Entrepreneurship or Employment? A Survey of College Students’ Sustainable Entrepreneurial Intentions

Ruijie Zhu 1,*,†, Guojing Zhao 2,*, Zehai Long 1, Yangjie Huang 1,† and Zhaoxin Huang 1,*

1 School of Education, Hangzhou Normal University, Hangzhou 311121, China; longzehai@126.com
2 College of Innovation and Entrepreneurship Education, Wenzhou Medical University, Wenzhou 325035, China; 13600641869@126.com
* Correspondence: ruiking_zhu@hotmail.com (R.Z.); hyj77777@126.com (Y.H.); 20200001@hznu.edu.cn (Z.H.)
† These authors contributed equally to this work.

Abstract: The recent COVID-19 pandemic has had a huge impact on the global job market, with increasing unemployment rates leading to an unstable social situation that has affected college students’ job prospects. This situation has drawn the attention of the Chinese government and universities to the promotion of entrepreneurship. The present study used field theory to analyze the entrepreneurial intentions of 4926 college students in Hangzhou, an emerging global digital city. It was found that college students who had received entrepreneurship education were more likely to insist on entrepreneurship, while the native environmental field had a significant positive effect on students’ sustainable entrepreneurial intention (SEI). These findings provide a good reference for universities to promote entrepreneurial intentions among college students and provide advice on the construction of entrepreneurship education fields.

Keywords: sustainable entrepreneurial intention; entrepreneurship education; field theory; logistic regression

1. Introduction

Entrepreneurship or employment? This is a question worth considering and faced by college students around the world after graduation. Especially after the outbreak of the COVID-19 pandemic, numerous companies have had to lay off workers in order to survive, which has led to the inability of some college students to find suitable jobs after graduation. Under such circumstances, some students are choosing to start a business. Entrepreneurship can not only help students overcome unemployment, but it also promotes more jobs. Therefore, researchers believe that strengthening entrepreneurial activities and entrepreneurship education may promote innovative projects, wealth creation, increased competition, industrialization, employment creation, and economic growth [1]. A survey from Taiwan shows that women who have received entrepreneurial education are more likely to be successful in entrepreneurship [2]. This is also in line with the expectations of the Chinese government for entrepreneurship education in colleges and universities, which aims to enable more students to carry out entrepreneurial activities as well as to promote scientific and technological progress and the economic cycle by strengthening entrepreneurship education in colleges and universities. In Namibia, a developing country, research shows that their higher education system is the most influential factor affecting the country’s economic development [3].

Following the publication of the United Nations’ Brundtland’s report in 1987, entrepreneurship was promoted as one of the tools for achieving sustainable development. Especially in recent years, there has been a growing expectation to develop more sustainable forms of enterprise [4]. There has been a shift from traditional entrepreneurship to sustainable entrepreneurship [5]. Sustainable entrepreneurship is an effective way to solve complex social, environmental, and economic problems through innovative solutions [6].
There are now many studies on sustainable entrepreneurship. Previous studies that have been conducted mainly discuss sustainable entrepreneurial intention in terms of perceived competence, attitudinal orientation, and social perception [7,8]. Research on sustainable entrepreneurial intentions among college students remains relatively one-sided. Existing research has focused on the impact of the external environment of higher education on the entrepreneurial intentions of university students, with less research addressing the sustainability and growth of entrepreneurial intention development. Our study focuses on the link between the basic elements of entrepreneurship education and sustainable entrepreneurship intention among college students in higher education from within higher education. This effectively fills a gap in the current research on sustainable entrepreneurial intentions among college students.

Research data for this study were obtained from university graduates in Hangzhou, an emerging digital city in China (n = 4926). This city is popular with university graduates since government policies facilitate the establishment of university students’ own businesses in the city. Jack Ma’s Alibaba, a model of entrepreneurship, has not only provided jobs for countless people, but has also attracted young university students to put their entrepreneurial intentions into practice. However, along with the growth of the digital economy, the platform is gradually destroying some small entrepreneurial brick-and-mortar stores, and college students’ entrepreneurship has undergone significant changes. The development goals and forms of entrepreneurship education in colleges and universities should also adapt to this change and be driven by the “sustainable development concept”. Taking Hangzhou college students as an example, this paper analyzes the intention of college students to start a sustainable business, which is of great significance to the research on the development of students’ sustainable entrepreneurial intention around the world. Our study discusses solving social problems and is distinguished from other entrepreneurial intention studies and sustainable entrepreneurship studies, focusing on constructing a mechanism for cultivating and developing sustainable entrepreneurial intention among college students from the perspective of higher education.

Therefore, this study focuses on the relationship between entrepreneurship education and sustainable entrepreneurial intentions. It aims to answer the following questions: (1) Does entrepreneurship education have an impact on students’ sustainable entrepreneurial intentions? To what extent? Do other factors exist? (2) How can higher education institutions promote students’ sustainable entrepreneurial intentions?

The rest of the paper is organized as follows: Section 2 presents the literature review and the conceptual model. Section 3 presents the research hypotheses. The research methodology and data processing are presented in Section 4. Section 5 presents the study results and hypothesis testing. Section 6 discusses the theoretical and practical implications of the study and makes some recommendations. Section 7 summarizes the study conclusions and the possible limitations.

