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Abstract: Foams produced with biobased materials, such as poly(lactic acid) (PLA), cellulose, starch,
and plant oil-based polyurethanes, have become more and more important in the circular economy.
However, there are still significant challenges, including inferior performance and higher cost. The
use of low-cost filler material has the potential to reduce the cost and alter the composite properties
of biobased foams. By selecting biofillers derived from plant material, we can reduce the cost without
sacrificing the compostability. This study explored the impact of landfill-diverted biofiller material,
ground coffee chaff and rice hulls on the physical properties of biobased foams. Both biofillers were
extrusion compounded with PLA, then extruded into rigid foams using a physical blowing agent.
A filler concentration up to 10 weight % rice hull or 5 weight % coffee chaff could be incorporated
without a significant increase in density, in comparison to the regular PLA foam. The thermal
conductivity was similarly unaffected by biofiller loading, with values ranging between 71.5 and
76.2 mW/m-K. Surprisingly, the filler composite foams possessed impressive mechanical properties
with all compressive moduli above 300 MPa. Only 5 weight % loading resulted in the doubling
of compressive modulus, compared to the regular PLA foam. These results indicate that landfill-
diverted fillers can strengthen foam mechanical properties without impacting thermal insulation
performance, by forming reinforcing networks within the cell walls.

Keywords: biobased; polymer foam; landfill-diverted filler; compression modulus

1. Introduction

Rigid foams are a crucial component in the everyday lives of people around the
world. They are used in a multitude of applications, including packaging, insulation,
and disposable food containers. Expanded polystyrene (EPS), commonly referred to by
the brand name Styrofoam™, is one of the current industry standards for rigid foam.
Although EPS is well suited to insulation and packaging applications, and is low cost, it
is not a sustainable option. Similarly to other petroleum-based foams, the production of
EPS involves the consumption of non-renewable resources, and it is typically disposed in
landfills after one-time use. Polystyrene is recyclable; however, the low density of EPS and
limitations in recycling infrastructure have hindered it from being economically viable [1].
Though governments and companies around the world have made great progress in
increasing recycling efforts [2], including those for foam materials, a more sustainable
option is still needed to achieve a circular economy.

Biobased polymers are a popular route that researchers have taken towards improving
the environmental friendliness of rigid foams. Studies have shown that replacing petroleum-
based polymers with biobased counterparts results in a reduction in emissions that are
harmful to the environment and human health [3–8]. Many biobased polymers are also
biodegradable or industrially compostable, which can reduce landfill accumulation [9,10].
Several works have already demonstrated that biobased polymer foams can be made using
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industrially scalable methods, and can achieve similar performance as traditional industry
standards [11–15]. In particular, poly(lactic acid) (PLA) is a promising biobased option, due
to its physical properties, which are often compared to polystyrene and polypropylene, and
its compostability [16,17]. Previous studies verified the potential of PLA as a foam material
through extrusion with both physical and chemical blowing agents [18–21]. The primary
concern with PLA in the past has been degradation during processing. PLA is susceptible
to hydrolysis when exposed to moisture at processing temperatures. This problem can be
mitigated through drying procedures and the use of chain-extending agents [22,23], thus
making PLA a viable alternative to the traditional plastics used for foams.

The remaining concern with PLA continues to be its cost and lack of performance.
Despite the necessary plants (e.g., corn) being widely available in many parts of the world,
the production of PLA still results in a higher price than petroleum-based plastics [24,25].
At the same time, there are millions of tons of agricultural waste products, such as rice
hulls, which are disposed in landfills. This inefficient use of resources presents a serious
issue and an opportunity to improve. Researchers have already created PLA composite
foams with various nanoparticle additives to alter the foam properties [26,27]. For example,
it is known that the addition of nanoclay additives is typically associated with an increase
in mechanical strength [28,29]. However, few studies have explored the use of biobased
filler materials in polymer foams. Biobased agricultural waste products have the potential
to work well as inert filler within a PLA foam, as they are primarily cellulosic material
and have essentially negative to zero economic value. Furthermore, adding a biofiller is
not anticipated to compromise the compostibility of the foam, while reducing the cost of
the material.

