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Abstract: The rapid development of artificial intelligence offers more opportunities for intelligent
mechanical diagnosis. Recently, due to various reasons such as difficulty in obtaining fault data
and random changes in operating conditions, deep transfer learning has achieved great attention in
solving mechanical fault diagnoses. In order to solve the problems of variable working conditions
and data imbalance, a novel transfer learning method based on conditional variational generative
adversarial networks (CVAE-GAN) is proposed to realize the fault diagnosis of wind turbine test bed
data. Specifically, frequency spectra are employed as model signals, then the improved CVAE-GAN
are implemented to generate missing data for other operating conditions. In order to reduce the
difference in distribution between the source and target domains, the maximum mean difference
(MMD) is used in the model to constrain the training of the target domain generation model. The
generated data is used to supplement the missing sample data for fault classification. The verification
results confirm that the proposed method is a promising tool that can obtain higher diagnosis
efficiency. The feature embedding is visualized by t-distributed stochastic neighbor embedding
(t-SNE) to test the effectiveness of the proposed model.

Keywords: conditional variational generative adversarial networks; transfer learning; wind turbines;

variable working conditions

1. Introduction

Fault diagnosis of wind turbines plays an important role in equipment health man-
agement. Recently, deep learning (DL) has become a promising method in intelligent fault
diagnosis. DL methods usually follow two principles: (1) the dataset should be large and
well labeled and (2) the training and testing datasets are subject to the same distribution.
However, in reality, wind turbines often face the problems of working condition variation,
sample imbalance, and few fault samples, which brings challenges for deep learning to
achieve wind turbine fault diagnosis. Compared with DL, transfer learning (TL) allows
different probability distributions of samples between source and target domains. This
means that a new but related task in the target domain can be effectively addressed by the
learned knowledge from the source domain.

TL-based models have been employed for intelligent fault diagnosis under different
working conditions. Li et al. proposed a novel weighted adversarial transfer network
(WATN) for partial domain fault diagnosis [1]. Huang et al. proposed a deep adversar-
ial capsule network (DACN) to embed multi-domain generalization into the intelligent
compound fault diagnosis [2]. Li et al. proposed a two-stage transfer adversarial network
(TSTAN) for multiple new faults detection of rotating machinery [3]. Chen et al. proposed
a transferable convolutional neural network to improve the learning of target tasks [4].
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Li et al. proposed a method named deep adversarial transfer learning network (DATLN) for
new emerging fault detection [5]. Li et al. proposed a data-driven fault feature separation
method (DFSM) that can eliminate the working condition features from all the information
and employ the rest of the fault information for diagnosis [6]. Qian et al. proposed a
method called improved joint distribution adaptation (IJDA) to align both the marginal
and conditional distributions of datasets more comprehensively [7]. Guo et al. proposed a
deep convolutional transfer learning network (DCTLN), which consists of condition recog-
nition and domain adaptation, for intelligent fault diagnosis of machines with unlabeled
data [8]. Yang et al. proposed a feature-based transfer neural network (FTNN) to identify
the health states of real-case machines with the help of the diagnosis knowledge from
laboratory machines [9].

Domain adaptive (DA) technology plays an important role in transfer learning. Maxi-
mum mean discrepancy (MMD) is commonly used to measure the distribution discrepancy
of the transferable features [10]. The MMD-based domain adaptive technology has been
widely used to accomplish transfer learning tasks in the fields of computers [11,12]. The
key to domain adaptation is to find a way to decrease the distribution divergence between
different domains. Feature matching and instance reweighting are the main learning strate-
gies for DA research. Zhang et al. applied the maximum variance discrepancy (MVD) for
combining with the maximum mean discrepancy (MMD) for the feature matching [13].
Zhang et al. proposed a novel geodesic flow kernel-based domain adaptation approach for
intelligent fault diagnosis under varying working conditions [14]. An et al. proposed a
novel adaptive cross-domain feature extraction (ACFE) method that can automatically ex-
tract similar features between different feature spaces [15]. Qian et al. proposed a novel dis-
tribution discrepancy evaluating method called auto-balanced high-order Kullback-Leibler
(AHKL) divergence for DA [16]. Based on polynomial kernel-induced MMD (PK-MMD),
Yang et al. proposed a model that was constructed to reuse diagnosis knowledge from
one machine to another [17].

