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Abstract: Sanitary sewer pipes infrastructure system being in good condition is essential for provid-
ing safe conveyance of the wastewater from homes, businesses, and industries to the wastewater
treatment plants. For sanitary sewer pipes to deliver the wastewater to the treatment plants, they
must be in good condition. Most of the water utilities have aged sanitary sewer pipes. Water utilities
inspect sewer pipes to decide which segments of the sanitary sewer pipes need rehabilitation or
replacement. The process of inspecting the sewer pipes is described as condition assessment. This
condition assessment process is costly and necessitates developing a model that predicts the condition
rating of sanitary sewer pipes. The objective of this study is to develop Multinomial Logistic Regres-
sion (MLR) and Artificial Neural Network (ANN) models to predict sanitary sewer pipes condition
rating using inspection and condition assessment data. MLR and ANN models are developed from
the City of Dallas’s data. The MLR model is built using 80% of randomly selected data and validated
using the remaining 20% of data. The ANN model is trained, validated, and tested. The significant
physical factors influencing sanitary pipes condition rating include diameter, age, pipe material, and
length. Soil type is the environmental factor that influences sanitary sewer pipes condition rating.
The accuracy of the performance of the MLR and ANN is found to be 75% and 85%, respectively.
This study contributes to the body of knowledge by developing models to predict sanitary sewer
pipes condition rating that enables policymakers and sanitary sewer utilities managers to prioritize
the sanitary sewer pipes to be rehabilitated and/or replaced.

Keywords: prediction model; sanitary sewer; condition assessment; multinomial logistic regression;
artificial neural network

1. Introduction

The provision of wastewater services to communities and municipalities is essential
for public health, safety, and socioeconomic development. This requires wastewater infras-
tructure systems that collect wastewater from homes, businesses, and industry and convey
the sewer to the treatment plants. The components of wastewater infrastructure systems
include service laterals, sewer pipelines, manholes, force mains, siphons, combined sewer
overflow regulations, pumping stations, and wet wells [1–3].

According to the [4], wastewater infrastructure was given a D+ score. It is unpre-
dictable to know where or when an accidental pipeline failure would occur. Consequently,
and to mitigate this, regulating agencies demand that wastewater collection systems con-
duct periodic sewer inspections to comply with legal requirements. Due to limited budgets,
however, not all segments of sewer pipes in wastewater collections systems can be in-
spected and assessed. To address this shortcoming of assessing criticality of the sewer
pipes, utilities need pipe condition estimation models [5].
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With limited budgets, policy makers and utility managers must make rational de-
cisions in replacing and/or rehabilitating the pipelines. Asset managers need to make
decisions regarding the selection of optimal rehabilitation action for each sewer condi-
tion [6]. Managing these assets rationally is, therefore, fundamental for the sustainability
of the services and to the economy of societies [7]. To be able to make effective decisions,
most water utilities are implementing asset management. This involves mapping and
condition assessment of the wastewater collection systems. In reviewing the sustainability
of urban water systems [8], it was concluded that identifying and implementing sustainable
rehabilitation interventions in the long-term is essential for the survival of a high-service
level urban water system.

2. Literature Review
2.1. Sewer Pipe Classification

Sewer pipes are classified based on several attributes. These include physical and
environmental factors.

2.2. Physical Factors

The physical factors include pipe material, diameter, age, length, depth, and slope.
Cement-based pipes, vitrified clay pipe (VCP), plastic pipes, and metallic pipes are four
categories of pipe material. Ref. [9] discussed types of these pipe categories as: Cement
based pipes including concrete pipes and asbestos-cement (AC) pipe. Concrete pipes are
nonreinforced concrete pipe (CP), reinforced concrete pipe (RCP), prestressed concrete
cylinder pipe (PCCP), reinforced concrete cylinder pipe, bar-wrapped steel-cylinder con-
crete pipe, and polymer concrete pipe (PCP). The plastic pipes are polyvinyl chloride (PVC)
pipe, polyethylene (PE) pipe, glass reinforced pipe (GRP or Fiberglass Pipe). Metallic pipes
are ductile iron (DI) pipe and steel pipe. Ref. [10] found that material characteristic has the
greatest impact on the pipe condition.

Sewer pipe diameter is a significant variable in pipe condition rating. Most water
collection systems use a minimum of 6 in. sewer pipes while a few others use a minimum
of 8 in. These two common sizes notwithstanding, pipes can be greater than 96 in. Pipe
diameter is one of the factors affecting deterioration of sewer pipes. Ref. [11] stated that
some condition prediction models identified that sewer deterioration rate decreases with
increasing diameter. “With occurrence of obstacles in the conduit, segments with small
diameters are more likely to experience a hydraulic performance drop than large diameter
ones” [12].

Pipe age is one of the pipe characteristics that is a significant variable in sewer pipes
condition rating. Refs. [12,13] found that pipe age was a significant parameter in the
sewer systems deterioration model. Ref. [10] stated that age has a negative impact on pipe
condition. Ref. [14] established that the pipe age influenced sewer pipe condition and
found that poor pipe sewer condition is higher for pipes more than 50 years. “Most of
the condition prediction models developed in previous studies show that pipe age has a
significant relationship with deterioration of sewer pipes” [15].

Sewer pipe length is a segment of a pipe that is measured from manhole-to-manhole.
Ref. [16] noted that length is relevant in describing sewer deterioration even though it is
secondary to pipe material. “Typically, longer manhole-to-manhole sewer pipe segments
have higher deterioration rates because the probability of defects is greater in longer
pipes” [9]. Ref. [10] established that pipe length is an important factor that influences
pipe condition.

