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Abstract: Taking Tai Lake in China as the research area, a 3D water environment mathematical model
was built. Combined with the LHS and Morris uncertainty and sensitivity analysis methods, the
uncertainty and sensitivity analysis of total phosphorus (TP), total nitrogen (TN), dissolved oxygen
(DO), and chlorophyll a (Chl-a) were carried out. The main conclusions are: (1) The performance
assessment of the 3D water environment mathematical model is good (R2 and NSE > 0.8) and is
suitable for water quality research in large shallow lakes. (2) The time uncertainty study proves that
the variation range of Chl-a is much larger than that of the other three water quality parameters and
is more severe in summer and autumn. (3) The spatial uncertainty study proves that Chl-a is mainly
present in the northwest lake area (heavily polluted area) and the other three water quality indicators
are mainly present in the center. (4) The sensitivity results show that the main controlling factors of
DO are ters (0.15) and kmsc (0.12); those of TN and TP are tetn (0.58) and tetp (0.24); and those of
Chl-a are its own growth rate (0.14), optimal growth temperature (0.12), death rate (0.12), optimal
growth light (0.11), and TP uptake rate (0.11). Thus, TP control is still the key treatment method for
algal blooms that can be implemented by the Chinese government.

Keywords: Tai Lake; water quality; uncertainty analysis; sensitivity analysis; algae

1. Introduction

Tai Lake is a typical large shallow lake; it is the third largest freshwater lake in China
and is of important social value [1]. A water crisis due to an algae outbreak in 2007 alarmed
the Chinese government. It has been more than 10 years since the cyanobacteria outbreak
in Tai Lake, and algal blooms have appeared less often after the Chinese government’s
treatment of the lake in the years following the crisis [2]. However, ten years later, in 2017,
another outbrak of algae and a rebound of the total phosphorus concentration meant that
the Chinese government and scientists lost control of the situation. It is well known that
the presence of nutrients such as nitrogen (N) and phosphorus (P) lead to algal blooms [3];
therefore, it is very important to determine the spatiotemporal characteristics of the main
general water quality indicators (TN, TP, and DO) in Tai Lake and the key control factors of
algal blooms (Chl-a) through scientific methods so that we can explain the phenomenon
better and provide more scientific support for the management of other large shallow lakes
in the world.

Mathematical models are used by many researchers as an important analysis method [4,5].
The integrity and accuracy of these models have also improved rapidly with the develop-
ment of other disciplines. In the field of water quality models, the main models include the
Environmental Fluid Dynamics Code (EFDC), MIKE, the Water Ecosystems Tool (WET),
Delft3D, and CE-QUAL-W2. The EFDC is funded by the U.S. Environmental Protection
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Agency (EPA). Its code is open source, but a fee must be paid to access the complete operat-
ing system. Successful case studies have been conducted in many lakes such as Tai Lake
and Dianchi Lake in China [6]. MIKE was developed by the Danish company DHI. It is
currently used in many lakes and rivers around the world, and is also listed as an official
environmental assessment model in China. The technology is very mature and the interface
is very smart, but the disadvantage is that the code is not open source and the usage fee
is very high [7,8]. WET was developed by Aarhus University in Denmark based on the
original FABM model. Its code and use are free, but, currently, it lacks two-dimensional
and three-dimensional modules, and there are certain application defects [9,10]. Delft3D
was developed by Delft University in the Netherlands. The code and its use are free.
Its main advantage lies in its hydrodynamics, but it has lagged behind other models in
terms of the simulation of water quality and algae in recent years [11]. CE-QUAL-W2 is a
two-dimensional water environment mathematical model funded by the American Society
of Military Engineers, but due to maintenance problems it has been used less and less in
recent years [12]. In this study, we chose to use MIKE3 (one style based on MIKE) so that
we could have a strong foundation for the uncertainty and sensitivity analyses we aimed
to conduct in the next step.