2. Literature Review and Conceptual Model

2.1. Entrepreneurship Education and the Entrepreneurship Education Field

How are entrepreneurs created? What can entrepreneurship education achieve? One view is that entrepreneurs are not ‘produced’ but identified [9] during the course of entrepreneurship education. An alternative view is that entrepreneurial traits, although personal, can be developed with unconventional pedagogies [10]. Accordingly, many universities in developed and emerging economies are enhancing students’ entrepreneurial skills by providing entrepreneurship education to promote entrepreneurship [11]. Scholars define the purpose of entrepreneurship education as the integration of personal skills and attributes with entrepreneurial processes and related behavior [12]. Entrepreneurship education can also reduce the negative image associated with entrepreneurship, make entrepreneurship a viable career choice, and develop an entrepreneurial culture among students [13]. This entrepreneurial culture climate is most needed in Chinese universities to promote entrepreneurship. Nevertheless, entrepreneurs in the entrepreneurship
education arena are still a minority. Some scholars are skeptical about the university entrepreneurship movement, which is the mainstay of entrepreneurship education [14], and it remains to be answered whether entrepreneurship education can actually work for students. Entrepreneurship education is essential for students to become entrepreneurs and has a positive impact on an individual’s intention to become an entrepreneur [7,15,16].

Bourdieu defines a field as a network or a configuration of objective relations between locations [17]; the nature of the location of the field is determined by the relations. Although Bourdieu applied his field theory to the study of many social practices, some of his works also provided a detailed “field theory” analysis of educational action. For example, in Homo Academicus, Bourdieu (1988) constructs higher education as an objective field of positions, constituted by the amount of resources held by teachers in the form of academic capital and scientific prestige. Thus, the educational field can play a key role in promoting entrepreneurship [18,19]. In this paper, “entrepreneurship education” refers to any teaching program or educational process that imparts entrepreneurial attitudes and skills.

The entrepreneurship education field is composed of a curriculum of teaching entrepreneurial attitudes and skills in the context of an educational field [20]. It is also critical for enhancing students’ understanding of entrepreneurship, developing entrepreneurial competencies, and contributing to entrepreneurial and cultural identity at the individual, collective, and societal levels [21]. Because education can give a sense of independence and confidence while fostering career choices, students can gain more opportunities to broaden their personal horizons and gain knowledge to carry out entrepreneurial activities in their future lives.

2.2. Sustainable Entrepreneurial Intention

Research on sustainable entrepreneurial intention among college students currently has two main focuses. On the one hand, sustainable entrepreneurial intention’s characteristics and development are investigated from a psychological perspective. On the other hand, entrepreneurship education and outcome evaluations are emphasized.

Ajzen (1991) defines intention as “a person’s readiness to perform a given behavior” and assumes that it is a direct determinant of behavior, claiming that “the stronger the intention to engage in (planned) behavior, the more likely it is to perform …” [22]. Intention is a mental state that powerfully predicts and explains human thought and behavior [23]. In the context of entrepreneurship, entrepreneurial intention can be defined as any individual’s “self-recognized belief” that they are willing to launch a new business venture and continually plan to accomplish this goal in the future [24]. According to behavioral control theory, the learner’s intention is a motivational state that arises in the learning subject before starting a behavior to achieve a goal and is related to the subject’s decision-making [25]. Entrepreneurial intention is also defined as a focused state of mind that directs an individual’s attention and experience toward planned entrepreneurial behavior [26]. These definitions follow scholars who define entrepreneurial intentions as an individual’s commitment to startup [27].

Sustainable entrepreneurial intention differs from general entrepreneurial intention in that it refers to the sustainable development of entrepreneurial intention, including the front-end cultivation and back-end development of entrepreneurial intention. Sustainable entrepreneurial intention is considered a mindset that demonstrates a person’s belief in and commitment to establishing a new business venture that will create economic, social and environmental value in the future [28]. In universities it refers to the intention of students to create a business through a combination of social, economic, and environmental factors, as well as the intention of individuals to engage in identifying, evaluating, and exploiting entrepreneurial opportunities [29]. Existing research has confirmed the positive effect of entrepreneurship education on students’ entrepreneurial intentions and that entrepreneurship education is a major driver of students’ sustainable entrepreneurial intentions [30]. Through an empirical study of students in 17 countries, scholars have confirmed that entrepreneurship education results in higher entrepreneurial intentions [31]. It has also been concluded that providing college students with more experience-based
entrepreneurial learning opportunities can lead to entrepreneurial intentions, which can increase the propensity to start a business upon graduation [32].

According to education principles acceptable to most educators, successful entrepreneurship education requires that students’ learning intentions and teachers’ teaching intentions are triggered and maintained [33]. What can change students’ entrepreneurial intentions in the educational field is not their knowledge of entrepreneurship itself, but their knowledge of themselves and their abilities. Learning resources and incubation will be useful when it is time to start a business as well as to maintain students’ entrepreneurial intentions [34,35]. In other words, sustainable entrepreneurial intentions precede entrepreneurial activities and are developed within the entrepreneurship education field (e.g., curriculum, faculty, and practice). Although studies have been conducted on entrepreneurial intentions, most have focused on developed countries (e.g., Spain, Poland, the US), with scarce data from emerging economies [36–38].