However, an important problem in TL-based fault diagnosis methods is that target
domain mechanical fault datasets are always highly imbalanced with abundant normal
condition mechanical samples but a paucity of samples from rare fault conditions. The
generative adversarial network (GAN) [18] uses the adversarial principle of generator
and discriminator to enhance the diversity of data and provides the possibility to solve
the above problems. Zheng et al. proposed a dual discriminator conditional generative
adversarial network to enhance the accuracy of imbalance fault diagnosis [19]. Wang et al.
implemented a Wasserstein generative adversarial network (WGAN) to generate simulated
signals based on a labeled dataset [20]. There has been a proliferation of adversarial models
presented by GAN, such as AnoGANSs [21], GANormaly [22], etc. GAN has been developed
in the field of fault diagnosis and anomaly detection [23-26]. Auto-encoder (AE) is another
way of generating samples. AE has now developed numerous variants, e.g., variational AE
(VAE) [27], adversarial AE (AAE) [28], etc.

The problem of missing data from wind turbines can be effectively solved by GAN
and AE. Qu et al. proposed a data imputation method with multiple optimizations based
on generative adversarial networks (GANSs) for wind turbines [29]. Guo et al. proposed
improved adversarial learning to generate fault features for the fault diagnosis of a wind
turbine gearbox with unbalanced fault classes [30]. Jiang et al. proposed an improved over-
sampling algorithm to generate and develop a balanced dataset based on the imbalanced
dataset of unfixed-length [31]. Jing et al. proposed an improved context encoder network
(ICE) for missing wind speed data reconstruction [32]. In the literature [33], an improved
auto-encoder (AE) network with a transfer layer was designed to eliminate the effect of
SCADA data in the ambiguous status and enhance the reliability of a training dataset.

However, the samples generated by AE are often very fuzzy because there is no
advanced discriminant network, and GAN has problems such as unstable training and
mode collapse. Therefore, the two are combined to generate data to achieve better results,
such as VAE-GAN [34], etc. Bao et al. proposed CVAE-GAN [35], which takes labels as
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conditional inputs to the model to generate images of specified classification and produced
relatively good images in all categories.

Gearboxes are important components for power transmission and speed regulation
in mechanical equipment. In wind turbines, the downtime and power loss caused by
the failure of gearbox components is the highest among all components. Wind turbine
gearboxes operate under variable conditions for long periods of time. Due to the difficulty
in obtaining operating data for different operating conditions, the diagnostic accuracy can
be low when only data from a single operating condition is used to train the neural network
for fault diagnosis. By generating data for unknown operating conditions through GAN
and solving the problem of data imbalance, the fault diagnosis accuracy of wind turbine
gearboxes can be effectively improved.

In this paper, we proposed a model named transfer learning based on conditional
variational generative adversarial networks (TL-CVAE-GAN). An improved CVAE-GAN
is used for transfer learning to achieve the generation of unknown samples for wind
turbine transmission platforms in different conditions and solve the classification problem
of variable conditions data. The known data are used to train CVAE-GAN]1, and then the
MMD between the known and unknown conditions is calculated. The MMD is added
to the loss of CVAE-GAN2, which is an unknown generator, to achieve the generator’s
domain migration. The problem of data imbalance for wind turbine gearboxes is solved by
generating missing data for unknown working conditions via CVAE-GAN2. The raw data
and generated data are fed into the classifier to train the model for classification.

The rest of this paper is organized as follows. Section 2 introduces the basic concepts
of DA and CVAE-GAN. In Section 3, a novel fault diagnosis model named transfer learning
based on conditional variational generative adversarial networks (TL-CVAE-GAN) for a
wind turbines testbench is proposed. In Section 4, the wind turbine testbench datasets
are input into the proposed model for training and testing, and the results are analyzed.
Section 5 presents the conclusion.