In order to study the spatiotemporal characteristics and main controlling factors of
water quality in Tai Lake, we used uncertainty and sensitivity analysis methods. Currently,
the most common methods used in uncertainty and sensitivity analyses include the Monte
Carlo method [13], Latin hypercube sampling (LHS) [14], the Morris method [15], the
standardized rank regression coefficient (SRRC) method [16], the Sobol method [17], the
generalized likelihood uncertainty estimation (GLUE) method [18], the shuffled complex
evolution algorithm (SCE-UA) method [19], and the extended Fourier amplitude sensitivity
test (EFAST) [20]. When there are too many parameters, the results of GLUE and SRRC anal-
yses will contain large errors; nevertheless, the Morris method can make a good distinction
between multiple parameters, but the original Morris method has certain deficiencies in
terms of specific quantification [21]. Meanwhile, EFAST and Sobol require a large number of
repeated model calculations, which seriously limit the effectiveness of the research [22,23].
In order to solve these problems, many scholars [24,25], in recent years, have conducted
comparative research on related methods (Table 1). Among them, Li et al. (2015) [26] used
LHS to carry out sampling and uncertainty analyses of the hydrodynamic parameters of
Tai Lake and combined LHS with SRRC to perform a parameter sensitivity analysis; it was
found that this method was well suited to scenarios with few parameters and without
a nonlinear relationship, but there was still no definite proof that it could be applied to
a nonlinear situation with multiple parameters. Jiang et al. (2018) [18] used the GLUE
uncertainty analysis and the regionalized sensitivity analysis (RSA) method to simulate
the ecological parameters of Tai Lake and found that algae growth was mainly related
to the parameters related to hydrodynamics, light, and temperature. They suggested the
addition of zooplankton research modules in future studies. Yi et al. (2016) [27] simulated
the ecological parameters of Dianchi Lake through the LHS, SRRC, and Morris methods,
and found that the parameters had a significant effect on algae, spatially and at different
times. They also showed that the research in this area was very important for the further
development of the model.

The LHS used in this study was first optimized according to the Monte Carlo method
by McKay [28]. This method solves the problem of uneven sampling, speeds up the
sampling rate, and guarantees the samples are of high quality. This method has also been
widely used in uncertainty analysis problems [29,30]. The improved Morris method [31]
can qualitatively describe the sensitivity of each parameter to different indicators but can
also analyze the degree of nonlinear correlation among different parameters, providing
a new research foundation for the study of multidimensional, non-correlated parameter
sensitivity. According to the literature, the Morris method requires a small sample size,
which can minimize the workload for a computer. It has also been shown, through a
comparison of global sensitivity analysis methods, that the Morris method is superior
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to the EFAST and SRRC methods for fitting multiple nonlinear parameters [32]. For a
hydrodynamic ecological model, due to the high parameter dimension and the complicated
correlations between each parameter [33], as well as the problem of calculating the load
in temporal and spatial law research, we used the LHS and Morris methods to study and
analyze the uncertainty and sensitivity of the parameters.

Table 1. Introduction to the uncertainty and sensitivity analysis methods.

Method Name Advantages Limitations

Uncertainty analysis
methods

Monte Carlo 1. Overcomes the shortcomings of
the first-order error analysis

1. Low sampling and calculation
efficiency

2. Local aggregation errors may occur
3. Not suitable for highly nonlinear and

variable skewing distribution models

LHS
1. Sampling speed and quality can

be guaranteed
2. Saving uncertainty analysis time

1. Still sorted by credibility, which is
slightly inaccurate with insufficient
reliability

GLUE
1. Improves accuracy and reliability

judgment due to likelihood value
1. Requires an excessive number

of calculations
2. Results affected by subjectivity

Sensitivity analysis
methods

Morris

1. Requires few calculations
2. The interactions between the

parameters can be analyzed
after improvement

1. Quantitative research is insufficient

SRRC 1. Suitable for linear parameter
group studies

1. Not suitable for the study of highly
nonlinear parameters

Sobol
1. Research on precise simulation of

multidimensional nonlinear
parameters

1. Requires an excessive number
of calculations

EFAST
1. The number of calculations is

reduced as compared with the
Sobol method

1. Requires an excessive number
of calculations

RSA 1. Fewer requirements and
intuitive results

1. Cannot evaluate interactions between
parameters

In order to calculate the precise spatiotemporal characteristics of the four water quality
indicators in Tai Lake (2017) and to give a scientific explanation of the algal bloom in
2017, we combined the 3D environment mathematical model with the LHS and Morris
methods in this research. We hope that the results not only explain the phenomenon well
but also provide methodological ideas for research on the water environments in other
large shallow lakes.