The aim of this work is to understand the viability of landfill-diverted agricultural
waste as filler material in extruded PLA foams. Two biofillers, rice hulls (RH) and coffee
chaff (CC), were ground and compounded with foam grade PLA in different ratios, prior
to foaming with a physical blowing agent (PBA). The biofiller–PLA foams were compared
with unfilled PLA foam to determine the impact of the biofiller on foam properties, in-
cluding density, thermal conductivity, and mechanical strength. The results of this study
demonstrated that at low concentrations (≤5 wt. %), biofiller does not reduce the foam-
ing capability of PLA. Additionally, a significant increase in compression modulus was
observed in the biofiller–PLA foam, suggesting that the use of biofiller can reduce the cost
of the material and increase the value of the final product.

2. Materials and Methods
2.1. Materials

Semi-crystalline foam grade PLA Ingeo 8052D (NatureWorks) with a D-lactide content
of 4.6%, specific gravity of 1.24, melt flow index of 14 g/10 min, number-average molecular
weight of 2.09 × 105 g/mol, and polydispersity index of 1.39 was used as the base polymer.
Joncryl®ADR 4368-C was used as an epoxy-functionalized chain-extending agent. An
endothermic chemical blowing agent, designed for use with PLA, TecoCell®GT, was
supplied by Trexel. A small amount of water was produced as a by-product of the CBA.
Use of the chain-extending agent and lowest possible temperature setting was expected
to decrease potential hydrolysis. Jetfine®3CC, supplied by Imerys Talc, was used as a talc
nucleating agent. Additionally, landfill-diverted rice hulls and coffee chaff were procured
from a commercial source.

2.2. Preparation of Biofiller-Compounded PLA and Foams

The rice hulls and coffee chaff were separately ground through multiple cycles using
a Cyclone Mill. After grinding, the particles were sieved to a size of 350 µm. Larger
fragments were reground and sieved again until enough material was obtained. Each
ground biofiller was then compounded with PLA to create blends at concentrations of
5 weight % and 10 weight %. PLA foams without biofiller were made for comparison.
Additionally, since the biofiller was hypothesized to have the potential to act as a nucleating



Sustainability 2022, 14, 5521 3 of 12

agent for the foaming process, no additional nucleating agents (CBA and Talc) were added
to the formulations containing biofiller. Formulations were compounded using a Leistritz
27 mm twin-screw extruder operating at the maximum set temperature of 190 ◦C, and then
pelletized. Prior to all extrusion steps, the PLA (or biofiller-compounded PLA) was dried
in a desiccator for a minimum of 12 h at 60 ◦C. Formulations for each foam are listed in
Table 1.

Table 1. PLA foam sample formulations. Samples made with biofiller-compounded PLA are listed in
terms of weight percentage of the specific biofiller.

Sample Name Material Blowing Agent Talc (%)

PLAf Virgin PLA 9% PBA, 3% CBA 2

5RHf 5% RH 9% PBA 0
10RHf 10% RH 9% PBA 0

5CCf 5% CC 9% PBA 0
10CCf 10% CC 9% PBA 0

Foaming extrusion was conducted at the Leistritz extrusion facility in Somerville,
New Jersey. Figure 1 illustrates the setup of the 27 mm twin-screw extruder (6.3 mm
round die) with a supercritical fluid injection pump that was used for foaming. All solid
materials, including PLA (or biofiller-compounded PLA), chain-extending agent (0.7 wt. %
of polymer), chemical blowing agents, and nucleating agent, were fed into the hopper at a
constant rate. The feeding rate was adjusted to obtain the desired supercritical CO2 (scCO2)
dosage. After exiting the extruder die, the foams were allowed to cool on a conveyer belt at
room temperature. Additional extrusion parameters are shown in Table 2.
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Figure 1. Generalized diagram of foam extrusion twin-screw set-up.

Table 2. Extrusion foaming parameters for each sample batch.

PLAf 5RHf 5CCf 10RHf 10CCf

Extruder RPM 22 28 28 36 22
Melt temp (◦C) 152 151 151 156 148

Melt pressure (Bar) 55 55 55 41 48
Zone 1 temp (◦C) 150 150 150 150 150
Zone 2 temp (◦C) 185 185 185 185 185
Zone 3 temp (◦C) 185 185 185 185 185
Zone 4 temp (◦C) 185 185 185 185 185
Zone 5 temp (◦C) 160 160 160 160 160
Zone 6 temp (◦C) 150 155 155 155 150
Zone 7 temp (◦C) 150 150 155 150 150
Zone 8 temp (◦C) 140 150 145 150 140
Zone 9 temp (◦C) 140 150 140 150 140

Zone 10 temp (◦C) 150 150 145 150 155
Die temp (◦C) 150 150 145 150 155
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2.3. Characterization

Ground biofiller particles were characterized using a 3D Surface Profiler VK-X1000
microscope (Keyence Corporation of America, Itasca, IL, USA). Representative images
of the particles were captured with 5× and 10× magnification optical lenses. Lighting
was adjusted to clearly observe the particle texture and color. The foam samples were
also imaged using the same general method. The foam samples were prepared first by
cryofracturing a cross-section along the transverse direction (perpendicular to the direction
in which the sample exited the extruder die).