A sustainable entrepreneurship education field is constructed based on educational field theory. The aim is to explore how internal and external relationships in students’ development influence sustainable entrepreneurial intentions. It is generally accepted that students’ innate and acquired environments influence their choice of sustainable entrepreneurship. A review of the literature reveals that many factors may impact students’ sustainable entrepreneurship. Therefore, the construction of a model of the entrepreneurship education field has theoretical and practical implications for predicting and influencing students’ sustainable entrepreneurship. Based on the literature review, we constructed the following conceptual model (Figure 1):

![Figure 1. A conceptual model of entrepreneurial intention development in the entrepreneurship education field.](image)

3. Research Hypotheses

Research on entrepreneurial intention from the perspective of education and sociology is lacking. Therefore, our study considered the contributions of social and educational factors to the development of sustainable entrepreneurship intention. The following hypotheses were proposed.

3.1. Sustainable Entrepreneurial Intention and Individual Characteristics

Increasingly, scholars have focused on the relationship between entrepreneurial intentions and individual growth experience [39]. Previous research has shown that women, including female students, report lower entrepreneurial intentions and are less involved
in entrepreneurship than men [40]. Family background and entrepreneurial experience are also significant predictors of entrepreneurial intentions [41]. GEM (2008) also stated that “entrepreneurial intentions are influenced by whether people know someone who has recently started a business” [42]. Accordingly, the following hypotheses were proposed:

H1. Gender significantly and positively affects sustainable entrepreneurial intention (SEI).

H2. Family entrepreneurial practice (FEP) significantly and positively affects sustainable entrepreneurial intention.

H3. Student entrepreneurial practice at school (SEP) significantly and positively affects sustainable entrepreneurial intention.

3.2. Influence of Entrepreneurship Education on Sustainable Entrepreneurial Intention

Existing research on the impact of entrepreneurship education on entrepreneurial intention has neglected the focus on individual students in higher education. Elena emphasized that “entrepreneurship teaching is both a science and an art” in which teachers assume the roles of operators, central decision-makers, and facilitators [43]. Despite their central role, relatively few empirical studies have focused on entrepreneurship education teachers. Scholars have presented different perspectives on the impact of entrepreneurial activity courses on entrepreneurial intentions [44,45]. However, according to Dewey, activity courses have the most profound and lasting impact on students. Thus, the following hypotheses were proposed:

H4. Entrepreneurship education faculty (EEF) significantly and positively affects sustainable entrepreneurial intention.

H5. Entrepreneurship education activity courses (EAC) significantly and positively affect sustainable entrepreneurial intentions.

H6. Entrepreneurship education practice (EEP) significantly and positively affects sustainable entrepreneurial intention.

All research hypotheses are shown in Figure 2.

Figure 2. The research hypotheses model of sustainable entrepreneurial intention development in the entrepreneurship education.
4. Materials and Methods

4.1. Data Collection

Data were collected from entrepreneurship education students from all universities in Hangzhou, totaling 47 universities, via a paid questionnaire (i.e., “Questionnaire Star”). Initially, 5547 samples were obtained; after removing invalid questionnaires (e.g., invalid school name, short response time), 4926 samples (88.87% effective rate) remained (Table 1). Students were recruited from the Hangzhou area because (1) it is representative of the emerging economy in mainland China, (2) government policies support entrepreneurship among university students, and (3) the digital economy attracts young people with entrepreneurial intentions. SPSS 26.0, AMOS 24.0, and STATA 15.0 were used for data analysis.

Table 1. Sample of interviewed students.

<table>
<thead>
<tr>
<th>Basic Characteristics</th>
<th>Grouping</th>
<th>Capita</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td>Male</td>
<td>2050</td>
<td>41.6</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>2876</td>
<td>58.4</td>
</tr>
<tr>
<td>SEP</td>
<td>Yes</td>
<td>981</td>
<td>19.9</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>3945</td>
<td>80.1</td>
</tr>
<tr>
<td>FEP</td>
<td>Yes</td>
<td>1653</td>
<td>33.6</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>3273</td>
<td>66.4</td>
</tr>
<tr>
<td>SEI</td>
<td>Yes</td>
<td>752</td>
<td>15.3</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>4174</td>
<td>84.7</td>
</tr>
</tbody>
</table>

4.2. Research Data

Individuals’ subjective perceptions (e.g., intentions) are difficult to measure objectively and are susceptible to observation biases. We saw how Fisher’s linear discriminant projects data points from higher dimensions to smaller dimensions. The prediction of binary logistic regression follows two principles: “It maximizes the between-class variance” and “It minimizes the within-class variance” [46]. The segmentation with the largest variance between classes implies the smallest probability of misclassification [47]. This is a self-suitable method for automatically finding the threshold for the bimodal case. Therefore, we chose binary logistic regression to avoid prediction errors caused by individuals’ subjective perceptions (e.g., intentions). The scale consisted of 15 questions, which were mainly related to entrepreneurship education practice, entrepreneurship education curriculum, and entrepreneurship education faculty. The questions were rated on a five-point Likert scale, ranging from 5 “strongly agree” to 1 “strongly disagree.” The questionnaire was reviewed and revised by experts in the field as well as by individuals or organizations with experience in entrepreneurship.