2. Study Area

Tai Lake, the third largest lake in China, is located between Jiangsu Province, Zhejiang
Province, and Shanghai. The water surface area and basin area are 2338 km2 and 36,900 km2,
respectively [34]. Thirty main rivers flow into the lake, which has an average depth of
1.9 m. Southeast and northwest winds usually prevail in summer and winter, respectively.
The mean annual precipitation was 1245 mm from 2007 to 2017, and the mean annual air
temperature was 16 ◦C from 2007 to 2017 [35–37]. This study established seven monitoring
stations, each representing one of the seven main regions in the lake, for simulation research
(Figure 1) to complete an analysis of the entire lake.
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Figure 1. Study area and monitoring stations for the four water quality indicators.(Numbers 1–30
represents the main inflow and outflow rivers from tai lake).

3. Methodology
3.1. Data Collection

The discharge and wind field information of the rivers’ input and output during the
simulation period were obtained from the online data (http://www.tba.gov.cn/, accessed
on 26 April 2022) published monthly by the Tai lake Basin Administration of the Ministry
of Water Resources of China. The input and the output water amounts in 2017 were around
11.11 billion m3 and 10.27 billion m3, respectively. The water quality data were obtained
from the monthly monitoring data collected by local governments and the supplementary
data from the Tai Lake Basin Administration of the Ministry of Water Resources of China.
They are shown in the Calibration and Validation section. Meteorological data (Figure 2),
including air pressure, temperature, solar radiation, and rainfall–evaporation, are published

http://www.tba.gov.cn/
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daily on the China Meteorological website (http://www.weather.com.cn/, accessed on
26 April 2022).
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(B) Air temperature; (C) Solar radiation; (D) Rainfall and evaporation.

3.2. 3D Water Environment Mathematical Model

Based on SMS and Firebird software (they are the auxiliary software to build the
unstructured grid and underwater topography better), unstructured grid division and an
underwater topography difference analysis were performed in the Tai Lake area. In this
study, the grid spacing was set to 500–800 m, and 5881 unstructured grids were obtained
(Figure 3). The measured bottom elevation was measured for the whole lake to obtain the
mesh file of the bottom elevation of Tai Lake. The time step was set to 3600 s, and the total
calculation time was one year (2017). The calibration and validation monitor stations were
in Xidong, Meiliang center, Zhushan center, Dapu, Xiaomei kou, and Xu center. The 3D
water environment mathematical model is useful in water quality research [38] and can be
created using a hydrodynamic module and an Eco-lab module. The Eco-lab module covers
the algae cycle, TN cycle, TP cycle, DO cycle, sediment, light, salinity, and temperature
(Figure 4). Here, we chose 39 key parameters, except the system parameters. In this model,
the algae cycle included growth, death, uptake, photosynthesis, and respiration; the TN
cycle included adsorption, desorption, nitrification, denitrification, and mineralization;
the TP cycle included adsorption, desorption, and mineralization; the DO cycle included
nitrification, degradation, photosynthesis, and respiration by algae and the atmosphere.
TN, TP, and DO could influence the algae directly, therefore, we chose Chl-a, TN, TP, and
DO as our indicators.

http://www.weather.com.cn/
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3.3. Model Performance Assessment

In order to compare the simulated (S) and measured (M) results, we used the root
mean square error (RMSE) Equation (1), average relative error (MRE) Equation (2), anal-
ysis of correlation coefficient (R2) Equation (3), and the coefficient of Nash model (NSE)
Equation (4). The specific formulas are as follows [39]:

RMSE =

√√√√ 1
N

N

∑
i=1

(Si −Mi)
2 (1)

MRE =
1
N

N

∑
i=1
|Si −Mi| (2)



Sustainability 2022, 14, 5710 7 of 17

R2 =
∑N

i=1
(
Si − S

)(
Mi −M

)√
∑N

i=1 (Si − S)2
∑N

i=1 (Mi −M)
2

(3)

NSE = 1− ∑N
i=1(Si −Mi)

2

∑N
i=1(Si −M)2

(4)

where N is the total number of simulations, i is the number of simulations, Si is the value of
the ith simulation, Mi is the value of the ith measurement, S is the simulated average, and
M the measured average.