Pipe depth is the distance from ground surface to the top of the installed pipe in the
ground. [17] determined that pipes buried in depths between 2 m (6 ft) and 3 m (9 ft) were
least connected to poor sewer pipe condition. Ref. [9] stated that shallowly buried pipes
are subjected to more defects and higher deterioration rate due to surface load, illegal
connections, and tree root intrusion.
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Slope is the gradient of pipe installed from one manhole to manhole. Ref. [12] described
segment slope in percentage per length of a segment. Slope will determine the velocity of
flow in the sewer. Flat slope will encourage deposition of debris inside the pipe. Ref. [14]
stated that negative slopes and extremely low slopes lead to debris accumulation and
blockages. Ref. [18] found that negative and very low slopes were the most harmful
conditions for sewer pipes, whereas steep slope high velocities cause erosion in the pipe
walls. Pipe age is one of the pipe characteristics that is a significant variable in the condition
rating of sewer pipes.

2.3. Environmental Factors

Environmental factors associated with sewer pipe condition rating include, but are
not limited to, surface condition, soil type, soil pH, and corrosivity. Surface condition is
the ground surface beneath which a sewer pipe is located. Ref. [9] stated that the location
of pipe affects the magnitude of surface loading to which it is subject. The most common
types of soil classified as soil texture are sand, loam, clay, and rock. Ref. [19] stated that
the type of soil is a factor that affects ground loss and stability of the sewer pipeline. The
interaction of the soil with the sewer pipes determines the deterioration of pipes.

2.4. Sewer Pipe Condition Prediction Models

Sewer pipes condition prediction models are utilized to determine the condition of
non-inspected pipes. These assist operators of water utilities to develop renewal strategies
of the pipes and to forecast the evolution of the condition of the sewer network under
different investment strategies.

2.5. Statistical Methods

Statistical models establish relations between known pipe variables and the sewer pipe
condition based on the condition assessment inspection data. Statistical models include
discriminant analysis, logistic regression, binary regression, exponential regression, and
Markov, Gomptiz, and Bayesian. “The model is calibrated using maximum likelihood fitting
methods to provide the best match between model predictions and recorded failure data.
Goodness of fit between model forecasts and actual observations is then demonstrated by
comparison with a blind data set that was not part of the calibration process” [20]. Multiple
linear regression analysis allows many observed factors to affect y. The general multiple
linear regression model can be written as (Equation (1)):

y = β0 + β1x1 + β2x2 + β3x1 + . . . + βkxk + u (1)

β0 is the intercept
β1 is the parameter associated with x1,
β2 is the parameter associated with x2, and so on
is the parameters that cannot be included and are collectively contained in u

The equation below is a multiple regression where Y is a predicted outcome for
individual based on (a) the Y intercept, a, the value of Y when all predictor values are 0,
(b) the product of the independent variables, Xs, and the regression coefficients, bk; and
(c) the residual, εi (Equations (2)–(5)):

Yi = a + b1X1 + . . . + bkXk + εi (2)

Odds and Logit

Odds(Y = 1) =
P(Y = 1)

1− P(Y = 1)
(3)

Log odds

ln
P(Y = 1)

1− P(Y = 1)
= Logit(Y) = α+ β1X1 + β2X2 + . . . + βmXm (4)
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Ref. [2] used age, diameter, length, slope, and material, and built a logistic regression
model as follows (Equation (5)):

Y∗ =∝0 +β1 ×Age + β2 × diameter + β3 × length + β4 × slope
+β5 ×material + ε

(5)

where Y* is the unobservable conduit condition, α0 is the threshold, β1 . . . . β5 are
regressor coefficients.

A logistic model describes the relationship between an outcome (i.e., dependent or
response) and a set of prediction (i.e., independent or explanatory) variables, often referred
to as covariates [21]. Equation (6) represents logistic regression model according to [3].

log
[

π

1− π

]
Y =

⌊
p(y = 1|x1 . . . .xn)

1− p(y = 1|x1 . . . .xn)

⌋
= a + β1x1 + β2x2 . . . .. + βpxp (6)

where:

Y = dependent variable
a = intercept parameter
βp = regression coefficients associated with p independent variables.
Probability of (y = 1) determined using exponential transformation.
π = p(y = 1|x1 . . . .xn)

In this model, new values of Y can be forecasted with new observed values of X.
Equation (7) shows general function of binary logistic regression. π represents Pr

(Y = 1) meaning probability associated with outcome of condition 1. Consequently, 1 − π
represents Pr (Y = 0) meaning probability of outcome of condition 0. π/(1 − π) means the
odds of having (Y = 1).

Multinomial logistic regression is an extension of binary logistic regression and can be
used when dependent variable is categorical and has more than two levels [3].

ln
⌊

Pr(Y = i|x1 . . . xn)

Pr(Y = k|x1 . . . xn)

⌋
= β0 + βi1x1 + βi2x2 . . . .. + βinxn (7)

where,

i = 1, 2, . . . , k − 1 correspond to categories of the dependent variable,
xs are independent variables,
n is the number of independent variables,
β0 is the intercept for category i,
βis are the regression coefficients of independent variables defined for each category i.