2. Conditional Variational Generative Adversarial Networks and Domain
Adaptive Technology

2.1. Conditional Variational Generative Adversarial Networks (CVAE-GAN)

The model structure is shown in Figure 1 and includes four parts: encoder network, E,
generator network, G, discriminator network, D, and classifier network, C.

c C

| i Classifier gy
I ©
. Encoder B Generator
- - - X’
(E) (G)

L Discrimi - d

nator(D)

Figure 1. Model structure of CVAE-GAN.

The encoder network, E, maps a sample, x, to a potential representation, z, via a
learnable distribution, P(z | x,c), with ¢ denoting the class of the data. Bounds on the prior
P(z) and the recommended distribution are reduced using KL loss:

Lk, = %(—logaz—i-]ﬂ—i-trz—l) (1)

where y and ¢ are the mean and covariance of the output of the potential vector from
encoder network E.
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The generative network, G, generates the data, x, by sampling from the learnable
distribution, P(x"1z,c). The functions of G and D are the same as GAN. The network,
G, attempts to learn the distribution of the real data by means of gradients from the
discriminator network, D, which is able to distinguish between true/false samples. The
loss function of the discriminator network, D, is:

Lp = —Ex~p,[log D(x)] — Ez~p,[log(1 — D(G(z)))] 2

where x is the input data and z is the potential vector from encoder network, E.

The generator uses an average feature matching the objective function. This objective
function requires the feature centers of the synthetic samples to match the feature centers
of the real samples. The generator, G, tries to minimize the loss function as:

Lop = 5| Exp fo(3) ~ Ezmp fi (G(2))| )

where fp(x) denotes the features in the middle layer of the discriminator, D.
The generating network, G, uses the average feature to match the objective function.
Let the network, G, attempt to minimize:

Loc = 2| Exp fo(x) = Exmpefe(Glz ) @

where fc(x) denotes the intermediate layer outputs of the classifier and ¢ denotes the label
of the input data, x.

Then, an L2 reconstruction loss and pairwise feature matching-based loss are added to
x and x':

Lo = 5 (lx — 2+ [fo @) — fo) 3 + | fec ) ~ fe()3) ©)

where x is the input data and x’ is the generated data from the generator, G.

Network C takes x’ as input and outputs a k-dimensional vector, which is then con-
verted to probability-like values using the softmax function. Each port of the output
represents the posterior probability, P(c|x’). In the training phase, network, C, attempts
to minimize the softmax loss. The function of the classifier network, C, is to measure the
posterior of P(c|x’):

Le = ~Exep [log P(c[)] ©)

The total loss function is:
L=Lgy+Lc+Lep+Lgc+Lp+Lc ()

Lg; is only relevant to the encoder network, E, indicating whether the distribution of
potential vectors is as expected. Lg, Lgp, and Lgc are relevant to the generator network, G,
indicating whether the synthetic sample is the same as the input training samples, the real
sample, and other samples in the same category, respectively. L¢ is relevant to the classifier
network, C, indicating how well the network is used to classify different categories of
samples; Lp is relevant to the discriminator network, D, indicating how well the network
is able to distinguish between real/synthetic samples. All these objective functions are
complementary to each other and ultimately lead to optimal results for the algorithm.

2.2. Domain Adaptive Technology (DA)

As shown in Figure 2, domain adaptation is used to map data features from different
domains to the same feature space, so that other domain data can be used to enhance
the target domain training. There are two fundamental concepts in domain adaptation:
the source domain and the target domain. The source domain, Ds = {Xg, P(Xs)}, is rich
in supervised learning information. The target domain, Dt = {Xt, P(XT)}, represents the
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domain in which the test set is located, usually without labels or with only a few labels.
Source and target domains are often the same type of task but are distributed differently.

Domain
adaptation

Figure 2. Domain adaptation.

Common domain adaptation methods include:

(1) Sample adaptation: resampling samples in the source domain so that their distribution
converges with the target domain distribution.

(2) Feature adaptation: projecting the source and target domains into a common feature
subspace.

(3) Model adaption: modification of the source domain error function.

Domain loss is calculated using the maximum mean difference (MMD). To be specific,
the transferable features are first mapped into reproduced kernel Hilbert space (RKHS),
in which the mean distance between them is viewed as the metric to their distribution
discrepancy:

MMD(Xs, Xr) = H|X15|2¢<xs> - |X1T|Z4’<xf> \ ®)

where ¢ is a mapping function, X is the source data, and Xr is the target data.