4.2.1. Exploratory Factor Analysis of the Scale

The exploratory factor analysis showed that the overall scale had a KMO value of 0.978 (greater than 0.8), a Bartlett test of significance of 0.000, a degree of freedom of 105, and an approximate chi-square of 87380.241, indicating good validity and suitability for factor analysis. In the analysis, according to the method of “eigenvalue > 1,” only one common factor was obtained, and the total variance explained was 75.964%. Therefore, the theoretical hypothesis was combined with “fixed number of factors = 3” for the analysis. The results showed that the total explained variance reached 82.417%. After matrix rotation, variables with component factor scores >0.5 were grouped into one common factor. Finally, three common factors were obtained (Table 2): (1) entrepreneurship education practice (EEP), (2) entrepreneurship education faculty (EEF), and (3) entrepreneurship education activity courses (EAC).

The EEP subscale (Cronbach’s coefficient = 0.956) was focused on students’ evaluation of their entrepreneurial practice environment [48,49]. The EEF subscale asked about faculty...
in the entrepreneurship education field (Cronbach's coefficient = 0.931). The EAC scale (Cronbach’s coefficient = 0.941) focused on students’ evaluation of the implementation of entrepreneurship courses and their perceptions of sustainable entrepreneurship programs [50–52]. In summary, for all three factors, the KMO and Cronbach’s alpha coefficient values were over 0.8 and 0.9, respectively, indicating good reliability and validity. Therefore, the scale is suitable for factor analysis.

Table 2. Exploratory factor analysis.

<table>
<thead>
<tr>
<th>Questions</th>
<th>FACTOR</th>
<th>KMO</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are independent entrepreneurship practice pioneer parks</td>
<td>0.822</td>
<td></td>
</tr>
<tr>
<td>There are special off-campus enterprise practice bases</td>
<td>0.798</td>
<td></td>
</tr>
<tr>
<td>There are comprehensive entrepreneurial practice services</td>
<td>0.756</td>
<td></td>
</tr>
<tr>
<td>Entrepreneurial practice is supported by a special entrepreneurial fund</td>
<td>0.747</td>
<td>32.31% 0.930</td>
</tr>
<tr>
<td>Entrepreneurial practice is supported by on-campus and off-campus mentors</td>
<td>0.735</td>
<td></td>
</tr>
<tr>
<td>Entrepreneurial practice is highly integrated with professional learning</td>
<td>0.716</td>
<td></td>
</tr>
<tr>
<td>Faculty members have a wealth of entrepreneurial education teaching experience</td>
<td>0.791</td>
<td></td>
</tr>
<tr>
<td>Faculty members have entrepreneurial experience</td>
<td>0.788</td>
<td>26.07% 0.825</td>
</tr>
<tr>
<td>Faculty members have a variety of teaching styles</td>
<td>0.759</td>
<td></td>
</tr>
<tr>
<td>There are various types of entrepreneurship education courses</td>
<td>0.727</td>
<td></td>
</tr>
<tr>
<td>Entrepreneurial competition projects are highly integrated with majors</td>
<td>0.737</td>
<td></td>
</tr>
<tr>
<td>Entrepreneurship course content is closely combined with my professional knowledge</td>
<td>0.722</td>
<td>23.90% 0.897</td>
</tr>
<tr>
<td>Entrepreneurial competition projects are easier to implement</td>
<td>0.711</td>
<td></td>
</tr>
<tr>
<td>Entrepreneurship course content is closely integrated with the frontier trends of the times</td>
<td>0.626</td>
<td></td>
</tr>
<tr>
<td>There are a variety of entrepreneurial competitions</td>
<td>0.583</td>
<td></td>
</tr>
</tbody>
</table>

4.2.2. Confirmatory Factor Analysis of the Scale

The scale reliability and validity were further explored through confirmatory factor analysis using AMOS 24.0, and the results are shown in Table 3. All standardized factor loadings were significant. The result indicates a strong relationship between the measurement terms and the factors.