Foam samples were also imaged with scanning electron microscopy (SEM). Samples
were prepared by cryofracturing a cross-section along the transverse direction and then
sputter coating with iridium. The samples were imaged with an FEI Quanta-FEG 250 SEM
with a 1 nm resolution, operating at an accelerating voltage of 10 kV. The SEM images were
analyzed with ImageJ (U.S. National Institutes of Health, Bethesda, MD, USA) software to
calculate the average cell size. Cell size was measured along the longest direction of the
cell. Fifteen cells from three images were measured at random for every sample, giving
45 total measurements per sample. The average and standard deviation were calculated.

Density of the foam samples was determined by first cutting cylindrical sections from
three different regions of the overall sample batch. The sample replicates were massed
with a balance with precision to 0.1 mg. The sample heights and diameters were measured
with a caliper three times. The average of the height and diameter measurements was
calculated. Using the average values, the volume of the sample was calculated, assuming a
perfect cylinder. The density was calculated for each sample replicate by dividing the mass
by the volume, and the final density of the overall sample was taken to be the average of
the replicates.

Thermal conductivity of the foam samples was measured using a Hot Disk TPS 1500
(Hot Disk®Instruments, Göteborg, Sweden). Based on the size of the samples, a 3.2 mm
radius Kapton sensor was selected. Three sets of replicates were measured for each sample
and the average was calculated. Due to reduced expansion in the 10% biofiller foam
samples, the radius of the sample was too small to be accurately measured. As a result, the
data for those samples are not provided.

The compressive strength of the foam samples was measured using an Instron 5569
(Instron, Norwood, MA, USA) electromechanical testing system with a 50 kN load cell.
Ten replicates of each sample were tested, according to the method outlined in ASTM
D1621-16 [30]. The compression modulus of each replicate was calculated from the slope of
the resulting stress–strain curve. The modulus of the sample was taken as the average of
the replicates.

Crystallinity of the PLA and foam samples was determined through differential
scanning calorimetry (DSC). Three measurements from each sample were analyzed with
a Q2000 DSC (TA Instruments, New Castle, DE, USA), utilizing a heat/cool/heat cycle
ranging from 30 ◦C to 200 ◦C at a rate of 10 ◦C/min, under a nitrogen atmosphere. The
thermal transitions in the first heating cycle were analyzed. Crystallinity of the sample was
calculated by subtracting the enthalpy of crystallization (∆Hc) from the enthalpy of melting
(∆Hm) and dividing the difference by ∆Hm

0 (enthalpy of melting for a 100% crystalline PLA
sample). The value of ∆Hm

0 was taken to be 93.7 J/g, as shown in previous literature [31].
Attenuated total reflectance (ATR) Fourier transform infrared spectroscopy (FT-IR)

was conducted on the foam samples to detect interactions occurring between the biofiller
particles and the PLA matrix. A Nicolet 6700 infrared spectrometer (Thermo Scientific,
Waltham, MA, USA) with a DTGS detector was used. Each spectrum collection consisted of
32 scans and had a 2 cm−1 resolution. Three replicates of each foam sample were analyzed
with 32 scans per run. The data are reported in the Supplementary Materials.

2.4. Statistical Analysis

For density and compression data, a statistical analysis was conducted using JMP®Pro 16,
SAS Institute Inc., Cary, NC, USA. One-way ANOVA with Bonferroni-corrected post hoc
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t-tests was conducted to determine if the material properties were statistically different
from one another.