3. Transfer Learning Based on Conditional Variational Generative Adversarial
Networks (TL-CVAE-GAN)

In this paper, we proposed a model named transfer learning based conditional varia-
tional generative adversarial networks (TL-CVAE-GAN) for fault diagnosis of wind turbine
transmission platform datasets under different conditions. An improved CVAE-GAN
is used for transfer learning to achieve the generation of unknown samples in different
conditions.

As shown in Table 1, the data in this paper include Xs1, Xs2, X11, and X77. X is the
source domain data and Xr is the target domain data. Xg; and Xt are in operating speed
1, X5 and Xty are in operating speed 2. In this paper, X, is unknown.

Table 1. Variables and conditions of the data.

Domain Data Work Condition Known or Not
S 4 . Xs1 Speed; Data available
ource domain Xso Speed, Data available
. X1 Speed Data available
Target domain X712 Speed, Data not available

The model structure of TL-CVAE-GAN is shown in Figure 3. A generative model
CVAE-GANI is trained to generate Xs, from Xg1, and another generative model CVAE-
GAN?2 is trained to generate X7, from Xt1. The structure of the neural network model is
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the same for CVAE-GAN1 and CVAE-GAN?2, both containing: an encoder, E, a decoder, De,
a generator, G, and a discriminator, D.

CVAE-GAN1
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De, (-
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Figure 3. Model structure of TL-CVAE-GAN.

Assume that X is the data corresponding to Speed; and X is the data corresponding
to Speed,. The data, X3, is fed into the encoder, E, together with Speed; for dimensionality
reduction to obtain an intermediate code, z, with the Speed; information removed; z is input
to the decoder, De, for reconstruction, and the mean, u, and variance, o, are additionally
obtained from z. The variance, o, is multiplied by the random noise, ¢, plus the mean,
u, to obtain z;; z; is fed into the generator, G, together with Speed, to produce X,. The
real X; is fed into the discriminator, D, together with the generated X,/ for discrimination.
The accuracy of the generated model is improved by confronting the generator with the
discriminator.

The MMD of Xg; to X1 is solved for domain adaptation. The MMD is added to the
loss function of the generator CVAE-GAN?2 for backpropagation to generate X,

The TL-CVAE-GAN model is divided into the following steps:

In the first step, update the parameters of CVAE-GAN1 and generate Xs,/. The source
data Xg; and its corresponding rotational speed are input into encoder E to obtain the
intermediate key feature, z, with the rotational speed information removed. The mean value,
u, and variance, 0, are obtained from z, then a new sample, z,, is formed by u, ¢, and the
noise ¢; z is fed into the decoder De for reconstruction and zs and the corresponding speed,
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speedy, are input to the generator, G, to generate Xs,/. The discriminator, D, discriminates
between the generated data, Xs,/, and the real data, Xg,. The loss of CVAE-GANT1 is:

Lossy = Lossyag + Lossgan 9)

2 1
Lossyag = || Xs1 — Xs1'|, + 5= logo? + p? + 0% —1) (10)
Lossgan= —Ex~p,[log D(Xs2)] — Ez~p, [log(1 — D(G(zs,speeds)))] (11)

where Xg is the input source data, Xgy/ is the generated data from Xgq, # and o are the
mean and covariance of the output of the potential vector from the encoder network, E,
Xs» is another input source data that the operating conditions are different from Xg1, speeds
is the operating speed of Xs;, and zs is the potential vector of source data from encoder
network, E.

In the second step, update the parameters of CVAE-GAN2. The MMD between CVAE-
GAN1 and CVAE-GAN?2 is calculated. The MMD is added to the loss of CVAE-GAN?2 to
achieve the generator’s domain migration. The loss is as follows:

Lossy = MMD(XSl,XTl) + MMD(ZS,Zt) + MMD(XSZ/, XTZI) -+ MMD(fD/(stl),fD/(XTQ/)) (12)

where fp’(x) denotes the features in the penultimate layer of the discriminator, D. X1 and
Xty are the target data and z; and z; are the potential vector of source data and target data
from encoder network E.