Table 3. Factor loading coefficient.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Measurement Items</th>
<th>z</th>
<th>Std. Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEP</td>
<td>There are independent entrepreneurship practice pioneer parks</td>
<td>-</td>
<td>0.841 ***</td>
</tr>
<tr>
<td></td>
<td>There are special off-campus enterprise practice bases</td>
<td>83.869</td>
<td>0.892 ***</td>
</tr>
<tr>
<td></td>
<td>There are comprehensive entrepreneurial practice services</td>
<td>87.362</td>
<td>0.912 ***</td>
</tr>
<tr>
<td></td>
<td>Entrepreneurial practice is supported by a special entrepreneurial fund</td>
<td>82.106</td>
<td>0.882 ***</td>
</tr>
<tr>
<td></td>
<td>Entrepreneurial practice is supported by on-campus and off-campus mentors</td>
<td>85.718</td>
<td>0.902 ***</td>
</tr>
<tr>
<td></td>
<td>Entrepreneurial practice projects are highly integrated with professional learning</td>
<td>81.137</td>
<td>0.876 ***</td>
</tr>
<tr>
<td>EEF</td>
<td>Faculty members have a wealth of entrepreneurial education teaching experience</td>
<td>-</td>
<td>0.894 ***</td>
</tr>
<tr>
<td></td>
<td>Faculty members have entrepreneurial experience</td>
<td>87.535</td>
<td>0.860 ***</td>
</tr>
<tr>
<td></td>
<td>Faculty members have a variety of teaching styles</td>
<td>93.940</td>
<td>0.887 ***</td>
</tr>
<tr>
<td></td>
<td>Entrepreneurial competition projects are highly integrated with majors</td>
<td>90.703</td>
<td>0.874 ***</td>
</tr>
<tr>
<td>EAC</td>
<td>There is a high degree of integration of entrepreneurial competition projects with majors</td>
<td>-</td>
<td>0.883 ***</td>
</tr>
<tr>
<td></td>
<td>Entrepreneurship course content is closely combined with my professional knowledge</td>
<td>87.491</td>
<td>0.865 ***</td>
</tr>
<tr>
<td></td>
<td>The entrepreneurial competition projects participated in are easier to implement</td>
<td>86.595</td>
<td>0.861 ***</td>
</tr>
<tr>
<td></td>
<td>Entrepreneurship course content is closely integrated with the frontier trends of the times</td>
<td>94.545</td>
<td>0.896 ***</td>
</tr>
<tr>
<td></td>
<td>There are a variety of entrepreneurial competitions</td>
<td>87.111</td>
<td>0.863 ***</td>
</tr>
</tbody>
</table>

*** p < 0.01.
The overall absolute fit indices are in Table 4. The below indices meet the acceptable criteria. It is worth noting that the AGFI was 0.898, which is very close to 0.9, and therefore also within the acceptable range. Thus, the model's effect reached an acceptable level.

<table>
<thead>
<tr>
<th>Common Indicators</th>
<th>p</th>
<th>GFI</th>
<th>RMSEA</th>
<th>RMR</th>
<th>CFI</th>
<th>NFI</th>
<th>TLI</th>
<th>AGFI</th>
<th>IFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Judgment Standards</td>
<td>>0.05</td>
<td>>0.9</td>
<td><0.10</td>
<td><0.05</td>
<td>>0.9</td>
<td>>0.9</td>
<td>>0.9</td>
<td>>0.9</td>
<td>>0.9</td>
</tr>
<tr>
<td>Result</td>
<td>0.000</td>
<td>0.926</td>
<td>0.079</td>
<td>0.013</td>
<td>0.969</td>
<td>0.969</td>
<td>0.963</td>
<td>0.898</td>
<td>0.969</td>
</tr>
</tbody>
</table>

Compound reliability (CR) was calculated as the index of potential variables using standardized factor loads, with a composite reliability of 0.931, 0.942, and 0.956 for EEF, EAC, and EEP, respectively, which indicates good reliability (Table 5). At the same time, the result shows that the model has good convergent validity, no covariance issues, and no autocorrelation.

<table>
<thead>
<tr>
<th>Factor</th>
<th>Cronbach’s Alpha</th>
<th>VIF</th>
<th>Composite Reliability</th>
<th>Durbin-Watson</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEF</td>
<td>0.931</td>
<td>1.06</td>
<td>0.931</td>
<td>1.964</td>
<td>0.771</td>
</tr>
<tr>
<td>EAC</td>
<td>0.941</td>
<td>1.07</td>
<td>0.942</td>
<td></td>
<td>0.763</td>
</tr>
<tr>
<td>EEP</td>
<td>0.956</td>
<td>1.05</td>
<td>0.956</td>
<td></td>
<td>0.782</td>
</tr>
</tbody>
</table>

The common method bias (CMB) was tested by controlling for unmeasurable potential methodological factors. Based on the confirmatory factor analysis model described above, all question terms were used as indicators of methodological factors, and correlation indices with absolute fit indices were output (Table 6). The magnitude of change from the original model was not significant; therefore, there was no CMB in this study.

<table>
<thead>
<tr>
<th>Common Indicators</th>
<th>p</th>
<th>GFI</th>
<th>RMSEA</th>
<th>RMR</th>
<th>CFI</th>
<th>NFI</th>
<th>TLI</th>
<th>AGFI</th>
<th>IFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Judgment Standards</td>
<td>>0.05</td>
<td>>0.9</td>
<td><0.10</td>
<td><0.05</td>
<td>>0.9</td>
<td>>0.9</td>
<td>>0.9</td>
<td>>0.9</td>
<td>>0.9</td>
</tr>
<tr>
<td>Result</td>
<td>0.000</td>
<td>0.847</td>
<td>0.109</td>
<td>0.020</td>
<td>0.939</td>
<td>0.939</td>
<td>0.929</td>
<td>0.913</td>
<td>0.939</td>
</tr>
</tbody>
</table>

5. Results
Sustainable entrepreneurial intention was taken as an independent variable and other indicators as dependent variables. Binary logistic regression analysis was performed using Stata 15.0. The following responses were coded as 0: no SEI after graduation, male, and “I had some entrepreneurial experience in college”. The odds ratio (OR) was estimated with “1” as reference in all variable groups. The Hosmer-Lemeshow fit test indicated that the fit of the model is good; thus, the independent variable effectively predicted the dependent variable (Table 7).