3. Results and Discussion
3.1. Foam Structure and Imagaing

In general, polymer composite properties are influenced by the morphology and
dispersion of the minority (particulate) phase [32,33]. For foam structural properties, the
cell size and foam density are critical parameters. Optical images of the ground biofiller
particles and the composite foams were collected to understand the differences in the rice
hulls and coffee chaff. Figure 2a displays the rice hull particles, which have a broad size
distribution, ranging from 5 to 1000 µm, and are generally anisotropic with a flake-like
morphology. The larger particles are ridged and up to 50 µm thick. The large rice hull
particles are clearly visible in the composite foams (Figure 2b,c), and are on a similar
size scale as the foam cells. There is no indication of agglomeration of the large rice hull
particles, though it is unclear from the optical images if the fine particles are well dispersed.
In comparison, the coffee chaff (Figure 2d) has fewer very fine particles (maximum Feret
length <10 µm) and the majority of larger particles are wafer-like with thicknesses less than
10 µm. Though most of the coffee chaff particles are wafer-like, a few have a rounder, more
pebble-like morphology. In Figure 2e,f, the individual coffee chaff particles are generally
not visible within the polymer matrix. However, the relatively uniform color change of the
polymer suggests that the particles are well dispersed.
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Figure 2. Optical images of ground biofiller particles: (a) rice hulls, (d) coffee chaff, and PLA–biofiller
foams: (b) 5RHf, (c) 10RHf, (e) 5CCf, and (f) 10CCf.

To obtain a clear image of the foam cell structure, SEM images were collected (see
Figure 3). All the samples have a mostly closed-cell structure. The SEM images were
also used to determine the average cell diameter, as shown in Figure 4. The cell wall
cross-sections displayed in Figure 3d–f are smooth for all the biofiller composite foams. In
comparison, the PLAf cell walls have a pockmarked appearance. We hypothesize that the
divots are nucleation sites resulting from the talc nucleating agent. Talc was not added
to the biofiller foams, which could explain the absence of the pockmarked structure in
those samples.
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3.2. Density

The apparent density of foams is an important factor related to other areas of perfor-
mance, including thermal conductivity and mechanical strength [34,35]. It was hypothe-
sized that increasing the biofiller content would lead to a higher density by disrupting the
cell structure. Largely, the data shown in Figure 5 support the hypothesis. The rice hull
samples exhibit a slight increase in density with higher biofiller percentages. The coffee
chaff samples do not have a clear trend, with 5CCf possessing a lower density than PLAf,
and 10CCf possessing a very high density of 0.6 g/cm3. The statistical analysis indicated
that neither of the rice hull samples nor 5CCf are statistically different from PLAf. Sample
10CCf has a much higher density, resulting in a statistical difference from both PLAf and
5CCf. In general, these foams have a density in the range of 0.3–0.5 g/cm3, approximately
3 to 5 times the density of EPS foam [36].
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3.3. Thermal Conductivity and Diffusivity

The thermal conductivity and diffusivity analysis indicated that the 0% and 5% biofiller
samples possess similar properties. Simple models for PLA foams indicate that thermal
conductivity can be related to foam density by a power law [37]. Therefore, thermal
conductivity is expected to follow the same trend as density. In the case of the 5% biofiller
foams, however, the rice hulls possessed lower thermal conductivity than the coffee chaff—
the opposite of what was anticipated, due to the density trends. It should be noted,
however, that the difference in thermal conductivity for the three samples in Figure 6 is
practically small, with the averages ranging from only 71.5 to 76.2 mW/m-K. The statistical
analysis results suggest there are no statistically significant differences between the samples.
Similarly, thermal diffusivity is fairly consistent across the three samples. These results
are encouraging, as they demonstrate that both biofillers can be used without causing
significant change to the foam thermal insulation properties. The insulation materials used
in building and packaging applications typically have thermal conductivity ranging from
15 to 70 mW/m-K [38]. The PLA foams with an average conductivity of 72.1 mW/m-K
(PLAf) and 71.5 mW/m-K (5RHf) could possibly serve as suitable substitutes for insulation
materials at the top of this range.
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3.4. Compression Testing