Assuming three sewer pipe conditions using Equations (8) and (9), Equations (10)–(12)
represent multinomial logistic regression for a pipe system with three condition levels 0,
1, and 2. Category zero (0) is used as the reference value. The model is developed with
logit functions. To develop the model, p covariate and a constant term were denoted by the
vector x [22].

g1(x) = ln
⌊

Pr(Y = 1|x)
Pr(Y = 0|X)

⌋
= β10 + β11x1 + β12x2 . . . .. + β1pxp = x′β1 (8)

g2(x) = ln
⌊

Pr(y = 2|x)
Pr(y = 0|X)

⌋
= β20 + β21x1 + β22x2 . . . .. + β2pxp = x′β2 (9)

Pr(Y = 0|x) = 1
1 + eg1(x) + eg2(x)′

(10)

Pr(Y = 1|x) = eg1(x)

1 + eg1(x) + eg2(x)′
(11)
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Pr(Y = 2|x) = eg2(x)

1 + eg1(x) + eg2(x)′
(12)

Using the convention for the binary model, πj (x) = Pr (Y = j |x) for j = 0, 1, 2.

2.6. Artificial Intelligence System

ANN is one of the modeling techniques of artificial intelligence modeling techniques.
According to [23], some emerging techniques for artificial intelligence systems seek to make
better use of human reasoning to solve problems involving incomplete knowledge and
use of descriptive terms. ANN predicts output from input information in a manner that
simulates the operation of the human central nervous system [17]. Ref. [20] stated that
ANN is being increasingly used to solve complex problems, which are also often treated
as ‘black box’ solutions. Ref. [20] stated that ANN has layers of nodes which provide a
functional relationship between input information and predicted output. The layers are
trained on historical data sets. These data sets demonstrate the actual relationship between
input and output information.

According to Ref. [24], ANN can learn the patterns of the underlying process from
past data, capturing the relations between the inputs and the outputs. According to [25],
ANN is a set of independent neurons linked together in the same way as the synapses,
neurons, and dendrites of our brain [26]. The neural network learns and execute tasks.
During training, the network modifies the weights of the links among the neurons in a way
that each input produces the expected outputs. The output is the dependent variable, and
the inputs are independent variables.

In this study, three-layer feed-forward neural networks with back propagation (BP)
learning were constructed for computation of eleven physical and environmental input
variables, as shown in Figure 1.

Figure 1. Neural Network Structure [27].

Figure 1 shows the algorithm having nodes and network lines. The lines are assigned
weights of the connecting nodes. Equation (13) shows a relationship between the input and
output variables:

yt = w0 +
q

∑
j=1

wj·g
(

w0j +
p

∑
i=1

wijyt−i

)
+ εt (13)
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where, wij (i = 0, 1, 2, . . . ..p, j = 1, 2 . . . . . . q) and wj (j = 0, 1, 2, . . . .., q) are model
parameters often called connection weights; p is the number of input nodes and q is the
number of hidden nodes.

Figure 2 shows a diagram demonstrating input with a summation n feed into a neuron
that computes the inputs and produces a binary output, y, which is either +1 or−1. The bias
weight, θ, is introduced with a fixed input at +1. The bias weight allows greater flexibility
of the learning process.

y = f

(
n

∑
i=1

WiXi

)
= |1 when ∑n

i=1 WiXi>0
−1 when ∑n

i=1 WiXi≥0 (14)

Figure 2. Schematic Diagram of a Single Artificial Neuron [28,29].

In Equation (14), y is the neuron and f is a threshold function known as the neuron’s
transfer function, which gives an output of +1 whenever Σwixi is greater than zero (the
threshold value) or −1 whenever Σwixi is less than (or equal to) zero [28].

In this study, the activation function used to act upon input to get output is bipolar sig-
moid function. The bipolar sigmoid function Formula is in Equation (15) and Figure 3 [30]).

Figure 3. Plot on Bipolar Sigmoid Function.

The output of the bipolar sigmoid function is between −1 and 1.

ƒ(x) =
1

1 + e−λx − 1 =
1− e−λx

1 + e−λx (15)

2.7. Problem Statement and Objectives

Ref. [1] stated that more investigation is required to identify the influence of physical
and environmental factors that affect deterioration of sewer pipes. Additionally, they
recommended future research to investigate more pipe material such as steel and concrete
pipes in sewer networks and compare the results, and that results of prediction models
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should be developed for different cities. Ref. [31] review on sewer pipes condition predic-
tion models observed that there is a need for more research to predict condition of sewer
pipes with higher accuracy and confidence level.

Following his research on advanced sewer asset management using dynamic deteri-
oration models, Ref. [32] discovered there was still room for improvement. Accordingly,
he recommended, in future research, a more comprehensive model be developed by in-
corporating additional location related attributes such as soil type, water table, among
others. In a later study, Ref. [17] advised municipalities to develop and implement risk
assessment models for their utilities to get the best utility of their limited budgets available
for replacing deteriorating assets. Ref. [33], in their research on infrastructure management
and deterioration risk assessment of wastewater collection systems, advised that the de-
terioration models can be improved by addition or consideration of other independent
variables such as soil type, groundwater level, and initial quality of construction. Ref. [33]
recommended environmental factors, including surface condition, soil type, corrosivity
concrete, corrosivity steel, and pH considered in building the models were included in this
dissertation. Ref. [13] recommended factors like type of soil backfill, H2S, and groundwater
level to be investigated to understand sewer deterioration mechanism and develop an
effective model. Surface condition and corrosivity variables have not been studied more
by others.

According to [16], the improvement of technical asset management and the use of
digital solutions to improve the efficiency of inspection and rehabilitation strategies is
the promising leverage of utilities. Ref. [16] further stated that most metrics are based
on statistics and do not provide understanding of deteriorations for sewer operators.
Accordingly, there is a need to utilize artificial intelligence methods and compare the results
to those of statistical methods.