3.4. LHS Uncertainty Analysis Method

Latin hypercube sampling [40] is a optimization method of uncertainty analysis based
on the Monte Carlo method. We used the 39-parameter range scale from minimum to
maximum as the basic variable value for the uncertainty analysis (Appendix A). Here,
the parameter groups were calculated using the LHS method and then, we calculated
the different groups with the model, ranking the results and choosing 5% and 95% as the
uncertainty boundaries. The specific process is as follows:

Step 1—Parameter grouped Group the input parameters or boundary conditions (m)
into equal groups (n groups);

Step 2—Combining sampled Each parameter or boundary condition is randomly
sampled in the value range of each different group (n), which is recorded as x1, x2, . . . , xm
and an m× n matrix is formed after sampling a certain number of parameters according
to demand.

Step 3—Model calculated Bring each group of factors into the model for calculation
until all factor groups are simulated. Because the model requires a long time for calculation,
this study uses 40 central procession unit calculations in parallel, which are performed
25 times in a row and run for a total of 1000 times.

Step 4—Predicted value ranked Sort the n predicted values obtained by simulation
according to size.

Step 5—Quantile determinated The cumulative probability assigned to the smallest
predicted value is 1/n, the second smallest assigned is 2/n, and so on, until all subsample
quantiles are obtained, of which the m input result is m/n × 100%.

Step 6—Uncertain boundary selected Choose 5% and 95% to represent the lower and
upper uncertainty boundaries caused by the factor, respectively.

3.5. Morris Sensitivity Analysis Method

The Morris method [41] is a design based on the one-at-a-time (OAT) method, which
is suitable for analyzing models with many parameters and a large calculation load. We
used the 39-parameter range scale from minimum to maximum as the basic variable value
for the sensitivity analysis (Appendix A). Then, we obtained the simulation results from
the different parameter groups using the 3D model and calculated the basic influence from
Equation (5) as follows:

EEi =
f (x1, · · · , xi, · · · , xn)− f (x)

∆i
, (5)

where EEi is the basic influence of the ith factor, f (x) represents the initial point of the
trajectory, n represents the number of model factors, and ∆i is the size of the disturbance
grid. The sensitivity index (µi) and the interaction between the factors (σi) can be calculated
using Equations (6) and (7), respectively:

µi =
1
N

N

∑
j=1
|EEj

i |, (6)
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σi =

√
1

N − 1 ∑N
j=1 (EEj

i −
1
N ∑N

j=1 EEj
i )

2
, (7)

where EEj
i is the influence result of the ith factor on track j.

4. Results and Discussion
4.1. Calibration and Validation of the 3D Model

When we set the parameter values to those shown in Appendix A, the calibration
(January–September, 75 percent) and validation (October–December, 25 percent) results
show that the 3D Eco-lab water environment mathematical model has a good simulation
effect for Tai Lake (Figure 5). The trend of the simulation curve and the monthly average
measured data are basically consistent. Among them, the simulation of Chl-a has a certain
deficiency in the peak period of cyanobacteria, which may be related to the absence of a
vertical motion module in the model [15], resulting in the lack of a key influencing factor
during the cyanobacteria outbreak. However, in general, the results of the simulation
of cyanobacteria in other time periods are excellent. The simulation results of dissolved
oxygen are basically consistent with the actual monitoring values, and the NSE accuracy
is best for this parameter. This is because the dissolved oxygen is mainly affected by
temperature and water level, and therefore, the uncertainty is relatively stable [42]. The
simulation results of total phosphorus are not very good in the early months, which may be
related to the hysteresis, but the simulation results in the later period are very good and are
basically consistent with the measured data [43]. The simulation results of total nitrogen
also perform very well; only four months were not perfectly captured and the simulated
trends and simulated values are highly consistent with the measured data. This proves
that TN in Tai Lake is more stable and much easier to treat than TP [36]. In general, the 3D
water environment mathematical model simulates Tai Lake well. These parameters have
been calibrated in a past paper [44], which helps provide a solid foundation for further
uncertainty and sensitivity research.