In the last step, repeat steps 1 and steps 2 for 5 training cycles to generate the unknown
data, XTZ’ .

The model structure of the classifier is shown in Figure 4. The existing data, Xs1, Xs2,
Xr1, and the generated data, Xty/, are together input into the classifier for training.

Classifier net

Ji

Label
E> v’
Loss;;

AT 1PIAUO) I
AP e)P1Au0) ]

Generated
Xr'

‘S=A€Pp1auo) |

13 :d:9
(2)p1100dXBIN
(T)p1100gXeN
(T)p1100dXEN

(2)p TwIoNydIRg
(£)p TuoNyIeg
()P [WIONYOYEY
(ssejou‘gz)reaury
v
Xeuw)yos

[ (z=s‘0=d‘s

4
I (z=s‘0
[ (z=s‘0=d‘s

i

Figure 4. Model structure of the classifier.

The classifier model contains three convolution layers, three BatchNorm1d, three
MaxPoolld, and one fully-connected layer. The number of neurons in each layer is shown
in Figure 4. The activation function for the last layer is Softmax and the activation functions
for the other layers are Relu. All the data goes through the fast Fourier transform, and is
then fed into the model. The classifier is updated by:

Lossy1 = Y [yilogyi’ + (1 —y;)log(1 — y;")] (13)
x;,yi~T;

where y; is the real label of the data and y;’ is the output of the classifier model.
The feature embedding is visualized by t-SNE to test the effectiveness of the proposed
model. The complete algorithm flow is shown in Algorithm 1.
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Algorithm 1. TL-CVAE-GAN

Input: Input training data, Tr = {(Xs1, Ys1), (Xs2, Ys2), (X711, YT1) }, testing data, Te, classified
model, fc. In the CVAE-GAN1 model: encoder network, fr1, decoder network, fpg1, generator
network, f;1, and discriminator network, fp1. In the CVAE-GAN2 model: encoder network, frs,
generator network, fgp, discriminator network, fp,.The learning rate, Ir.
HHHHHEHHHRAHEEEHERAA#HCy cle b times HHHHHHHRAFHBHHHRAAS

1: For f from 0 to 4:

HHHHEHEHEHEHEHEHEEE rain CVAE-GANT1 model #HEHEHEHEHHEEHEHEH

2: For each training epoch, do:
3: For each batch, do:
4: z; = fe1(xs15, Speedy), xs1;” = fpe1(z;), the mean value, ug;, and variance, o;, are

obtained from z;, sample ¢ from the random noise S. z; = ug; +0g; *e,
Xs2i'= fG1(2si, Speedy), dspi’= fp1(Xs2i”), dsai= fp1(Xs2i)

5: Backward propagation by Equation (9).

6: end

7: save CVAE-GAN1 model

HHHEHHAHHHAR#ERA#E train CVAE-GAN2 model use MMD #HHEHRHEHEFHHAEHHAAE
8: download CVAE-GANI model. Use the parameters of the CVAE-GAN1 model as the
initial parameters of CVAE-GAN2.

9: For each training, do:

10: For each batch, do:

11: zi = fE2(Xt1i), 21 = Ui +04; *e, Xeoi"= fG2(24i),

12: Backward propagation by Equation (12).

13: end

14: save CVAE-GAN2 model

15: Ir=1Ir/2

16: if f > 0:

17: download the CVAE-GAN2 model. Use the parameters of the CVAE-GAN2
model as the initial parameters of CVAE-GAN1.

18: end

HHHHEHARAE train classifier net use Tr and the generate data X,/ #HHHHH#HHHHHHEHHH}

#iHHHHH#Hthe input datais X = {(Xs1, Ys1), Xs2, Ys2), (X711, YT1), XT3, Y0 ) it

19: For each training, do:

20: For each batch, do:

21: i =fe(x)

22: Backward propagation by Equation (13).
23: end

ITRTRINTR IR IR TR IR IR IR IR IR TR IR IR IR IR IR TR IR TN ITRTRTRTRIRIRTR IR IR TR IR IR TR IR IR TR IR INTRIRINTRIRINT]

HHHHRHHAFHIHAAHBRHIRAA testing results and t-SINE #HHHHHHHHHIRRHABERIRAA
24: For the test set, calculate c; = fc (Te;), calculate the accuracy, and draw the t-SNE diagram.
Output: testing results.