The objective of this research is to develop MLR and ANN models to predict sani-
tary sewer pipes condition rating using inspection and condition assessment data. The
secondary objectives of this research are to identify, evaluate, categorize, and develop
relationships of different factors affecting sewer pipes condition ratings and to compare
the performance of MLR and ANN for predicting sewer pipes condition. The adopted
methodology is explained as follows.

3. Methodology

Figure 4 illustrates the methodology adopted to carry out this research. First, utilizing
engineering journals, databases, and Google Scholar, a thorough literature review was
conducted to mainly study current sewer pipe predictive models, modes of sewer pipe
failure, and variables for sewer pipe failure.

In addition to physical, environmental, and operational factors influencing sewer pipes
failure, literature on the failure of sewer pipe and risk process evaluation were reviewed.
Second, data were collected from Geographical Information System (GIS) shape files for
the City of Dallas Water Utilities (DWU) GIS web/database. The GIS data originated from
condition assessment and CCTV inspection records.

The data comprised of pipe segments/locations, length (manhole to manhole), pipe
material, pipe diameter, pipe age (current year minus year of installation), depth (depth of
backfill over the crown of pipe in ft), soil conditions, corrosivity, slope, surface condition–
highway/street, and PACP condition rating. Third, the data were prepared, processed, and
analyzed. Condition rating was designated as the dependent variable, while physical and
environmental factors were independent variables.
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Figure 4. Study Methodology.

4. Model Development

In this section, multinomial logistic regression and neural networks model devel-
opment are illustrated. The development of the models involved a multinomial logistic
regression model that was developed using IBM SPSS Statistics (version 27). ANN model
was developed using Brain maker California Scientific Software. Before the development of
the models, eighty percent (80%) of the data were randomly selected and the remaining 20%
was set aside to validate the models and/or used as a case study to check the applicability
of the models. Eighty-five percent (85%) and fifteen percent (15%) of the randomly selected
80% data were used in developing and testing the ANN model, respectively. Table 1 shows
a sample of the 80% sewer pipes dataset.
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Table 1. Sample of 80% of Sewer Pipes Dataset.

ID Diameter Age Pipe
Material Slope Surface

Condition Depth Length pH Soil
Type

Corrosion
Concrete

Corrosion
Steel

Condition
Rating

2472 12 43 PVC 0.24 Street 15 480.157 6.7 Sand Low Moderate 1
1814 10 50 VCP 0.1 Easement 15 421.0372 6.7 Sand Low Moderate 1
843 6 97 VCP 0.8 Alley 15 263.5681 6.7 Sand Low Moderate 1

2343 8 23 PVC 0.3 Street 15 235.9731 6.7 Sand Low Moderate 1
2795 18 50 VCP 0.08 Alley 15 80.58689 6.7 Sand Low Moderate 1
65 8 50 VCP 0.3 Street 11 535.9586 6.7 Sand Low Moderate 1
623 12 71 CONC 0.6 Highway 10 472.1441 6.7 Sand Low Moderate 1
624 24 64 CONC 0.12 Street 10 465.4685 6.7 Sand Low Moderate 1

2366 12 51 VCP 0.3 Alley 10 401.3963 6.7 Sand Low Moderate 1
3215 8 22 PVC 0.33 Street 10 384.402 6.7 Sand Low Moderate 1
3097 12 51 VCP 0.3 Street 10 325.2434 6.7 Sand Low Moderate 1
1365 8 24 PVC 0.4 Alley 10 283.7502 6.7 Sand Low Moderate 1
3327 48 29 PVC 0.14 Street 10 278.4683 6.7 Sand Low Moderate 1
2146 12 39 PVC 2.1 Street 10 159.0316 6.7 Sand Low Moderate 1
2295 15 66 VCP 0.32 Street 10 156.1034 6.7 Sand Low Moderate 1
285 8 35 PVC 0.8 Easement 10 99.28742 6.7 Sand Low Moderate 1
181 10 48 VCP 0.8 Alley 10 70.07311 6.7 Sand Low Moderate 1
47 8 16 PVC 0.4 Street 10 24.48685 6.7 Sand Low Moderate 1

2428 12 9 PVC 0.2 Street 8 479.9761 6.7 Sand Low Moderate 1

4.1. Multinomial Logistic Regression Model

Multinomial logistic regression analysis evaluated the relationship between eleven (11)
independent or predictor variables and one (1) dependent variable. Pipe material, diameter,
age, slope, depth, surface condition, soil type, corrosivity concrete, corrosivity steel, and
pH were independent variables used to generate prediction models. The condition rating
score was the dependent variable.

4.1.1. Model Parameters Estimation

The data were randomly divided into 80% and 20% for multinomial logistic regres-
sion model development and validation, respectively. MLR analysis was conducted, and
4 models were built based on sewer pipes condition ratings 1, 2, 3, and 4. Condition 5 was
used as the reference category. Table 1 shows a sample of 80% of the sewer pipes dataset.