<table>
<thead>
<tr>
<th>Chi-Square</th>
<th>df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.893</td>
<td>8</td>
<td>0.351</td>
</tr>
</tbody>
</table>
was conducted to obtain the following formula: \(\ln \left(\frac{P}{1-P} \right) = 0.001 + 0.916 \times \text{Gender} + 1.079 \times \text{SEP} + 0.790 \times \text{FEP} + 0.183 \times \text{EAC} + 0.101 \times \text{EF} + 0.107 \times \text{EP} \)

(P represents the probability that sustainable entrepreneurial intention is 1, and 1 – P represents the probability that entrepreneurial intention is 0; Table 8).

<table>
<thead>
<tr>
<th>SEI</th>
<th>Coef.</th>
<th>OR</th>
<th>St.Err.</th>
<th>T-Value</th>
<th>p-Value</th>
<th>[95% Conf Interval]</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>0.916</td>
<td>2.499</td>
<td>0.084</td>
<td>10.85</td>
<td>0.000</td>
<td>0.751–1.082</td>
<td>***</td>
</tr>
<tr>
<td>SEP</td>
<td>1.079</td>
<td>2.942</td>
<td>0.088</td>
<td>12.21</td>
<td>0.000</td>
<td>0.906–1.252</td>
<td>***</td>
</tr>
<tr>
<td>FEP</td>
<td>0.790</td>
<td>2.203</td>
<td>0.084</td>
<td>9.450</td>
<td>0.000</td>
<td>0.626–0.954</td>
<td>***</td>
</tr>
<tr>
<td>EAC</td>
<td>0.183</td>
<td>1.201</td>
<td>0.063</td>
<td>3.480</td>
<td>0.001</td>
<td>1.083–1.332</td>
<td>***</td>
</tr>
<tr>
<td>EEF</td>
<td>0.101</td>
<td>1.107</td>
<td>0.059</td>
<td>1.910</td>
<td>0.056</td>
<td>0.998–1.228</td>
<td>*</td>
</tr>
<tr>
<td>EEP</td>
<td>0.107</td>
<td>1.112</td>
<td>0.056</td>
<td>2.120</td>
<td>0.034</td>
<td>1.008–1.227</td>
<td>**</td>
</tr>
<tr>
<td>Constant</td>
<td>0.001</td>
<td>1.001</td>
<td>0.089</td>
<td>0.020</td>
<td>0.988</td>
<td>−0.173–0.176</td>
<td></td>
</tr>
</tbody>
</table>

Mean dependent var 0.847 SD dependent var 0.360 Chi-square 413.722 Prob > chi2 0.000 Akaike crit. (AIC) 3803.982 Bayesian crit. (BIC) 3829.991

Note: *** \(p < 0.01 \), ** \(p < 0.05 \), * \(p < 0.10 \).

All predictor variables were positively and significantly associated with SEI (Table 8). Specifically, for every female student who chooses to be an entrepreneur, 2.5 male students choose to do so (OR = 2.499). Furthermore, the magnitude of change (increase) in SEI is up to three times the amount of change in SEP (OR = 2.942). Moreover, the SEI of students with family entrepreneurial practices was 2.203 times higher (OR = 2.203). The SEI of students who participated in EAC and practice activities increases SEI by up to 1.201 (OR = 1.201) and 1.112 (OR = 1.112) units, respectively. Lastly, if EEF continues to increase, the SEI of students can increase up to 1.107 units (OR = 1.107).

6. Discussion

The present study revealed that gender, FEP, SEP, EEF, EAC, and EEP have a significant positive effect on SEI, confirming our initial hypotheses.

6.1. Theoretical Implications

Existing intention research has been conducted primarily based on the TPB model, which assumes that intentions precede behavior, arguing that the stronger the intention, the more likely the behavior. This study extends the traditional predictions of the TPB by predicting students’ entrepreneurial intentions through a binary logistic regression model. We provide effective sustainable entrepreneurship education in the university as an educational arena that can predict students’ entrepreneurial behaviors while helping them to enhance their entrepreneurial cognition and skills. In addition to adding gender variables, we focus on students’ experiences during their formative years, especially on the impact of school and family on students’ SEI, SEP, and FEP, which expands existing research [53]. For the first time, we introduce the concept of the field of entrepreneurship education and analyze entrepreneurial intention through the variables of the educational field. Field analysis creates a new field for us to research entrepreneurship education by constructing conditional absolute fields to analyze the specific situation of the target group, achieving both the authenticity of presence research and the objectivity of empirical research. In this study, we present a psychological activity in numerical terms by analyzing the individual and cluster characteristics of the study group and predicting the entrepreneurial intentions of college students after receiving entrepreneurship education in colleges and universities. Thus, our study has several theoretical implications.
6.2. Practical Implications