The 3D water environment mathematical evaluation results show that the simulation
errors of water quality and algae in Tai Lake are less than 20% (Table 2), which meets the
needs of further simulation research. The RMSE and MRE show the absolute error for
the four different indicators. Because they have different value scales, DO will always be
greater than the others. Sometimes we use R2 and NSE to show the relative error so that
we can compare them more easily and clearly. Based on the R2 and NSE, the errors of
Chl-a and dissolved oxygen are larger than those of TP and TN, indicating that algae and
dissolved oxygen are affected by more factors and the internal mechanism [45]. Therefore,
further uncertainty and sensitivity research on these characteristics is required in order to
identify their specific characteristics and main controlling factors.

Table 2. Model performance assessment depends on different evaluation methods.

Indicators Time RMSE MRE R2 NSE

TP
Calibration 0.012 0.010 0.945 0.864
Validation 0.018 0.014 0.921 0.801

TN
Calibration 0.182 0.159 0.956 0.992
Validation 0.209 0.188 0.915 0.965

Chl-a
Calibration 0.005 0.004 0.865 0.988
Validation 0.007 0.006 0.831 0.925

DO
Calibration 0.915 0.756 0.901 0.993
Validation 0.955 0.821 0.869 0.990
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in 2017.

4.2. Spatiotemporal Uncertainty Analysis

Taking the average concentration value of Tai Lake as an example, 1000 groups of
samples were obtained based on the LHS method; the uncertainty simulation results of
5%, 50%, and 95% for the four key indicators were obtained in descending order (Figure 6).
The results of the long-term series show that the uncertainty of Chl-a in the summer and
autumn was significantly greater than that in the spring and winter, which is consistent
with the research of Yi et al. [27], which indicated that temperature and light had a deci-
sive effect on cyanobacteria, and also proved that the high temperature and strong light
intensity of 2017 (mean annual air temperature was around 16.6 ◦C) caused the outbreak
of cyanobacteria [37]. This study suggests that the water managers who desire ecological
stability need to develop methods designed to prevent blooms of cyanobacteria in cer-
tain periods when areas have extreme climates at times [46]. The uncertainty related to
the DO concentration is inversely proportional to the temperature; the rate of change in
DO concentration occurs relatively rapidly and it is minimally affected by other external
conditions. The reduction in DO during periods of high temperature also plays a role in
promoting outbreaks of cyanobacteria, therefore, this is also a reason why cyanobacteria
are prone to undesirable blooms in summer [47]. The uncertainty related to TN and TP was
relatively small as compared with that of Chl-a and DO; the level of uncertainty increased
after the summer. This may be due to the uncertainty of the model itself [34], which is
caused by the long sequence required for the calculation of the model due to it being based
on the results of the previous step so that the phenomenon of uncertainty accumulation
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also appears. This study found an interesting phenomenon, that is, TN is the only indicator
with multiple measured values beyond the calculation range of uncertainty, which shows
that the external uncertainty of TN is much greater than that of the other indicators.
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This study further calculated the spatial uncertainty of the model parameters accord-
ing to the definition of the variance, and thus, measured the influence of the proportional
distribution of the spatial uncertainty of the parameters related to Chl-a, DO, TN, and
TP (Figure 7). Among them, the main area of uncertainty for Chl-a was located in the
northwestern part of Tai Lake. This was mainly caused by pollutants that mostly enter
from the northwestern part of Tai Lake, causing the main concentration of cyanobacteria
and nutrients to appear in the northwestern part of Tai Lake [48]. The remaining three
indicators’ spatial uncertainties were mainly in the central region, which may be caused by
the low elevation of the central region and the surrounding high terrain at the bottom of
Tai Lake [49]. However, the specific positions of the occurrence of these three indicators
still showed only minor differences. The uncertainty of DO mainly occurred in the most
southerly part of Tai Lake, indicating that the uncertainty of DO was not only related to the
temperature but also the depth of the water [50]. The location of uncertainty for TN was
almost the same as that of DO, which was due to the nitrification of water. Denitrification
is closely related to the level of DO of a water body [51]. The 3D Eco-lab model reflects
the characteristics of the change in elemental N and O depending on the nitrification and
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denitrification process well. The uncertainty of TP was mainly concentrated in the eastern
lake area, which may be due to the existence and effects of aquatic vegetation in that
region [52]. In addition, this study found an interesting result, that is, the main access point
to the lake was less affected by the model parameters, which showed that the external
conditions play a decisive role in the area near the lake shore. The degree and range of
the effect of external conditions on TN were significantly higher than those of the other
three indicators, consistent with the previous findings of this study, namely, the uncertainty
of external factors on the lake water quality and ecology cannot be completely ignored.
Additionally, we can use best management practices (BMPs), i.e., aquatic vegetation restora-
tion, to decrease the heavy pollution area [53] or control the pollution sources from the
catchment [54].
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4.3. Sensitivity Analysis at Different Times