4.1.2. Validation of Multinomial Logistic Model

Model parameters estimation tables were used to derive one set of model equation
broken down into four multinomial logistic regression equations, one for each condition
category relative to reference category for sewer pipe condition 5. The four equations were
used to predict sewer pipe conditions 1, 2, 3, and 4, relative to sewer pipes condition 5 that
was used as a reference category. The variables coefficients (β) were used to develop the
4 multinomial logistic regression equations relative to condition 5 (C = 5) reference category.
The equations are presented in Equations (16)–(19).

g1(x) = ln
[

Pr(C=1)
Pr(C=5)

]
= 0.978 ∗ Diameter + 0.945 ∗ Age + 1.023 ∗ Slope + 1.018 ∗ Depth + 0.999 ∗ Length
+ 1.321 ∗ pH + 1.146 ∗MaterialCONC + 1.899 ∗MaterialPVC + 0.721 ∗ SurfaceAlley
+ 0.771 ∗ SurfaceEasement + 0.879 ∗ SurfaceHighway + 0.619 ∗ SoilTypeClay + 1.037
∗ SoilTypeLoam + 0.942 ∗ SoilTypeRock + 0.962 ∗ CorrosivityConcreteHigh + 3.653
∗ CorrosivityConcreteLow + 1.533 ∗ CorrosivitySteelHigh

(16)

where:

Pr (C = 1) is the probability of sanitary sewer pipe condition dependent variable being
condition 1 relative to condition 5.
Pr (C = 5) is the probability of reference category condition 5.
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Diameter, Age, Slope, Depth, Length, Material, Surface, Soil Type, and Corrosivity are
independent variables that influence sanitary sewer pipe condition.

g2(x) = ln
[

Pr(C=2)
Pr(C=5)

]
= 0.923 ∗ Diameter + 0.968 ∗ Age + 0.964 ∗ Slope + 1.018 ∗ Depth + 0.999 ∗ Length
+ 0.598 ∗ pH + 0.473 ∗MaterialCONC + 0.379 ∗MaterialPVC + 1.116 ∗ SurfaceAlley
+ 0.961 ∗ SurfaceEasement + 1.133 ∗ SurfaceHighway + 2.758 ∗ SoilTypeClay + 3.289
∗ SoilTypeLoam + 1.374 ∗ SoilTypeRock + 0.572 ∗ CorrosivityConcreteHigh + 0.459
∗ CorrosivityConcreteLow + 0.114 ∗ CorrosivitySteelHigh

(17)

where:

Pr (C = 2) is the probability of sanitary sewer pipe condition dependent variable, condition
2 being relative to condition 5.
Pr (C = 5) is the probability of reference category condition 5.

Diameter, Age, Slope, Depth, Length, Material, Surface, Soil Type, and Corrosivity are
independent variables that influence sanitary sewer pipe condition.

g3(x) = ln
[

Pr(C=3)
Pr(C=5)

]
= 0.991 ∗ Diameter + 0.974 ∗ Age + 0.922 ∗ Slope + 0.924 ∗ Depth + 1.00 ∗ Length + 1.532
∗ pH + 2.090 ∗MaterialCONC + 0.518 ∗MaterialPVC + 0.660 ∗ SurfaceEasement + 0.998
∗ SurfaceHighway + 1.163 ∗ SoilTypeClay + 2.168 ∗ SoilTypeLoam + 1.335 ∗ SoilTypeRock
+ 0.507 ∗ CorrosivityConcreteHigh + 1.029 ∗ CorrosivityConcreteLow + 2.731
∗ CorrosivitySteelHigh

(18)

where:

Pr (C =3) is the probability of sanitary sewer pipe condition dependent variable, condition
3 being relative to condition 5.
Pr (C = 5) is the probability of reference category condition 5.

Diameter, Age, Slope, Depth, Length, Material, Surface, Soil Type, and Corrosivity are
independent variables that influence sanitary sewer pipe condition.

g4(x) = ln
[

Pr( C=4)
Pr(C=5)

]
= 0.951 ∗ Diameter + 0.998 ∗ Age + 0.853 ∗ Slope + 0.925 ∗ Depth + 1.00 ∗ Length + 0.663
∗ pH + 0.812 ∗MaterialCONC + 0.489 ∗MaterialPVC + 1.073 ∗ SurfaceEasement + 1.503
∗ SurfaceHighway + 0.134 ∗ SoilTypeClay + 1.298 ∗ SoilTypeLoam + 1.223 ∗ SoilTypeRock
+ 0.843 ∗ CorrosivityConcreteHigh + 10.377 ∗ CorrosivityConcreteLow + 0.719
∗ CorrosivitySteelHigh

(19)

where:
Pr (C = 4) is the probability of sanitary sewer pipe condition dependent variable

being condition 4 in relative to condition 5. Pr (C = 5) is the probability of reference
category condition 5. Diameter, Age, Slope, Depth, Length, Material, Surface, Soil Type,
and Corrosivity are independent variables that influence sanitary sewer pipe condition.
Equations (20)–(24) show probabilities of sewer pipes conditions 1, 2, 3, 4, and 5 occurring.
Probabilities for each sewer pipe segment are calculated using Equations (20)–(24). The
highest probability value is taken as the predicted respective sewer pipe condition.

Pr(C = 1|x) = eg1(x)

1 + eg1(x) + eg2(x) + eg3(x)+eg4(x)
(20)

Pr(C = 2|x) = eg2(x)

1 + eg1(x) + eg2(x) + eg3(x)+eg4(x)
(21)
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Pr(C = 3|x) = eg3(x)

1 + eg1(x) + eg2(x) + eg3(x)+eg4(x)
(22)

Pr(C = 4|x) = eg4(x)

1 + eg1(x) + eg2(x) + eg3(x)+eg4(x)
(23)

Pr(C = 5|x) = 1
1 + eg1(x) + eg2(x) + eg3(x)+eg4(x)

(24)

4.1.3. Artificial Neural Networks Model

Development of ANN model included preparing data as inputs and output, training,
and testing the model. The data sets were randomly divided as follows: Training (85%),
and Testing (15%). During training, the network was fed with inputs. The network
then generated output. The network checked the results with correct answers and made
corrections to internal connections while minimizing the errors. During testing inputs, they
were paired with outputs which were provided. Testing is the same as training. Validation
of the model was conducted after the model was developed. This process is referred
to as running the model. Different data were used to run and check the application of
the developed model. In model validation, only inputs were used to predict the sewer
pipes condition.