This research has practical implications for administrators, relevant teachers, and government agencies. An increasing number of students have clear SEI, thus, universities need to provide better entrepreneurship education to facilitate the realization of students’ SEI. In this study, we found that EAC ($Z = 3.480$, $p = 0.001 < 0.01$), EEP ($Z = 2.124$, $p = 0.034 < 0.05$), and EEF ($Z = 1.914$, $p = 0.056 > 0.05$) all predicted SEI, but there were significant differences between the levels of influence. Therefore, students’ SEI can be enhanced by adjusting appropriate variables during the implementation of entrepreneurship education in colleges and universities.

6.2.1. Igniting Students’ Entrepreneurial Passion in Entrepreneurship Courses

First, entrepreneurship courses should be included in the mandatory courses in all academic fields, even before the university education courses. Sherkat and Chenari (2022) explored ways to integrate entrepreneurship education courses with professional education courses and integrate the concept of entrepreneurship education into professional education [54]. In their specific implementation, these entrepreneurship courses and programs should focus on entrepreneurship and teach basic knowledge and skills to become entrepreneurs. Therefore, programs in entrepreneurship courses should include problem solving, learning methods, critical thinking, creativity and innovation, decision-making methods, business planning, entrepreneurial finance, and law. The course construction and implementation need to be in line with students’ needs, and the combination of personalization and popularization of entrepreneurship education is an important breakthrough for future entrepreneurship education in universities. At the same time, the main role of students in entrepreneurship course learning is highlighted. Students are encouraged to become teachers in the classroom and share their entrepreneurial plans and innovative ideas with their peers. Enhancing students’ self-confidence is not only an exercise in the entrepreneurial process, but also an incentive for them to become members of society.

6.2.2. Updating the Entrepreneurship Faculty Training Program

Teachers play a central role in entrepreneurship education and play a decisive role in determining the timing, frequency, content, and methods of entrepreneurship education [55–58]. Traditional entrepreneurship courses are often taught by part-time teachers, but now the role of entrepreneurship courses has become increasingly important, and traditional teacher training programs should be replaced. For instance, entrepreneurs with entrepreneurial experience should be trained to teach, which could make entrepreneurship courses more vivid, concrete, and high-quality. In particular, the current period has entered the digital era, which puts forward higher requirements for entrepreneurship education teachers. The digital empowerment of teachers is an important direction for the future improvement of entrepreneurship education teachers: improvement of teachers’ digital skills positively impacts the entrepreneurship education teaching process. In sum, strengthening entrepreneurship education training for teachers can positively impact entrepreneurship education practices.

6.2.3. Constructing a Digital Entrepreneurship Practice Monitoring Program

Entrepreneurship practice is an important indicator of university students’ entrepreneurial activities during their school years, and the practice environment has an impact on students’ sustainable entrepreneurial intentions ($Z = 2.124$, $p = 0.034 < 0.05$). Practical teaching can enhance students’ sense of gain and achievement in the education process. In the present study, most respondents indicated that an independent college entrepreneurship park facilitates the implementation of entrepreneurial activities. In fact, sound college entrepreneurship parks and incubation bases are important factors that attract students to implement entrepreneurial activities. The complexity of entrepreneurship types determines the complexity of the entrepreneurial environment. Universities need to be able to meet the entrepreneurial needs of the vast majority of students, which requires the enrichment...
of entrepreneurial practice services in universities. Currently, digital visualization programs for service-monitoring activities have been constructed in several areas. The aim is to monitor the entire process of student entrepreneurial activity, providing real-time guidance according to the problems that arise at different stages, including the evaluation of the entrepreneurial plan beforehand, the intervention of the entrepreneurial activity during the process, and the evaluation of the entrepreneurial behavior afterwards. A system of measurement indicators is introduced in the different stages mentioned above to form an effective monitoring program and an early warning mechanism through a large sample collection.

Given the differences in gender outcomes, Díaz-García and Jiménez-Moreno (2010) argue that there is a need to introduce long-term solutions in the educational system to reduce the gender gap in entrepreneurship, in which case it is more important to analyze the need for careful treatment of gender-related aspects in educational programs [59]. The stereotypes of women in society need to be changed, as an increasing number of women are already engaged in entrepreneurial activities in China, and universities as business incubators should pay more attention to the behavior of female students in entrepreneurship. The government should support female and male entrepreneurs equally. In the educational field, more emphasis needs to be placed on gender as a benefit rather than a disadvantage. The study of female entrepreneurship is a challenge for global entrepreneurship researchers, and the study of barriers to female entrepreneurs will be a new topic in future research.

7. Conclusions

Our findings revealed that gender, SEP, FEP, EEP, EEF, and EAC are positively and significantly associated with SEI. This result is not consistent with findings by Bae that there is a significant but small correlation between entrepreneurship education and sustainable entrepreneurial intention [60].

