RLEGA algorithm is used in this experiment.

Table 7. Algorithm running results.

RLEGA GA TS

Maximum 404 433 466
Average 400 420 453.6

Minimum 397 411 435
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The initial Gantt chart is obtained according to the RLEGA algorithm, as shown in
Figure 6. The abscissa in the figure is time (s) and the ordinate is the robot arm. Take 7-4 as
an example to show the fourth process of the seventh job. The curve in the solution process
of reinforcement learning enhanced genetic algorithm is shown in Figure 7.

Figure 6. Initial Gantt chart.

Figure 7. Iterative curve.

As shown in Figure 6, assuming that a new order is issued through the ordering
system when t = 200 s, the dynamic event of inserting a new order occurs in the ordering
system as shown in Figure 8a. At this time, the order information is sent to the database.
The digital twin system senses the insertion of the new order, triggers the rescheduling
mechanism, and processes the new order together with the previously unfinished order,
and the model being assembled cannot be interrupted. The resulting rescheduling Gantt
chart is shown in Figure 9. The red box in the figure shows the task of a newly issued
eighth model. The initial solution is 397 s, and the obtained rescheduling solution is 521 s.
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1 
 

 
Figure 8. Initial Gantt chart. (a) Personalized ordering system. (b) Machine failure in Digital twin workshop.

Figure 9. Rescheduling Gantt chart (insert new order).

As shown in Figure 8b, or when t = 200 s, the machine 3 breaks down, obtains the
abnormal information through the digital twin system, as shown in Figure 10, captures the
dynamic event, and triggers the rescheduling mechanism, and the resulting rescheduling
Gantt chart is shown in Figure 10. After the failure of machine 3, the job originally processed
at machine 3 is rearranged to other machines.

Figure 10. Rescheduling Gantt chart (machine fault).
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6. Conclusions

Digital twin provides a new solution for effectively realizing the interaction and
integration of the real world and the information world. This paper presents a digital
twin-driven adaptive scheduling method for flexible job shop. This method can realize
the effective combination of real-time monitoring of production process, scheduling opti-
mization of production tasks, and real-time perception of abnormal events in production
process, effectively improving the production efficiency.

The RLEGA scheduling model established in this paper has high solution quality in
the production process. When dynamic events occur in the workshop, adaptive dynamic
scheduling is carried out based on RLEGA. Compared with genetic algorithm, tabu search
and various scheduling rules, RLEGA has higher solution quality and can well solve the
dynamic events in the actual production process.

At present, reinforcement learning is only applied to optimize the key parameters
of genetic algorithms, and reinforcement learning is not used to solve the production
scheduling problem. Establishing a digital twin workshop with all elements and only
using reinforcement learning method to solve the scheduling problem is the focus of future
work. In the future work, we only use reinforcement learning to solve the flexible job-shop
scheduling problem, make use of the advantages of fast decision making of the model
trained by reinforcement learning, and combine the digital twin workshop to achieve a
faster real-time response.
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