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Abstract: Surface electromyogram (sEMG) refers to a biosignal acquired from the skin surface during
the contraction of skeletal muscles, and a different signal waveform is generated, depending on the
motion performed. Therefore, in contrast to generic personal identification, which uses only a piece
of registered information, the sEMG changes the registered information in a personal identification
method. The sEMG database (DB) for conventional personal identification has shortcomings, such
as a few subjects and the inability to verify sEMG signal variability. In order to solve the problems
of DBs, this paper describes a method for constructing a multi-session sEMG DB for many subjects.
Data were obtained in two channels when each of the 200 subjects performed 12 motions. There were
three sessions, and each motion was repeated 10 times in time intervals of a day or longer between
each session. Furthermore, to verify the effectiveness of the constructed sEMG DB, we conducted
a personal identification experiment. According to the experimental results, the accuracy for five
subjects was 74.19%, demonstrating the applicability of the constructed multi-session sEMG DB.

Keywords: multi-session data; benchmarking data; electromyogram; personal identification

1. Introduction

As information security has become critical in modern society, numerous personal
identification methods have been proposed that use information from the body. Personal
identification methods using fingerprints, the face, and the iris are widely applied to the
products used in everyday life, such as cellphones, because of benefits, such as low rejection
and ease of use. However, fingerprints, the face, and the iris are displayed externally and
can be collected without the user’s consent. It can be forged by using photographs and
lenses because of the nature of non-lively information. Furthermore, security problems
such as malicious manipulation and personal information leakage may occur because
the information cannot be changed in the event of registered information leakage [1–3].
Therefore, the relevant studies must be carried out to compensate for these disadvantages
when biosignals such as electromyogram (EMG) and electrocardiogram (ECG) [4] are used.

The EMG is a biosignal generated while skeletal muscles contract, and a different
signal waveform is generated, depending on the motion performed. Such a characteristic
can solve the problem; the conventional personal identification methods cannot change the
registered information. EMG signals display intricate details that reflect not only the physi-
ological information of muscle tissues but also neuromuscular control information [5,6].
Furthermore, signals are conveniently acquired because they can be measured by attaching
sensors to the arm and leg skin. The methods for obtaining EMG signals include invasive
and non-invasive approaches. In the invasive approach, signals are sensed by inserting nee-
dle electrodes into the muscles. However, the invasive approach is unsuitable for personal
identification, because of pain and discomfort. In the non-invasive method, signals are
extracted from the user’s skin surface, and it is suitable for personal identification because
of the relative convenience in obtaining EMG signals. In particular, an EMG signal using
the non-invasive approach is called a surface electromyogram (sEMG).
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Personal identification using the conventional sEMG is performed with benchmarking
databases (DBs) or sEMG DBs directly measured. Most benchmarking sEMG DBs are
collected in a single session, not in a multi-session; thus, it ignores the variability of sEMG
signals. The directly measured sEMG data are not disclosed in general, and the number
of subjects is small for personal identification. Therefore, this paper constructed a multi-
session benchmarking sEMG DB with a large number of subjects to solve this problem.
The constructed DB was named “CS_sEMG DB”, and sEMG data were obtained in a
multi-session from 200 subjects in time intervals of a day or longer between each session.
Furthermore, we conducted personal identification experiments to verify the DB quality
and data effectiveness. According to the experimental results, the accuracy for five subjects
was 74.19%, demonstrating the applicability of the constructed multi-session sEMG DB.

This paper is organized as follows. Section 2 analyzes the sEMG DBs used for personal
identification in previous studies. In Section 3, the proposed multi-session sEMG DB
construction method is described. Section 4 discusses the experimental results obtained
to verify the effectiveness of the multi-session sEMG DB. Finally, in Section 5, conclusions
are made.

2. Related Work

Experiments for conventional sEMG have been conducted by using benchmarking
DBs or DBs acquired by the researchers. Benchmarking sEMG DBs are typically associated
with motion recognition and obtained from a few subjects in a single session. A DB obtained
by the researchers consists of sEMG signals acquired when subjects perform a few motions.