Compression testing was conducted to assess the mechanical performance of the
PLA–biofiller foams. Similar to the thermal insulation properties, it was hypothesized that
the compression modulus data would follow the same trend as density. As can be observed
in Figure 7, this hypothesis is mostly supported by the data. All of the foam samples have
compression moduli above 200 MPa, and all of the biofiller foams are significantly stronger
than PLAf. Given that 10CCf had a far higher density than any of the other samples, the
increase in modulus, compared to the other samples, was anticipated. However, the other
biofiller samples have dramatic increases in modulus, beyond what would be predicted
based on density alone. In particular, 5CCf has an average density lower than that of PLAf,
but has a compression modulus double that of PLAf. All the biofiller samples have moduli
above 300 MPa.
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The statistical analysis determined that 5RHf, 5CCf, and 10CCf are statistically differ-
ent from PLAf. Additionally, when comparing the coffee chaff and rice hull samples to each
other, the modulus of 10CCf is statistically different from all the other samples. Overall,
these results suggest that the biofiller significantly increases the compression modulus, and
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that this phenomenon is likely not entirely attributed to differences in foam density. Given
the fairly uniform dispersion of particles throughout the foams, observed in Figure 2, a
possible explanation for the increased compression modulus is that the particles are able to
both adhere well to the PLA matrix and form a supportive network that acts as mechanical
reinforcement [39,40]. Another possibility is that the biofiller particles acted as crystal
nucleation sites, thereby increasing the polymer crystallinity and/or formed dipole–dipole
interactions with the polymer matrix through hydroxyl groups. Further investigation of
the foam mechanical properties, beyond compression testing, may reveal new information.
Compression testing is a widely used method to determine foam stiffness, but modal
analysis has been demonstrated as an accurate method for measuring the effective elastic
modulus [41,42].

3.5. Foam Crystallinity

To further investigate the reason for the compression testing results, a DSC analysis
was conducted to calculate the crystallinity of the foam samples. All the foam samples
were also compared to the virgin PLA prior to processing. In Figure 8, it can be observed
that processing the foams causes a 75% reduction in polymer crystallinity, compared to
the as-received PLA pellet. The polymer crystallinity is decreased further for the majority
of biofiller foam samples, with 5RHf and 5CCf reaching the lowest crystallinities of 2.7%
and 3.5%, respectively. Sample 10RHf is the exception, with crystallinity almost as high
as the virgin polymer. The reason for this is currently not known. In general, however,
it is clear that the biofiller particles do not generally act as crystal nucleation agents, and,
therefore, the increased compression modulus cannot be attributed to polymer crystallinity.
The FT-IR analysis (see Supplementary Materials Figure S1) revealed no obvious indicators
of chemical interactions or hydrogen bonding [43], as the spectra for all the samples
tested were essentially identical. Therefore, the mechanism for the change in mechanical
performance with biofiller cannot be definitively identified with these results, and further
research is needed. The current working hypothesis is that the increased mechanical
strength in biofiller foam samples arose from reinforcing particle networks dispersed
throughout the polymer matrix.
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4. Conclusions

The PLA–biofiller blend extruded foams presented in this work are a promising sus-
tainable alternative to traditional rigid petroleum-based foams. Despite the heterogeneity
in particle size and morphology, no apparent agglomeration of the biofiller particles was
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observed. At 5 weight % loading, the biofiller does not cause significant changes to the
foam density or insulation properties. The compression testing data indicated an increased
modulus from both the rice hull and coffee chaff composites. Additions of 5 weight % rice
hull and coffee chaff lead to a modulus increase of 73% and 99%, respectively, relative to the
foam without added biofiller. This research indicates that these foams would be well suited
for applications requiring mechanical robustness without a significant increase in density.
Future work directly comparing these composite PLA foams with traditional foams would
be beneficial towards identifying specific applications.

Both rice hulls and coffee chaff are viable as filler materials that can not only reduce
the overall cost of the material, but also add value in the form of improved mechanical
performance. These results are encouraging and warrant further investigation of other
biofillers and increased concentrations. The dramatic increase in density of the 10CCf
sample was of particular concern, especially if such increases were to continue with higher
coffee chaff loading. An additional challenge is to reduce the heterogeneity in biofiller
particle size and morphology. Though the biofillers were thoroughly ground and sieved,
the anisotropic nature of the original material leads to broad size distributions.

This work serves as the foundation for future biobased foam studies, which may
involve different types of biofillers, landfill-diverted fillers, and other types of polymer and
foam materials. The application of biofillers could even be expanded beyond extrusion
processing, to include other foaming techniques. The potential for coffee chaff and rice hull
to be used as a value-adding filler material in PLA foams is clear from the results presented
here. These filler materials should be considered as a means to develop more sustainable
and cost-effective polymer composite foams.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/su14095521/s1, Figure S1: FT-IR spectra of foam samples.
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