4.1.4. Neural Networks Data Processing Software Selection

The data were stored in Microsoft Excel. It was processed and grouped into input
and output variables. The created input data comprised of independent variables. These
variables included pipe material, diameter, age, slope, depth, surface condition, soil type,
corrosivity concrete, corrosivity steel, and pH. The created output data comprised the
dependent variable. The dependent variable was sewer pipes condition rating.

The BrainMaker, a commercially available Simulator distributed by California Sci-
entific Software, was used to develop the neural network model. BrainMaker used data
stored in neural networks files. The neural network files were Definition (.def), Fact (.fct),
and Testing (.tst).

Figure 5 shows the process of developing the neural network model. The steps that
were used to develop the neural network model are as follows: (1) Acquire inspection and
condition assessment data, (2) Prepare and process data. Categorical data were split into
categories. The data were labeled into inputs and outputs, (3) Train network model. Twelve
different neural network architectures were trained and obtained the optimal architecture
with the lowest errors, (4) Tested network model. The architectures were tested using 15%
of the data, (5) Run or validated model.

New data were used as a case study to validate the use of the model. Datasets were
randomly divided: Training (70%), and Testing (30%) (IBM SPSS Neural network Software)
and Training (85%), and Testing (15%) (Brain Maker Neural Network Software, California
Scientific Software). The backpropagation algorithm was used in training the neural
network model. Training involved presenting inputs to the network. The network uses
the input variables to establish a relation between the inputs and outputs that are placed
in NetMaker. The Netmaker tool is incorporated in BrainMaker. The data is processed in
Netmaker and saved in the BrainMaker file.

4.1.5. Neural Networks Architecture

The neural network architecture comprises three (3) layers, namely, input, hidden,
and output layers. The hidden layer is known as hidden neurons. The number of neurons
should be sufficient to provide optimal performance in the modeling prediction process.
Too few or too many neurons will not enable the network to acquire knowledge that can be
generalized for future predictions. There are three ways of determining the ideal number
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of hidden neurons. Equations (25) and (26) show two ways of calculating the number of
hidden neurons.

Number of hidden neurons =
of Data sets−Outputs

C(#Input + #Output + 1)
(25)

where, C = 2–5

Number of Neurons =

(
# Inputs + # Outputs

2

)
(26)

Equation (24) was suggested by BrainMaker Manual. In this study, Equation (24) was
used to calculate the number of neurons.

= (22+1)/2 =12 Neurons.

Figure 5. ANN Model Development Procedure [28].

In this study, starting at one neuron, the experiment was conducted from 1 neuron to
15 neurons. The neural network with the least testing error was selected (Table 2).
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Table 2. Training and Testing Errors.

Model # Architecture RMS Training RMS Testing

1 22–4-1 0.3089 0.2745
2 22–5-1 0.3165 0.2857
3 22–6-1 0.2860 0.2620
4 22–7-1 0.3001 0.2647
5 22–8-1 0.3048 0.2720
6 22–9-1 0.3009 0.2662
7 22–10-1 0.3010 0.2751
8 22–11-1 0.3021 0.2716
9 22–12-1 0.3001 0.2730
10 22–13-1 0.3001 0.2695
11 22–14-1 0.3002 0.2712
12 22–15-1 0.3001 0.2700

Model #3 was found to be optimal with the least training and testing errors. Model #3
was chosen for model development.

4.2. Neural Networks Model Development

In BrainMaker, the network size of the optimal neurons was set at 6. Various training
and testing tolerances were tested starting at 0.1 and 0.1, respectively. Training and testing
tolerance of 0.3 and 0.3, respectively, was selected to be optimal, having the lowest training
and testing errors. The training was achieved by the trial-and-error method, with weights
randomly taking numbers in training the model. The training was stopped when the
neural network reached the lowest training and testing errors. The training algorithm helps
distribute the error to arrive at the minimum error. The information moves forward in the
network to predict the output. While minimizing the error is achieved through several
iterations, the backpropagation algorithm redistributes the error and adjusts the weights.

Figure 6 shows the ANN structure of the model. The structure was comprised of the
input layer, hidden layer, and output layer. The input layer was comprised of independent
variables. The input variables used were diameter, age, slope, depth, length, pH, material,
surface condition, soil type, corrosivity concrete, and corrosivity steel. The hidden layer
was comprised of the six neurons.

The output layer consisted of sewer pipe conditions 1, 2, 3, 4, and 5. Like it is shown for
diameter parameter, there is a network of a relation between the input, hidden, and output
layers. Similar relationships apply for all other parameters. This illustrates how ANN
is working. This relationship in the network mirrors similar neural network illustrated
by [30].

Table 3 shows that the model learned 72% of the facts and predicted 85% of the
testing factors.

Table 3. Model Training and Testing Factors.

Total Factors Good Bad Tolerance Average
Error RMS Error

Training Configuration
2224 1599 (72%) 625 (28%) 0.3 0.2519 0.3048

Testing Configuration
392 334 (85%) 58 (15%) 0.3 0.227 0.2823



Sustainability 2022, 14, 5549 14 of 20

Figure 6. ANN Structure.