2.1. Benchmarking sEMG DBs

Benchmarking sEMG DBs include, firstly, an sEMG developed by Dr. R. Khushaba.
The sEMG (Dr. R. Khushaba) DB was divided into six sets. Set 1 consisted of data acquired
in two channels when eight subjects performed 10 hand movements. Sets 2 and 3 consisted
of data obtained in eight channels when eight subjects performed 15 hand movements each.
Set 4 consisted of sEMG signal data records of subjects whose one hand was amputated,
and Set 5 comprised data recorded for the effect of the arm direction. Set 6 consisted of
data recorded for the effect of the limb positions. For Sets 1, 2, 3, and 6, a bandpass filter
(BPF) and a notch filter (NF) were applied at the preprocessing stage, and sEMGs were
obtained from the extensor carpi ulnaris, extensor digitorum muscle, and extensor carpi
radialis longus [7–13].

Secondly, there is UCI’s sEMG for basic-hand-movement dataset. It refers to data
obtained from five subjects between the ages of 20 and 22 to recognize six hand movements.
The data were obtained from the extensor carpi radialis and flexor carpi ulnaris. The
BPF and NF were conducted as a preprocessing, and they consisted of two sets. Set 1
comprised data obtained when the five subjects repeated the hand movements 30 times
in a single-session, and Set 2 comprised data obtained in a multi-session by having one
subject repeat each movement 100 times [14,15].

Thirdly, there is UCI’s EMG dataset in the lower-limb dataset. It refers to data obtained
by observing the behavior of muscles around the knee, where 11 normal subjects and 11
patients performed three movements: sitting down, standing up, and walking. The sEMG
signals were recorded from the rectus femoris muscle, biceps femoris, vastus medialis, and
semitendinosus [16].

Fourthly, there is Ninapro DB2. It consisted of three sets for 49 hand movements
performed by 40 subjects. Set 1 consisted of data acquired while spreading or rotating the
fingers and wrist. Set 2 consisted of data acquired while grabbing or holding an object. Set 3
contained data obtained while bending a single finger or multiple fingers. Each movement
lasted 5 s, with a 3 s rest between movements. The movements were repeated six times,
and the data were obtained in 12 channels [17,18].

Lastly, there is Ninapro DB5. DB5 consisted of three sets with 52 hand movements
performed by 10 subjects. Set 1 was obtained for basic finger movements, and Sets 2 and 3
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were constructed similar to DB2. Each motion lasted 5 s, with a 3 s rest between movements.
The movements were repeated six times, and the data were obtained in 16 channels [19,20].

2.2. Measured sEMG DBs

Li [21] obtained sEMGs for the movement of unlocking the screen of a smartphone.
While 10 subjects were comfortably sitting in chairs, signals were obtained from each
subject’s right hand’s flexor digitorum superficialis. Each screen-unlocking pattern was
repeated 20 times, with the subjects resting for one minute before performing the pattern.
The sEMG data were filtered by using a 5 Hz high-pass filter (HPF) and 60 Hz NF. Lu [22]
used a Myo armband to obtain data in eight channels. A total of 21 subjects performed the
hand-opening movement 30 times each. The repeated process involved a 2 s resting before
movement, a 1.5 s movement, and a 2 s resting after movement.

Said [23] used sEMG to generate passwords by combining hand gestures. Fifty-six
healthy subjects (16–62 ages) selected three gestures out of four gestures (fist the hand,
open the fingers, wave-out, and wave-in), and sEMG was measured in random order, using
the Myo armband. Each subject repeated the pattern of his/her choice 20 times.