Regarding gender, in line with previous research, we found that male students report higher sustainable entrepreneurship intentions than their female counterparts. Studies have revealed that men report a stronger sense of personal efficacy and greater preference for entrepreneurship [61]. Although gender differences are not a key determinant of whether college students choose to start a business after graduation, they can still be used as a potential factor in research to analyze sustainable entrepreneurial intention.

Family experience is also key. In a study by Dyer and Handler (1994), it was noted that the sustainable entrepreneurial intentions and the probability of entrepreneurial activities among entrepreneurial and private business owners’ children were significantly higher [62]. The presence of an entrepreneur in the student’s family also has a significant effect on the “need for success” and “creativity” dimensions of entrepreneurial intentions. The concept of family education has gradually evolved into family field education, and the educational field constituted by family and school has a great influence on students’ learning behavior. Thus, students’ entrepreneurial practice experience during school (e.g., participating in entrepreneurial competitions, developing and implementing projects, and writing entrepreneurial project proposals) also significantly impact sustainable entrepreneurial intention. Furthermore, several studies have shown that students involved in entrepreneurial activities have a greater sense of accomplishment and satisfaction [63,64].

Entrepreneurship education has risen as a national strategy in Chinese higher education. Our findings are consistent with previous research in showing that entrepreneurship education has a positive impact on entrepreneurship intentions [65–69].

The analysis found that SEI was significantly and positively influenced by the three independent variables of the entrepreneurship education field. Breznitz and Zhang (2021) showed that EAC positively influences entrepreneurship in general and student entrepreneurship in particular, compared with the absence of entrepreneurship education [70]. The report “Effectiveness and Impact of Entrepreneurship Programs in Higher Education” published by the European Union (2012) stated that entrepreneurship education in higher
education improves students’ basic entrepreneurial skills, strengthens their entrepreneurial intentions, and increases their employability [71]. The report also recommended that entrepreneurship education be disseminated to all disciplines and through mandatory university courses, emphasizing that post-education monitoring activities should be repeated. Thus, an effective entrepreneurship education should be one that identifies the enabling factors in the entrepreneurial process and is able to pinpoint the factors that can be taught and the best teaching methods that meet the needs of students, adapting to changes in educational technology.

EEF is a transmitter of entrepreneurship education knowledge, while entrepreneurship knowledge, pedagogical competence, and entrepreneurship experience profoundly influence the entrepreneurship education process [72]. Teachers with strong pedagogical skills can fully transfer their knowledge to students, while incorporating their own entrepreneurial experience to improve the relevance of what is taught in the classroom [73]. Because teachers’ influence on students is often primary, EEF is also considered one of the most important factors influencing students’ SEI. The process should also focus on experiential and interactive teaching and learning to develop students’ active learning skills. Although active learning methods are complex and difficult to implement, they are more beneficial than traditional teaching methods [74].

This study can be a useful complement to Souitaris, Zerbinati, and Al-Laham (2007), who explored the significant impact of EEP on students’ SEI, arguing that authentic experience increases students’ SEI and that students who participate in practical learning have significantly higher SEI than those who do so theoretically [75]. Thompson, Verduijn, Gartner, and Anderson (2020) root contemporary practice theory in entrepreneurship research, confirming that entrepreneurship is practiced and that students’ activities, including writing business plans and conducting and participating in entrepreneurial activities, are entrepreneurial practice activities [76]. In vocational education, more emphasis is placed on students’ entrepreneurship education practices, which enrich their experience through practical training and prepare them for future challenges [77].

The data used in this study are mainly from Hangzhou, a digital city in an emerging economy. While the sample is representative, it is not comprehensive. In addition, this study mainly used cross-sectional data analysis, which failed to grasp the developmental dynamic of students’ sustainable entrepreneurial intentions.

8. For Future Research

In future studies, data collection should be more comprehensive, including cities in other emerging economies, and not just limited to some typical cities, in order to more accurately predict students’ entrepreneurial intentions. The research on sustainable intention should be a dynamic follow-up survey, and it should be able to pay attention to the important position of digital means in future research, as well as the diverse entrepreneurial needs of students.

Author Contributions: Conceptualization, Y.H. and G.Z.; methodology, Y.H.; software, Z.L.; formal analysis, R.Z.; investigation, Z.H.; resources, Z.H.; writing—original draft preparation, R.Z.; writing—review and editing, G.Z. and Y.H.; visualization, G.Z. and Y.H.; funding acquisition, Z.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Social Science Foundation of China (Grant 21A[GL0031])0.

Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki, and approved by the Institutional Review Board of Hangzhou Normal University.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are available on request from the corresponding author.
Acknowledgments: We are grateful to all the students and teacher in the participating school.

Conflicts of Interest: The authors declare no conflict of interest.

References
2. Schröder, L.-M.; Bobek, V.; Horvat, T. Determinants of Success of Businesses of Female Entrepreneurs in Taiwan. Sustainability 2021, 13, 4842. [CrossRef]

37. Hsu, D.; Wiklund, J.; Cotton, R. Success, Failure, and Entrepreneurial Reentry: An Experimental Assessment of the Veracity of