4. Case Analysis

In this section, the data of the wind turbine transmission platform are used to verify
our model. The wind turbine transmission platform is shown in Figure 5. It consists of
a drive motor, a stator gearbox, a planetary gearbox, and a load device to simulate the
vibration state under various gear faults.

The number of teeth of each gear in the drive system is shown in Figure 6. The stator
gearbox consists of four gears in a two-stage drive with three shafts. The fault occurred in
the intermediate shaft gear. Piezoelectric sensors are placed on the bearing seat at the right
end of the intermediate shaft. This paper simulates the multiple faults of a wind turbine
gearbox under variable operating conditions. Six fault modes in the stator gearbox are
adopted, including normal, cracked, chipped, missing teeth, wear, and eccentricity. The
data available is shown in Table 2. The data consists of six categories, with one health
category and five fault categories. The first three categories contain data for four operating
speeds (38 Hz, 40 Hz, 43 Hz, 45 Hz) and the last three categories only have data for 43 Hz
and 45 Hz. The speed is of the driver motor. The data is sampled at a frequency of 8192 Hz;
256 data are available in each category for each working condition.
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Figure 6. General structure of the gear system.
Table 2. Fault description of wind turbine transmission platform.
Fault Modes Label Speed (Hz) Sampling Number of
Frequency Dataset
Normal 0 38, 40,43, 45 8192 Hz 256 x 4
Cracked 1 38, 40, 43, 45 8192 Hz 256 x 4
Chipped 2 38, 40, 43, 45 8192 Hz 256 x 4
Missing 3 43,45 8192 Hz 256 x 2
Wear 4 43,45 8192 Hz 256 x 2
Eccentricity 5 43, 45 8192 Hz 256 x 2

The data description of the training dataset and testing dataset is shown in Table 3.
There are 256 data in each category for each speed. For each class of data under each
speed, the first 160 are taken as the training set and all data are testing data. The trained
percentages are 62.5%. This case addresses the problem of unbalanced data from the wind
turbine transmission platform, generating missing data and improving diagnostic accuracy.
Therefore, in this case, the data in categories 3, 4, and 5 where the speed is 38 Hz and 40 Hz
are set missing and are not included in the training set.
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Table 3. Data description of the training dataset and testing dataset.

Number of Training Number of Testing
Data Label  Speed (Hz) Dataset Dataset
Source Xs1 0,12 43, 45 160 x 3 x 2 256 x 3 x 2
domain Xs2 0,1,2 38, 40 160 x 3 x 2 256 x 3 x 2
Target XT1 3,4,5 43,45 160 x 3 x 2 256 x 3 X 2
domain X2 3,4,5 38, 40 0 256 x 3 x 2

For the TL-CVAE-GAN and classifier model, the update function is Adam, the training
epochs for the update are 400, and the batch size is 32.

Figures 7-9 show the missing data, Xr,/, generated by the generator CVAE-GAN2.
It can be seen that the generator effectively generates data for the unknown operating
conditions (38 Hz, 40 Hz).

Label 3
Real dat‘a (38Hz)

11Hz

1
0 200 400 600 800 1000 1200
fIHz

Generateq data (38Hz)

397Hz —»|

11Hz 7

0.4r

Al(m/s?y?

0.21

0 1

0 200 400 600 800 1000 1200
fiHz

Label 3

Real data (40Hz)

Al(m/s?y?

0 200 400 600 800 1000 1200
flHz

Generatgddata (40Hz)

0.8 b
o 418Hz —|
N, 0.6 1
3 04 12Hz,
T 04 1

0.2r b

0 J., Jl Mo ‘
0 200 400 600 800 1000 1200
flHz

Figure 7. The generated data and its corresponding real data for fault 3 at 38 Hz and 40 Hz.
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Figure 9. The generated data and its corresponding real data for fault 5 at 38 Hz and 40 Hz.