Fan [24] measured sEMG while holding a smartphone on the desk. The gesture of
holding and viewing a smartphone was not defined in advance, and 40 subjects measured
sEMG in eight channels, using Myo armband. The disadvantage associated with sensor
position is solved by using data augmentation technology that rolls the channel of the
Myo armband. Yamaba [25] measured sEMG for a user-recognition method, using a “pass-
gesture”. The sEMG was measured from 11 subjects in a single channel, using DL-3100
and DL-141. Nine gestures in which the sEMG was clearly generated compared to other
gestures were used. Among them, four gestures were selected to compose a “pass-gesture”.
Each gesture was measured a total of 30 times.

Jiang [26] constructed “high density sEMG (HD-sEMG) Recordings” for neural inter-
face research. During two sessions, sEMG was measured from 20 subjects in 256 channels in
the forearm muscle. The data consist of five sets. Set 1 consists of sEMG signals measured
while performing 34 commonly used hand gestures. Sets 2–5 consist of sEMG signals
measured by moving individual fingers. Raurale [27] obtained data by using an eight-
channel Myo armband for sEMG-based personal identification; sEMG was obtained from
five subjects while sitting. The movements performed were hand open, wrist flexion, wrist
pronation, wrist ulnar flexion, wrist supination, hand close, wrist extension, and wrist
radial flexion. Each movement was maintained for 10 s and repeated 20 times. Furthermore,
the data were constructed in a multi-session to reflect signal variability. Jiang [28] used a
64-channel electrode array sensor to acquire HD-sEMG. Twenty-two subjects performed
eight movements with an electrode attached to the back of the right hand, and they rested
for 10 s before performing the next movement. A BPF of 10–900 Hz was performed for the
obtained data, and multi-session-based data were constructed, with an average interval of
9 days between sessions.

Table 1 lists the existing sEMG DBs and the target DB. Every benchmarking DB
was constructed in a single session, except for the multi-session-based DB for only one
subject. Therefore, a problem arises that the variability of signals is neglected in personal
identification that uses a single-session-based sEMG. On the other hand, the sEMG acquired
by the researchers has other problems: the data are not accessible, or the number of subjects
is small. To solve these problems, we constructed a multi-session benchmarking sEMG DB,
which is now publicly accessible for personal identification. Subsequently, we conducted a
personal identification experiment to verify the effectiveness of the data.
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Table 1. Comparison of sEMG databases (DBs).

Data Type DB Names Number of
Channels

Number of
Subjects Session Number of

Motions

Bench
marking

sEMG (Dr. Rami Khushaba):
Sets 1–3 [7–13] 2–8 8 Single 10–15

UCI’s sEMG for basic hand
movements dataset [14,15]

2 5 Single 6

2 1 Multiple 6

UCI’s EMG dataset in
lower-limb dataset [16] 4 22 Single 3

Ninapro DB2 [17,18] 12 40 Single 49

Ninapro DB5 [19,20] 16 10 Single 52

Measured

Li et al. [21] 1 10 Single 2

Lu et al. [22] 8 21 Single 1

Said et al. [23] 8 56 Single 4

Fan et al. [24] 8 40 Single 1

Yamaba et al. [25] 1 11 Single 9

Jiang et al. [26]: Set 1 256 20 Multiple 34

Raurale et al. [27] 8 5 Multiple 8

Jiang et al. [28] 64 22 Multiple 8

The target
DB CS_sEMG DB 2 200 Multiple 12

2.3. Personal Identification Methods

Personal identification using sEMG is a process that distinguishes the differences
between individuals caused by muscle development, activity, and habits when performing
a particular gesture. Features for recognizing individuals are categorized into two parts.
One part is the handcraft features in time and frequency domains, and the other is the
features generated by a neural network. Li [21] studied the personal identification method
that uses handcraft features. In the study, the measured sEMG was filtered to remove
noises, and 11 handcraft features, such as mean absolute value (MAV), variance (VAR),
waveform length (WL), zero crossing (ZC), etc., were extracted. A one-class support vector
machine (OCSVM) and local outlier factor (LOF) were used as classifiers to recognize users
with an accuracy of 98.2%. Yamaba [25] reorganized the training data by excluding the
data that deviate from the mean by employing correlation coefficients and cross-correlation
functions. The selected EMG signal was divided into 10 segments, and 11 handcraft
features, such as sum, mean, skewness, standard deviation (SD), etc., were extracted from
each segment and classified by a support vector machine (SVM) and dynamic time warping
(DTW). Jiang [28] employed WL, frequency median (FMD), and spatial synchronization
(SS) as features to recognize users and make each feature have equal weight, using an
energy constraint. Twenty-two subjects were classified by using K-nearest neighbor (KNN),
resulting in 85.8% accuracy.