5. Results and Discussion

In this section, results and discussions of multinomial logistic regression and neu-
ral networks models are presented. The accuracy of the models was discussed using a
classification table, sensitivity, and specificity curves. ROC curve and model influence
variables are also presented. The significance coefficients of the models are used to point
out the variables that influence sewer pipe conditions. The confidence level used in the data
analysis is 95%. The validation of multinomial logistic regression, including the justification
of the results, is also discussed.

5.1. Performance of the Models
5.1.1. Multinomial Logistic Regression Model

The MLR correctly predicted 75% of the sewer pipe conditions overall. Prediction
of sewer pipe condition 1 was 97% correct, with 3 percent incorrectly predicted. This
demonstrated that the model had a high accuracy in predicting condition 1. According to
the classification table conditions 2, 3, 4, and 5 were 0%, 28%, 4%, and 14% was correctly
estimated. Sewer condition 1 datasets were 73% of the sewer pipe segments. Sewer pipes
datasets condition 2, 3, 4, and 5 were 4%, 12%, 3%, and 7%, respectively, of the sewer pipes
segments. This explains why the percent prediction correct rate was low in conditions 2, 3,
4, and 5 compared to condition 1. The prediction was consistent with the available datasets
that were analyzed.
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5.1.2. Neural Networks Model Performance

Figure 7 is derived from the metrics of measuring model performance as explained
in the model development section. The area under the ROC curve provided in Table 4
demonstrated the performance of the ANN model. When the area is close to one (1), it
refers to the perfect model. When the area is greater than 0.7, it implies an acceptable model.
According to Hosmer et al., 2013, when the area is close to one (1), it refers to the perfect
model. When the area is greater than 0.7, it implies an acceptable model. Table 4 shows
that the model is acceptable to be used in the prediction of sewer pipes conditions.

Figure 7. Plot of Model Sensitivity and Specificity.

Table 4. ROC Curve.

Condition Area Under Curve

1 0.833
2 0.768
3 0.794
4 0.815
5 0.802

The accuracy of MLR and ANN model was compared. The ANN model was found
to be better in predicting the sewer pipe condition compared to the MLR model. The
prediction accuracy of the logistic regression model was 75% and that of the ANN model
was 85%.

Ref. [34] defined sensitivity as True Positive Rate and specificity as True Negative Rate.
These are metrics of measuring performance of a model.
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5.2. Discussion

This study was set to develop logistic regression and neural networks sanitary sewer
condition assessment prediction models. Observed datasets of independent and dependent
variables were utilized to develop the models. The independent variables that influenced
the condition ratings of the sewer pipes were presented in order of importance in Figure 6.
Age, depth, slope, diameter, and depth, which are physical factors, were found to be the
most important predictors compared to environmental factors. The significant variables
that influence sewer pipes condition rating were diameter, age, length, pipe material
(CONC), soil type (Loam), soil type (Clay), corrosivity concrete (Highway), and corrosivity
concrete (Low). Influencing and non-influencing variables were determined by significance
value (p < 0.05) based on a 95% Confidence Level.

Table 5 shows factors that were found to be significant on the sewer pipe condition.
Pipe diameter was found to be significant in sewer pipe conditions 1, 2, and 4 with a
significant level of 95% the significant value p < 0.05. In condition 1, 2, and 4, the value
p was 0.001, 0.000, and 0.008, respectively. Age was one of the significant variables. Age
was found to be significant in sewer pipe conditions 1, 2, 3, and 4 with a significant value
of p < 0.05. The significant p value in conditions 1, 2, and 3 were 0.000, 0.001, and 0.000,
respectively. Pipe length was a significant factor in sewer pipe condition 1. The significant
value of the pipe length was 0.000. Pipe material was a significant variable in the prediction
model in sewer pipe conditions 2 and 3. The significant value of p was 0.025 and 0.001,
respectively. The PVC material had most of the pipes that were in good condition.

Table 5. Significant Factors.

Factors
Sewer Pipe Condition

1 2 3 4

Diameter 0.001 0.000 0.199 0.008
Age 0.000 0.001 0.000 0.807

Length 0.000 0.228 0.113 0.980
Material 0.503 0.025 0.001 0.280

Figure 8 shows significant factors. The significance of the of the factors is presented as
a ratio and percentage (Normalized significance). Loam and clay soil types were found to
be significant predictors. The significant value p was < 0.05 in condition 4. The significant
values were 0.05 and 0.05, respectively. Corrosivity concrete (High) and corrosivity concrete
(Low) variables are significant in the sewer pipes condition. The significant value p was
<0.05 was found to be in condition 4. The significant values were 0.036 and 0.031, respec-
tively. Depth, slope, corrosivity steel, and pH variables were found not to be significant in
predicting sewer pipes condition.

5.3. Justification of Results

The model results were consistent with similar studies conducted by other authors.
Ref. [3] found that age and material factors have a high impact on sewer pipe condition.
In addition, Ref. [3] found that pipe diameter, depth, and slope were less significant in
pipe condition. Significant p-Value and ODDs ratio (Exp(B)) generated in this study were
compared with the results of other authors. In this research, the diameter was found to be
significant in conditions 1, 2, and 4, with p values of 0.001, 0.000, and 0.008, respectively.
The Exp(B) was 0.978, 0.923, and 0.951 for sewer pipes condition 1, 2, and 4, respectively.
The Wald for sewer conditions 1, 2, and 4 were found to be 10.390, 12.975, and 7.020,
respectively. The diameter of the pipe being significant was consistent with [12,18,35].