In order to more intuitively reflect the sensitivity and correlation of the parameters
of each indicator, the Morris index (µ*) and standard deviation (σ) were calculated, which
represent the magnitude of parameter sensitivity and correlation, respectively. The six most
sensitive of the top 12 parameter factors of the four indicators were mymg, kdma, lcg, pnmi,
ppmi, and optg, showing that these parameters are the main control factors in the Eco-lab
model (Figure 8).
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Among them, the parameter most sensitive to cyanobacteria was mymg. This is the
case because Tai Lake is an eutrophic lake, in which almost no nutrient threshold exists [55];
the growth parameter has become the most important parameter affecting the local biomass
distribution of cyanobacteria. In addition, the optg, lcg, and alfaeu distributions represent
the relationships between cyanobacteria and both temperature and light. Namely, the main
control factors for algal blooms are mymg (0.14), optg (0.12), kdma (0.12), alfaeu (0.11)
and ppmi (0.11). This is consistent with the findings of Liu et al. (2019) [56]. As we know
from the 3D model, algae have a direct relationship with the other three water quality
parameters, so all of the key parameters that affect cyanobacteria affect other water quality
indicators through transitivity, but the weights may exhibit some differences. For example,
mymg and optg have a significant affect on the three other water quality characteristics,
but the other control factors are different.

The main factors affecting DO include water temperature, oxygen partial pressure, and
respiration [53,57]. The most significant parameters in this study were ters (0.15) and kmsc
(0.12), which were different from the main control parameter groups of other indicators.
These two main control parameters are related to the respiration of sediment, indicating
that the main control factor affecting the DO concentration in the water is the respiration
process, not photosynthesis, when the boundary conditions of the model (temperature and
air pressure) are determined. For TN and TP, the main parameters were tetn (0.58) and tetp
(0.24). This shows that the endogenous release of N and P from sediments with different
temperatures plays an important role in Tai Lake [58]. TN and TP were also influenced by
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mymg (0.3 and 0.17, respectively). Here, we can see synergy between water quality and
algal growth, and mymg ranks second in the TP sensitivity analysis results. In the later
stage of the management of Tai Lake, certain ecological restoration techniques should be
combined to avoid the loss of N and P.

In general, the larger the µ* parameter, the larger the corresponding σ will be (Figure 8),
which means that the sensitivity of the parameter is greater, and that the nonlinear form
and interaction with other parameters will also be more obvious [59]. This phenomenon
leads to the problem of the same effect coming from different parameter groups. Therefore,
for similar problems, the model alone cannot fully explain the results.

In order to uncover a deeper temporal law related to the different parameters [60],
a further investigation related to the sensitivity of the parameters at different times was
conducted (Figure 9). Mymg was found to be the most sensitive parameter to cyanobac-
teria, which were most active from May to October due to the seasonal (summer and
autumn) range of temperatures (20–32 ◦C), which is very suitable for the growth of
cyanobacteria [61,62]. At the same time, the tetn and tetp parameters, which had the
most significant impact on TN and TP, played a greater role in the first half of the year, and
their sensitivity in the second half of the year decreased significantly. This may be caused
by the uncertainty of the model that later caused errors in the calculation of parameter
sensitivity. The effect of mymg on TP was obviously higher than that on other indicators
except Chl-a, which may be caused by the interaction between cyanobacteria and TP [63,64].
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Figure 9. The 39-parameter Morris index of four water quality indicators in each month: (A) Chl-
a, 39-parameter Morris index for chlorophyll a; (B) DO, 39-parameter Morris index for dissolved
oxygen; (C) TN, 39-parameter Morris index for total nitrogen; (D) TP, 39-parameter Morris index for
total phosphorus.