Lu [22] conducted a user recognition by using neural networks. The measured sEMG
was transformed into a continuous wavelet transform (CWT) to use time–frequency charac-
teristics. He designed a convolutional neural network (CNN) composed of 4 convolutional
layers and pooling layers, and it recognized users with an accuracy of 99.20%. Fan [24] did
not preprocess a signal in order to avoid information loss. A Siamese network consisting of
three convolutional layers with different number of filters and one fully connected layer
structure was used, and the first convolutional layer learns inter-channel features. The
output difference of the two subnetworks was calculated by using the Euclidean distance
(ED), and an accuracy of 92.06% was achieved. Raurale [27] extracts features in sEMG by
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using band power (BP), root absolute sum square (RSS), and kernel fisher discrimination
(KFD). Multilayer perceptron (MLP) and radial basis function (RBF) were used as classifiers,
and the performance was 92.08%. S. H. Shin [29] used EMG signals measured from the fist
gestures. Five handcraft features were extracted in the time domain, including SD, mean,
and ZC. User recognition was carried out by an artificial neural network (ANN). Table 2 is
used to summarize the personal recognition studies using the existing sEMG.

Table 2. Existing personal identification methods using sEMG.

Feature Type Authors Features Classification

Handcraft

Li et al. [21] MAV, VAR, RMS, etc. OCSVM, LOF

Yamaba et al. [25] Skewness, SD, etc. SVM, DTW

Jiang et al. [28] WL, FMD, SS KNN

Neural Network
Lu et al. [22] CWT, CNN CNN

Fan et al. [24] Siamese CNN Siamese CNN

Handcraft +
Neural Network

Raurale et al. [27] BP, RSS, KFD MLP, RBF

Shin et al. [29] SD, ZC, etc. ANN

3. Multi-Session sEMG DB Construction for Personal Identification

This section explains the method for building a multi-session benchmarking sEMG DB.
In the constructed DB, sEMG was obtained in a multi-session from 200 subjects in intervals
of a day or longer. In addition, a personal identification experiment was conducted to
examine the DB quality and the effectiveness of the data.

3.1. sEMG DB Construction Method

Before proceeding with the data-acquisition process, we explained to the subjects
every step of the process and the gestures required. In addition, we asked them at the end
of the process about their caffeine intake, drinking habits, health condition, sleeping time,
and any discomforts during the process (Figure A1 in Appendix A). Using Biopac MP160,
we obtained sEMG from the right arms of 200 subjects (98 males and 102 females), whose
average age was 24.69 ages (19–70 ages). The data were obtained in 2 channels by attaching
Ag/AgCl sensors to the palmaris longus and extensor digitorum muscles of each subject,
as shown in Figure 1. For the sensor positions, we selected the points where significant
muscle changes occurred during hand gestures.
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Figure 2 shows a data sequence for constructing the sEMG DB, which results in a file
in the DB. The subjects performed each movement in a relaxed state while sitting in chairs,
and each movement was repeated 10 times to obtain the data. When performing a gesture,
the gesture was maintained for at least one second, proceeding with the “start (relaxing
state)–hand gesture–end (relaxing state)” steps. The signals were obtained at a sampling
rate of 2000 Hz, with a 16-bit ADC resolution. The subjects were selected among students,
researchers at Chosun University, and people not associated with Chosun University.
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When obtaining sEMG, the subjects performed 12 gestures (Figure 3). The gestures
were divided into static and dynamic gestures. For the hand gestures, we selected move-
ments commonly used in everyday life. A static gesture is a motion of performing a single
movement, whereas a dynamic gesture is a continuous movement. The sEMG signals
were obtained during such gestures. CS_sEMG DB was obtained in 3 sessions to reflect
the variability of sEMG signals in intervals of a day or longer between sessions. From
each subject, data were obtained in 3 sessions for a gesture; 30 (10 repetitions × 3 sessions)
sEMG signals were obtained. Because each subject performed 12 gestures, a total of 360
(12 gestures × 10 repetitions × 3 sessions) sEMG signals were obtained per person.
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3.2. sEMG Signal Verification and Segmentation