Age was another important factor that influences sewer pipes condition. In this study,
age was found to be significant in predicting sewer pipe conditions. The p-value for age
factor in conditions 1, 2, and 3 were 0.000, 0.001, and 0.000, respectively. Wald was 81.139,
11.57, and 15.222 for conditions 1, 2, and 3. The Exp(B) was 0.845, 0.968, and 0.974 for
conditions 1 and 2, respectively. Refs. [12,13,18,35] found age to be a significant factor.
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Figure 8. Influence of Variables.

It was revealed that length was a significant factor in influencing the sewer pipes
condition 1. The p-value was 0.000, and Wald and Exp (0.999) were 20.852 and 0.999,
respectively. This was confirmed by a study conducted by [12,18,35]. Pipe material (Conc)
was a significant factor in influencing sewer pipe conditions. In conditions 2, p-value,
Wald, and Exp(B) were 0.025, 5.030, and 0.472, respectively. In condition 3, p-value, Wald,
and Exp(B) were 0.001, 10.828, and 2.089, respectively. Pipe material was found to be
insignificant in conditions 1 and 4. This is consistent with [12].

Soil type (Clay), soil type (Loam), and soil type rock were revealed to be significant in
sewer conditions 2, 3, and 4. In condition 2 for clay soil p-value, Wald, and Exp(B) were
0.05, 3.89, and 9.12, respectively. In condition 3 for clay soil, p-value, Wald, and Exp(B)
were 0.021, 0.021, and 1.153, respectively. Similarly, for loam soil, the p-value, Wald, and
Exp(B) were 0.05, 3.89, and 9.12, and for loam soil, the p-value, Wald, Exp(B) for soil type
(Rock) was 0.018, 0.0.18, and 0.864. Ref. [18] found that soil type is a significant variable in
the prediction of sewer pipe condition. In condition 4, soil type clay and loam have Wald
of 3.89 and 3.93, p-value 0.05 and 0.05, and Exp(B) of 9.12 and 9.68, respectively.

Corrosivity concrete was found to be significant in influencing pipe conditions. The
p-value, Wald, and Exp(B) were 0.036, 4.411, and 0.096, respectively. Ref. [18] found corro-
sivity to be of very high significance. The model prediction accuracy in this research was
compared with other authors. Table 6 shows that different authors obtained varying pre-
diction accuracy. Collected data could be a factor in varying prediction accuracy. Ref. [36]
stated that the usefulness of a model will be increased with more data.

Comparison of MLR and ANN Models and Conclusions

It can be concluded that MLR and ANN models were developed to predict sanitary
sewer pipe conditions. The models were developed, validated, and tested in prediction
sewer pipe condition scores to prioritize pipes to be rehabilitated and/or replaced and
further condition assessment. The developed models added knowledge in the tools used to
predict sanitary sewer pipes condition. Predicting and knowing the sanitary sewer pipes
condition rating score would be beneficial to policymakers, and sanitary sewer utilities
managers in prioritizing rehabilitation and/or replacement of sanitary sewer pipes.
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The logistic model was built with 80% of the randomly selected dataset. The randomly
remaining 20% of the data were utilized in the validation of the model. The ANN model was
trained, validated, and tested. The feed-forward network with a backpropagation learning
algorithm was employed. Based on the logistic model results, the significant physical
factors influencing sanitary pipes failure included diameter, age, pipe material, and length.
Soil type was the environmental factor that influenced sanitary sewer pipes failure.

Table 6. Prediction Accuracy.

Model Author Prediction
Accuracy

Dissertation
Results Deviation

Multinomial
Logistic Regression

[30] 52%

75%

23%
[1] 65% 10%

[18] 62% 13%
[37] 65% 10%
[27] 72% 3%
[13] 55–90.9% 15.9–20%

Artificial Neural
Network

[36] 72–82%
85%

3–13%
[28] 84% 1%
[13] 70–93.6% 8.6–15%

The accuracy of the performance of the MLR and ANN was found to be 75% and 85%,
respectively. Concerning the main objective of this research, it was determined that the use
of ANN model provided more accurate prediction of sanitary sewer pipes condition by
testing the results of the condition rating values.

The importance of the independent variables was found to be in the following order.
Age (100%), Diameter (80%), Slope (62%), Length (62%), Flow (60%), pH (40%), Corrosivity
Steel (38%), Soil Type (36%), Depth (35%), Pipe Material (25%), Surface Condition (22%),
and Corrosivity (20%). Diameter (p value = 0.001 < 0.05), age (p value = 0.000 < 0.05),
length (p value = 0.000 < 0.05), pipe material (CONC) (p value = 0.001 < 0.05)), soil type
(Loam) (p value = 0.05 < 0.05), soil type (Clay) (p value = 0.001 < 0.05), corrosivity concrete
(p value = 0.001 < 0.05), and corrosivity concrete (Low) (p value = 0.001 < 0.05).

6. Recommendations for Future Research

This study raised several important points to be considered for future research. The
data for this dissertation was collected from the Dallas Water Utilities. Other cities should
be included in future studies and results compared with results of this research. There is a
need for utilizing more datasets to increase the accuracy of the prediction models. Data
collected for analysis should include more uniformly distributed number of observations in
every condition. More training and testing of the ANN model are needed to fine tune and
validate its prediction strength for conditions 4 and 5. Excluded pipe material types could
be included for further model development. These models can be improved by utilizing
wastewater type and volumetric flow rate variables in their prediction and comparison.
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