In general, the sensitivity ranking of the four indicators at different times can explain
most of the actual phenomena. At the same time, we can also see that the main control
parameters during the algal bloom period are growth rate, optimal growth temperature,
optimal growth light, and TP uptake rate, which means that the algae outbreak is mainly
related to its own growth characteristics, external temperature, external light, and TP
concentration [27,65,66]. Thus, we know that algal blooms are related to not only the
general water quality but also the climate and different species [67]. In 2017 there was
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more light, a higher temperature, and a high TP concentration [7], meaning that the algae
appeared in the form of large scale blooms in this year.

5. Conclusions

(1) The 3D water environment mathematical model can play an effective role in water
quality simulations of Tai Lake. The simulation accuracy of total phosphorus and total
nitrogen is higher than that of Chl-a and dissolved oxygen, and the average error is
less than 20%. The 3D Eco-lab model is suitable for research on large shallow lake
water quality in other areas.

(2) The results of the spatiotemporal uncertainty analysis show that Chl-a and TP are
closely correlated in Tai Lake, as are TN and DO. This indicates that to prepare for the
early warning and prevention of algal blooms, the change in TP concentration in Tai
Lake should be monitored closely.

(3) Based on the meteorological data in 2017, combined with our sensitivity analysis,
we conclude that the algal bloom in 2017 is mainly related to the sudden change in
climate and the high TP concentration. Therefore, controlling the TP concentration in
Tai Lake is still the best method for the Chinese government to solve the problem of
algal blooms.
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Appendix A

Table A1. Assigned and value ranges for parameters in 3D model.

Parameter Definition Assigned Min Max

mymg Max growth rate phytoplankton 2.1 1.5 2.5
sep Sedimentation rate < 2 m 0.15 0.12 0.18
seve Sedimentation rate > 2 m 0.1 0.08 0.12

kdma Death rate phytoplankton 0.05 0.04 0.08
kra Oxygen reaeration constant 3 1 5

kmdm Detritus C mineralization rate 0.02 0.016 0.024
pla Light extinction constant phytoplankton 20 16 24
bla Light extinction background constant 0.456 0.365 0.547

kmsc Proportional factor for sediment respiration 1 0.8 1.2
kmsn Proportional factor for N release from sediment 0.3 0.24 0.36
kmsp Proportional factor for P release from sediment 0.8 0.64 0.96
mdo Half-saturation constant 5.5 4 6
mdos Half-saturation constant in sediment 3.5 3 4
ndo Coefficient for oxygen dependency 1.03 1 1.16
tere Temperature dependency for C mineralization 1.04 1 1.16

kmdn Proportional factor for release of N from mineralization 1 1 1.16
kmdp Proportional factor for release of P from mineralization 1 1 1.16
tetn Temperature dependency sediment N release 1.02 1 1.16
tetp Temperature dependency sediment P release 1.02 1 1.16
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Table A1. Cont.

Parameter Definition Assigned Min Max

nrel N-release under anoxic conditions 0.02 0.015 0.025
prel P-release under anoxic conditions 0.003 0.0024 0.0036
ters Temperature dependency sediment respiration 1.02 1 1.16

pnmi Min. intracellular concentration of nitrogen 0.08 0.06 0.14
pnma Max. intracellular concentration of nitrogen 0.13 0.06 0.15
ppmi Min. intracellular concentration of phosphorous 0.006 0.004 0.012
ppma Max. intracellular concentration of phosphorous 0.08 0.06 0.15

kc Half-saturation concentration for phosphorus 0.005 0.004 0.006
kni N uptake under limiting conditions 0.15 0.1 0.2
kpi P uptake under limiting conditions 0.008 0.004 0.012
kpn Half-saturation constant for N uptake 0.2 0.16 0.24
kpp Half-saturation constant for P uptake 0.02 0.016 0.024
vm Fraction of nutrients released at phytoplankton death 0.1 0.08 0.12
fac Correction for dark reaction 1.3 1.04 1.5

alfaeu Light saturation intensity 25 20 30
teti Temperature dependency for light saturation intensity 1.05 1 1.16
epsi Specification for nutrient saturation 0.005 0.004 0.006
vo Production/consumption relative to carbon 3.5 2.8 4.2
lcg Lassiter temp constant 0.16 0.12 0.2

optg Optimum growth temperature 28 20 32
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