To eliminate the effects of the incorrect measurements by acquirers and subjects, we
excluded the subjects who produced one or more incorrect sEMG signals. The sEMG
signals of 116 subjects, 58% of 200 subjects, were acquired correctly. Hence, 84 subjects
were excluded for the following reasons (red box in Figure 4): “Device loses Bluetooth
connection”, “Incompletion of muscle contraction/relaxation”, “Insufficient number of
repetitions”, and “Muscle not activated”. Table 3 lists the labels of the excluded subjects;
the data of the excluded subjects were not used in the experiments.
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Table 3. Removed subject labels with the corresponding error type.

Error Type Subject No.

Device loses Bluetooth connection
2, 3, 5, 8, 10, 21, 28, 39, 44, 46, 47, 49, 57, 76, 77, 86, 89, 90, 92,

95, 100, 102, 105, 107, 108, 109, 111, 117, 120, 124, 127, 143,
144, 153, 165, 167, 172, 178, 184, 199

Incompletion of muscle
contraction/relaxation

14, 20, 30, 33, 34, 45, 60, 67, 72, 81, 93, 114, 132, 140, 146, 151,
154, 159, 168, 173, 176, 182, 186, 191, 193

Insufficient number of repetitions 6, 16, 37, 69, 78, 116, 152, 196

Muscle not activated 17, 24, 29, 53, 65, 73, 121, 158, 161, 162, 181

The signals for each gesture were obtained continuously and represented as a file for
10 repetitions. The correctly acquired sEMG signals of the subjects were validated with
the naked eye and then segmented manually after validation. Figure 5 shows the result
obtained by the segmented sEMG signals for Gesture 1 of Subject 1. The constructed DB is
publicly available at the IT Research Institute of Chosun University (http://www.chosun.ac.
kr/riit, accessed on 21 February 2022), and the unfiltered raw sEMG data are provided in the
form of both text files and MATLAB files. Data are available for non-commercial purposes,
and only EMG data of Gesture Numbers 1 to 3 performed by 100 subjects (including subjects
excluded by error type) are disclosed. The complete data will be available after signing an
MOU with the IT Research Institute of Chosun University in public. The text file contains
sEMG signals without notions of repetitions, whereas the MATLAB file contains sEMG
signals with notions of repetitions. The provided DB file structure consists of 5 columns:

• Column 1: 2 channel sEMG data;
• Column 2: sampling information;
• Column 3: the subject number who performed the gesture;
• Column 4: the gesture number that the subject performed;
• Column 5: the corresponding session number among the 3 sessions.
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3.3. Personal Identification Method in the Experiment

Personal identification experiments were performed by using the single-session and
multi-session sEMGs of 20 subjects to verify the effectiveness of the constructed CS_sEMG
DB. Figure 6 shows the procedure of the experiment. In order to remove the baseline
wander, power line noise, and external environmental noise of the measured sEMG, the
notch filter (NF) in the 60 Hz band and bandpass filter (BPF) in the 5–500 Hz band were
used as a preprocess. The preprocessed sEMG was converted into a spectrogram for
simultaneous analysis in the time–frequency domain. The spectrogram was generated
by using a fixed-length window along the time axis of a given signal. The generated
spectrogram was resized into a 256 × 256 image and inputted to the designed CNN–LSTM.
The designed CNN–LSTM uses the model consisting of 3 convolutional layers and 2 long
short-term memory (LSTM) layers in the previous study [4]. The parameters of the CNN–
LSTM are shown in Table 4, and the network learning was performed by using batch size
50, epoch 100, and sgdm optimizer.