In this case, it is the pinion of the intermediate shaft that has failed. Therefore, the
rotational frequency is given in Equation (14) and the meshing frequency is given in
Equation (15).

fr = speed x 29/100 (14)

fm = fr X 36 (15)

When the operating condition is 38 Hz, the rotational frequency is 397 Hz and the
meshing frequency is 11 Hz. When the operating condition is 40 Hz, the rotational frequency
is 418 Hz and the meshing frequency is 12 Hz. The rotational and meshing frequency
characteristics are evident in both the real data and the generated data. At the same time,
there are differences in the frequency spectrum of missing, wear, and eccentric faults.

Figure 7 shows a missing fault. When a gear has a broken tooth, there is a strong
shock at the broken tooth for every week the gear rotates, so there are distinct rotational
and meshing frequencies present in the frequency spectrum. It is clearly modulated by
the rotational frequency throughout the frequency band. The edge band is characterized
by a large number of edge frequencies, a wide range, and a uniform and relatively flat
distribution. It can be seen that the generated data effectively exhibits these characteristics.

Figure 8 shows a wear fault. The gears are uniformly worn, with a high amplitude
sideband at the engagement frequency and its harmonics. The amplitude of the higher
harmonics of the meshing frequency is large. In this data, the wear is more severe and
the amplitude of the second harmonic has exceeded the amplitude of the fundamental
wave of the meshing frequency. It can be seen that the generated data effectively exhibits
these characteristics.

Figure 9 shows an eccentric fault. This data has only eccentricity, no faulty gears, so
there are no sidebands at the meshing frequency. It can be seen that the generated data
effectively exhibits these characteristics.

The generated data for the unknown working conditions are trained together with the
known data for the classifier. We compared the classification accuracy of the trained model
using only the training set and the training set with the generated unknown data. For
better comparison, the same classifier, the same number of training epochs, and the same
learning rate were used for both cases. The obtained fault classification accuracy and t-SNE
is shown in Figure 10. The comparison of classification accuracy with and without the
addition of generated data is shown in Table 4. It can be seen that after the data generated
by TL-CVAE-GAN with unknown working conditions were added to the training set, the
test accuracy of the trained classifier was improved by 21.3%.
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Figure 10. The t-SNE of the classify using only the training set and the training set with the generated
unknown data.

Table 4. Comparison of classification accuracy with and without the addition of generated data.

Only the Training Set Training Set and Generated Data

Trains the Classifier together to Train the Classifier Improved

Classification
accuracy

77.8% 99.1% 21.3%

5. Conclusions

Fault diagnosis of wind turbines plays an important role in improving the reliability
of wind turbines. However, the operating conditions of wind turbines vary randomly, and
data on different operating conditions are not easily available.

In this paper, the wind turbine transmission platform data is supplemented by the
generation of data for unknown operating conditions, which in turn improves the classifi-
cation accuracy. The proposed TL-CVAE-GAN model combines the better performance
of CVAE-GAN in generating samples with the idea of domain adaptive migration. It
achieves the generation of unknown samples for wind turbine transmission platforms in
different conditions and solves the classification problem of variable conditions data. Work
conditions are input to the model as conditions, and the generation of data in different
work conditions between similar classes is achieved by domain migration. The known data
are used to train CVAE-GANL1. In CVAE-GAN, the known working conditions are fed into
the encoder as conditional information to obtain the intermediate key information for the
removal of the working conditions. The intermediate key information and the unknown
conditions are fed together into the generator to generate the same class of data for the
unknown conditions. The generation can be improved by confronting the generator with
the discriminator.

The MMD between the known and unknown conditions is then calculated. The
MMD is added to the loss of CVAE-GAN2, which is an unknown generator, to achieve the
generator’s domain migration. The problem of data imbalance for wind turbine gearboxes is
solved by generating missing data for unknown working conditions via CVAE-GAN2. The
raw data and generated data are fed into the classifier to train the model for classification.

The results show that the proposed model, TL-CVAE-GAN, effectively generates
data for unknown working conditions. After the generated data of unknown operating
conditions were added to the training set as a supplement, the test accuracy of the trained
classifier was improved by 21.3%, effectively improving the fault diagnosis accuracy under-
sample imbalance. The model can better solve the problem of fault diagnosis of wind
turbines with variable operating conditions.
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