Sustainability 2022, 14, x FOR PEER REVIEW 8 of 13 
 

 
Figure 5. A sEMG signal example (Gesture 1) and its segmented result. 

3.3. Personal Identification Method in the Experiment 
Personal identification experiments were performed by using the single-session and 

multi-session sEMGs of 20 subjects to verify the effectiveness of the constructed CS_sEMG 
DB. Figure 6 shows the procedure of the experiment. In order to remove the baseline wan-
der, power line noise, and external environmental noise of the measured sEMG, the notch 
filter (NF) in the 60 Hz band and bandpass filter (BPF) in the 5–500 Hz band were used as 
a preprocess. The preprocessed sEMG was converted into a spectrogram for simultaneous 
analysis in the time–frequency domain. The spectrogram was generated by using a fixed-
length window along the time axis of a given signal. The generated spectrogram was 
resized into a 256 × 256 image and inputted to the designed CNN–LSTM. The designed 
CNN–LSTM uses the model consisting of 3 convolutional layers and 2 long short-term 
memory (LSTM) layers in the previous study [4]. The parameters of the CNN–LSTM are 
shown in Table 4, and the network learning was performed by using batch size 50, epoch 
100, and sgdm optimizer. 

 
Figure 6. Convolutional neural network–long short-term memory (CNN–LSTM)-based personal 
identification procedure using CS_sEMG DB. 

Table 4. The CNN–LSTM model structure used. 

Layer Input Size Output Size 
Number of Filter 

(Hidden Unit) 
Input - 256 × 256 × 3 - 
Conv1 256 × 256 × 3 256 × 256 × 20 20 
Pool1 256 × 256 × 20 128 × 128 × 20 - 
Conv2 128 × 128 × 20 128 × 128 × 20 20 
Pool2 128 × 128 × 20 64 × 64 × 20 - 
Conv3 64 × 64 × 20 64 × 64 × 20 20 
Pool3 64 × 64 × 20 32 × 32 × 20 - 

LSTM1 20,480 1024 1024 
LSTM2 1024 1024 1024 

FC1 1024 512 - 
FC2 512 Class (5, 10, 15, 20) - 

  

Figure 6. Convolutional neural network–long short-term memory (CNN–LSTM)-based personal
identification procedure using CS_sEMG DB.

Table 4. The CNN–LSTM model structure used.

Layer Input Size Output Size Number of Filter
(Hidden Unit)

Input - 256 × 256 × 3 -

Conv1 256 × 256 × 3 256 × 256 × 20 20

Pool1 256 × 256 × 20 128 × 128 × 20 -

Conv2 128 × 128 × 20 128 × 128 × 20 20

Pool2 128 × 128 × 20 64 × 64 × 20 -

Conv3 64 × 64 × 20 64 × 64 × 20 20

Pool3 64 × 64 × 20 32 × 32 × 20 -

LSTM1 20,480 1024 1024

LSTM2 1024 1024 1024

FC1 1024 512 -

FC2 512 Class (5, 10, 15, 20) -

4. Experimental Results and Discussion

The personal identification experiments for verifying the effectiveness of the con-
structed CS_sEMG DB were conducted by using both single-session and multi-session
signals. In the single-session-based personal identification experiment, we divided the
sEMG signals into 70% for training and 30% for testing, yielding 84 training data and
36 test data for each subject. Table 5 lists the experimental results for the single-session
sEMG. Based on the experimental results, 5, 10, 15, and 20 subjects produced an average
accuracy of 93.22%, 90.47%, 87.09%, and 84.65%, respectively. Given that the same subjects
participated, a difference in the personal identification accuracy between sessions occurred
because of the variability of the sEMG signals. Such variations could minorly occur as a
result of the changes of the electrodes’ positions. When sEMG is acquired in each session,
the electrodes could slide, because the adhesion between the skin and the electrodes could
change, owing to sweat and other contaminants.
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Table 5. Personal identification results for the single-session sEMG signals.

sEMG Session No. Number of Subjects Accuracy (%)

1

5 92.05

10 91.11

15 84.44

20 83.72

2

5 94.92

10 91.9

15 89.84

20 85.32

3

5 92.7

10 88.41

15 86.98

20 84.91

Average

5 93.22

10 90.47

15 87.09

20 84.65

During the multi-session-based personal identification experiment, two sessions were
used for the model training, and the remaining one session was used for testing. For each
subject, 240 training data and 120 test data were used. Table 6 lists the experimental results
for the multi-session sEMG. Overall, 5, 10, 15, and 20 subjects produced an average accuracy
of 74.19%, 55.73%, 45.50%, and 41.63%, respectively. It showed that a small group of
people could be identified by using the multi-session sEMG. The experimental results were
obtained by applying the previous method [4] without any modifications or improvements.
Thus, when the multi-session sEMG DB was used, the personal identification accuracy of
20 subjects was relatively low. The performance can be improved by applying advanced
feature-extraction and classification techniques.

Table 6. Personal identification results for the multi-session sEMG signals.

sEMG Session No.
Number of Subjects Accuracy (%)

Training Testing

1, 2 3

5 69.91

10 55.19

15 51.46

20 46.88

1, 3 2

5 81.14

10 59.28

15 45.14

20 40.48
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Table 6. Cont.

sEMG Session No.
Number of Subjects Accuracy (%)

Training Testing

2, 3 1

5 71.52

10 52.71

15 39.91

20 37.53

Average

5 74.19

10 55.73

15 45.5

20 41.63

The existing sEMG-based personal identification method uses two sessions for learning
and one for testing. The learning and testing sessions are mutually exclusive. As a result of
the experiment, the performance of the personal identification method using multi-session
data was similar to that of the previous study [4]. In particular, in the case of recognizing five
subjects, every method using handcraft features achieved over 71% accuracy. Therefore, it
is confirmed that the CU_sEMG DB is valid as a dataset for personal identification. Figure 7
summarizes the results.
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5. Conclusions

In the literature, many personal identification methods based on sEMG have been
performed by using benchmarking DBs or DBs acquired by the researchers. However, they
have disadvantages, as the data reliability is vulnerable, owing to the small number of
subjects, and the sEMG signal variability cannot be verified and replicated. In this study, we
constructed and disclosed a large-capacity multi-session sEMG DB. Furthermore, to verify
the effectiveness of the constructed CS_sEMG DB, we conducted personal identification
experiments by using a previously developed method. The DB was constructed in two
channels when 200 subjects performed 12 gestures. Each gesture was repeated 10 times
in time intervals of a day or longer between three sessions. The constructed CS_sEMG
DB was validated for quality, whereby the incorrectly acquired sEMG was excluded by
the investigators, and the signals from the repeating gestures were segmented manually.
The experiments for verifying the effectiveness of the DB were performed by using both



Sustainability 2022, 14, 5739 11 of 13

single-session and multi-session sEMG DBs. As a result of the experiment using the existing
methods, personal identification using multi-session sEMG achieved over 71% accuracy for
five subjects. Consequently, CU_sEMG DB, the sEMG database created by the IT Research
Institute of Chosun University, proved to be valid as a dataset for personal identification.
Therefore, we concluded that the multi-session sEMG data could be used for personal
identification. The CS_sEMG DB developed in this paper will contribute to the sEMG-
based personal identification studies. In the future, we will continuously conduct personal
identification experiments by using the CS_sEMG DB and research the advanced feature
extraction and classification techniques for a better performance.
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